ENTERFACE’ 10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.

Continuous Interaction

Dennis Reidsma, Khiet Truong, Herwin van Welbergen, Daniel

Abstract—Attentive Speaking and Active Listening require that a
Virtual Human be capable of simultaneous perception/interpretation and
production of communicative behavior. A Virtual Human should be able
to signal its attitude and attention while it is listening to its interaction
partner, and be able to attend to its interaction partner while it is speaking
— and modify its communicative behavior on-the-fly based on what it
perceives from its partner. This report presents the results of a four
week summer project that was part of eNTERFACE’10. The project
resulted in progress on several aspects of continuous interaction such as
scheduling and interrupting multimodal behavior, automatic classification
of listener responses, generation of response eliciting behavior, and models
for appropriate reactions to listener responses. A pilot user study was
conducted with ten participants. In addition, the project yielded a number
of deliverables that are released for public access.

Index Terms—Virtual Humans, Attentive Speaking, Listener Re-
sponses, Continuous Interaction

I. INTRODUCTION

Ontinuous Interaction is one of the fundaments underlying Attentive
Speaking and Active Listening for Virtual Humans (VHs). Attentive
Speaking and Active Listening require that a Virtual Human be
capable of simultaneous perception/interpretation and production of
communicative behavior. A Virtual Human should be able to signal
its attitude and attention while it is listening to its interaction partner,
and be able to attend to its interaction partner while it is speaking —
and modify its communicative behavior on-the-fly based on what it
perceives from its partner. This report presents the results of a four
week summer project that was part of eNTERFACE’10. The project
resulted in progress on several aspects of continuous interaction such
as flexible and adaptive scheduling and planning including graceful
interuption, automatic classification of listener responses, generation
of response eliciting behavior, and models for appropriate reactions
to listener responses. We made a start on evaluating the results in
classification experiments as well as in a pilot user study. In addition,
the project yielded a number of deliverables that are released for
public access, among which a public release of Elckerlyc, a new
platform for building Virtual Humans, and a database of motion
capture animations containing over 100 direction-giving-task related
gestures in the route giving domain.

II. BACKGROUND AND MOTIVATION

The design of VHs often focuses on the combination of speech
with gestures in conversational settings. They tend to be developed
using a turn-based interaction paradigm in which the user and the
system take turns to talk. If the interaction capabilities of VHs
are to become more human-like and VHs are to function in social
settings, their design should shift from this turn-based paradigm to
one of continuous interaction in which all partners perceive each
other, express themselves, and coordinate their behavior to each other,
continually and in parallel [1l], [2]. This requires the realizer to be
capable of immediate adaptation — in content and in timing — to the
dynamics of the environment and the user.

The main objective of this project is to explore this kind of
coordination behavior in ECAs, modeling and implementing the
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sensing, interaction and generation for what we call continuous
interaction. A continuous interactive ECA will be able to perceive
the user and generate conversational behavior fully in parallel, and
can coordinate behavior to perception continuously — a capability
which is not yet present in most state-of-the-art ECAs.

One of the major sources of overlap in conversation, and therefore
a very good domain for addressing continuous interaction capabilities
in Virtual Humans, are Listener Responses [3]. We will take a first
step towards the global goal by making a VH that is capable of
actively dealing with Listener Responses from the user, while the
VH is speaking.

A. Structure of this Report

This report is structured as follows. Section [ gives an intro-
duction to the theoretical background of Responses and Attentive
Speaking on which we based our approach. Section presents the
overall system setup of an interactive Virtual Human system as we
used it in our development and experiments. Sections [V] and
introduce the corpora that we used, and analyse them with respect to
the characteristics of Responses that we find in them. Section is
dedicated to the automatic classification of Responses. Sections [VIII|
and concern behavior scheduling and planning for continuous
interaction for Virtual Humans: they describe the already existing
possibilities as well as the new developments achieved in this project.
Sections [X] and [X]] discuss our work on the Response Elicitation
pilot user study. The paper ends with a discussion of what we have
achieved, and where we need to go next.

III. LISTENER RESPONSES AND ATTENTIVE SPEAKING

An active listener shows his or her interest, attention and/or
attitude with respect to the speakers utterances in many ways: through
gaze direction and eye contact, using face expressions, using short
utterances like “yeah”, “okay”, and “hm-m”, etcetera. An attentive
speaker will give the listener opportunities for such responses, but will
also actively receive the responses, and adjust his or her utterances
to the occurrence and content of these responses. In this section, we
discuss (listener) responses and attentive speaking in more detail.

A. Responses and Listener Responses

The conversational context is that of a VH is explaining a certain
route on a map to the user. This conversational context implies that
the VH is mostly speaking (is a Speaker), and the user is listening
(is a Listener). At some point, the user starts to talk. This may be to
give feedback or it may be a question, answer, statement, or other full
contribution to the conversation. The user’s utterance may overlap an
utterance of the VH, or it may be at a moment that the VH was
silent.

We refer to as everything the Listener says as “Responses”, which
implies the role in the conversation.

The Listener commonly utter responses such as “yeah”, “mhm?”,
“uhu”. Fujimoto [3]] propose to call these short utterances Listener
Responses. These are short utterances or vocalizations which are
interjected into the Speakers’ account without causing an interruption,
or being perceived as competitive of the floor. They serve many
functions, were the most important is to signal that the Listener
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hears that the Speaker is talking and nothing more than this neutral
function. This function is sometime called back-channeling and is
not mandatory. Another common function is signaling understanding
to what the speaker is saying. This function is commonly referred
to as Acknowledgment. In addition, they may be used as carriers of
more subtle information, conveyed by intonation, voice quality, face
expression, thythm, content of the words, etcetera.

From a more generalized point of view, a Response may convey in-
formation regarding Understanding (whether the Listener understands
the utterance of the Speaker), Attentiveness (whether the Listener
is attentive to the speech of the Speaker), Attitude [4] and Affect
[S], and may be described as being competitive (interruptive) or
cooperative (non-interruptive) [6].

B. Attentive Speaking

A good speaker pays attention to the listener. He moderates his
speech and tailors it to the responses from the listener. Listeners are
not merely listening, but are co-narrating along with the speaker [7].
A good virtual human should be able to do this as well.

This interaction between speaker and listener works in various
ways. To illustrate this we will give a few examples from literature.
Clark and Krych [8] identify several strategies in dialogue that depend
on opportunities that arise, intentionally or not, mid-sentence. They
claim that speakers make the alterations instantly, typically initiating
them within half a second of the opportunities becoming available.

One of the strategies the speakers apply to coordinate their speech
is self-interruption. If the listener provides a response in mid-
utterance which makes another utterance more relevant at the time
(for instance, because the listener signals non-understanding and an
elaboration is needed), the speaker cuts of his utterance and starts a
new one (see Example [T).

Interaction Example 1 Self-interruption.

Speaker: So starting from the square, you go...
Listener: euhm?
Speaker: I mean the square with the obelisk on it.

The observations from Goodwin [9] work on a lower level. In his
observation, the speaker does not change what he says based on the
responses from the listener, but the timing is coordinated with the
listener. He makes a distinction between continuers and assessments.
Continuers simply acknowledge the receipt of the talk just heard and
signals the speaker to continue his talk. Assessments are the result of
an analysis of the speakers’ talk by the listener based on which, the
listener has produced an action that is responsive to the particulars
of the talk. Continuers are usually placed between two subsequent
speech units, while assessments are placed in the midst of a unit
and completed before a new unit starts. This is actually facilitated
by the speaker. So, if the speaker recognizes an assessment and is
about to start a new unit, he delays this unit (e.g. by an inhalation or
production of a filler) until the listener has completed his assessment.

This coordination does not only facilitate vocal responses from
the listener, also nonverbal signals are dealt with by the speaker.
Goodwin [10] showed that speakers are highly sensitive to listeners
gaze. If they start a sentence and discover the listener is not looking
at them, they restart (and often rephrase) when the listener look back.

This is merely a selection of situations and strategies in which the
speaker moderates his speech to the responses of the listener. There
are many more, which we did not cover, but they illustrate the type
of coordination we are aiming to achieve with our system. It is our
aim to create a system which is technically able to achieve the same
level of continuous interaction with the user as illustrated by these
examples.
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Fig. 1: System architecture

IV. SYSTEM OVERVIEW

Fig.[T]gives an overview of the architecture of the interactive virtual
human system that we have developed. The virtual human explains
a route through a city, in such a way as to elicit Responses form the
user. We detect the occurrence of Responses(e.g., “uh-huh”, “mmm”
using both non-verbal vocalization analysis and a Wizard of Oz
interface. The behavior planner specifies the behavior to be realized
on the basis of politeness and social strategies and conversation
content (a specification of the route to explain). The behavior is
constructed using speech, gestures, gaze, and face expressions.

If Responses occur, Elckerlyc is instructed to gracefully interrupt
the currently running behavior or to retime or re-parameterize (speak
louder, increase the amplitude of gestures etc.) its behavior. New
behavior can be constructed by selecting and inserting new BML
fragments in order to react to interruption. The exact method of
feedback handling is influenced by turn-taking strategies and polite-
ness/social strategies. The different components are connected using
the SEMAINE framework [11]].

V. CORPORA

We used two corpora in this project, namely the MapTask corpus
[12] and the MultiLis corpus [13]. These corpora were used for two
purposes: (1) to find out more about the content and timing of listener
responses, and (2) as training and testing material for our classifiers.

A. The MapTask Corpus

The HCRC Map Task Corpus is a set of 128 dialogues. The task
is for one subject to explain a route to another subject. The one
who explains the route is denoted as the “giver” and the one who
receives the explanation as the “follower”. Half of the dialogs were
recorded under a face-to-face condition and the other half under a
non-visible condition. We used the dialogues from the face-to-face
condition since it is closer to our scenario of an interaction with a
Virtual Human. The two conversations labeled as g3ec1 and g3ec5
where discarded due to a buzz in the speech signal.

The segmentation of the dialog in the MapTask corpus is based
on manual annotations. For the analyses and experiments discussed
in this report, we chose to use instead segmentations based on an
ideal voice activity detector, because that will more closely reflect the
conditions that we will encounter in the application of a conversation
with a Virtual Human. We segment the corpus into falk spurts [14],
defined as a minimum voice activity duration of 50ms separated by a
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TABLE I: Confusion matrix for the annotation of overlapping talk
spurts on Competitiveness. Cohen’s k=0.60; Krippendorff’s o (nom-
inal) = 0.45.

\ COMPETITIVE ~ COOPERATIVE
COMPETITIVE | 88 77
COOPERATIVE | 40 319

minimum inter-pause of 200 ms. These talk spurts are referred to as
“ideal VA Detector talk spurts”. If a talk spurt is comprised of more
than one MapTask segment, the talk spurt is labeled with the label
from the first MapTask segment included in the talk spurt. This gives
a consistent segmentation strategy, uses all relevant speech, and the
results will better resemble the condition when a real voice activity
detector is used.

To simulate real-world conditions even closer, we additionally
created a second set of talk spurts using the OpenSmile voice activity
detector. For each ideal VA Detector talk spurt, 3 seconds of silence
is added in front, and 10 seconds of the original audio following the
ideal VA Detector talk spurt is added to the end. Then the first talk
spurt detected by the OpenSmile voice activity detector, configured
with minimum voice activity duration of 100 ms and a minimum
inter-pause of 200 ms, is assigned the same label as the “ideal VA
Detector talk spurt” and saved for further experiments. If no talk spurt
is detected, then the corresponding label is thrown away. We refer to
these segments as “OpenSmile VADetector talk spurts”.

We used the official MapTask annotations concerning the distinc-
tion between Acknowledgement Moves (MTACK) and other talk
spurts (NONMTACK). The precise definition of an Acknowledgment
Move is found in [15], but they closely resemble the term Listener
Response [3]] and thus serve our purpose. According to Carletta et al.
[15], these MapTask annotations are good (x = .83), although one
of the largest confusions did involve the Acknowledgement Moves
(confusion with Ready and Reply-Y).

In addition, we annotated part of the data with information whether
the talk spurt intends to take the floor (COMPETITIVE) or not
(COOPERATIVE).

The following talk spurts were annotated:

« We only annotated NONMTACKs, as MTACKs are supposed to
be COOPERATIVE by definition.

« We annotated only Responses in overlap (Listener’s talk spurt
starts between the start and the end of the Speaker’s talk
spurt) because the COOPERATIVE/COMPETETIVE dimension
only makes sense for overlapping talk spurts.

o We only annotated NONMTACKs, which does not have any
MTACKs within the local overlap. For example, a NONMTACK
which is intercepted in overlap by MTACK is excluded.

In the data that we used, there are 1232 candidate talk spurts to
be annotated. Of these, 524 talk spurts (quad 1-4) were labelled
by two annotators. The confusion table and relibaility values are
given in Table [ The level of agreement for this annotation is in
the range of highly subjective annotations [16]; the annotators agree
on a certain amount of talk spurts being COOPERATIVE, but have
difficulty agreeing on which talk spurts are COMPETITIVE.

B. The MultiLis Corpus

Because the mapTask corpus does not contain video recordings,
it could not provide us information about nonverbal responses and
nonverbal respose elicitation behavior such as gaze, nods, and face
expressions. For this, we used the MultiLis corpus.
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TABLE II: Top 20 most frequently occurring Acknowledgement talk
spurts in the MapTask corpus (MTACK talk spurts), accounting for
7313 out of 9823 of these talk spurts.

count  word count word count word count word
2773 right 264 oh 93  got 66 a
1459  okay 227  the 89 it 65 to
525 mmhmm 153  that’s 86  you 63  fine
521  uh-huh 145 no 82  that 58 i've
380  yeah 133 i 73  mm 58 aye

The MultiLis corpus [13]] is a Dutch spoken multimodal corpus of
32 mediated face-to-face interactions totalling 131 minutes. Partici-
pants were assigned the role of either speaker or listener during an
interaction. The speakers summarized a video they have just seen or
reproduced a recipe they have just studied for 10 minutes. Listeners
were instructed to memorize as much as possible about what the
speaker was telling. In each session four participants were invited
to record four interactions. Each participant was once speaker and
three times listener. What is unique about this corpus is the fact
that it contains recordings of three individual listeners to the same
speaker in parallel, while each of the listeners believed to be the sole
listener. The speakers saw one of the listeners, believing that they
had a one-on-one conversation. The aim of the corpus was to collect
responses from different individuals to the same speaker context. The
corpus illustrates the individual differences in listening behavior, but
also includes differences in the amount of responses that individual
speakers were able to elicit.

VI. ANALYSIS OF RESPONSES IN HUMAN-HUMAN INTERACTION

This section provides an analysis of properties of Responses from
the MapTask corpus. Rather than providing a complete analysis,
we only adress the parts which are crucial for the design of the
system. Table [[I] shows the most frequently occurring word content
for MTACK talk spurts, accounting for 7313 out of 9823 of these
talk spurts.

A. MTACK Content

Figure [2| shows the duration of MTACKSs vs. the other dialog
moves. It is clear that MTACKs have a short duration and may
(partially) be detected by duration alone. Concerning overlapping
speech, we can observe the following: The proportion of overlapped
speech in the MapTask corpus is 9.1%, the proportion of MTACKs is
7.3% and the proportion of MTACKs in overlapped speech is 34.9%.
Thus, MTACKs are more common in overlap than in non-overlapped
speech.

B. Gaps Following MTACK talk spurts
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Fig. 2: Duration of MTACKs vs. duration of other dialog moves,
using bins of 200 msec.



ENTERFACE’ 10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.

Since we are trying to build a Virtual Human that can deal with
Responses in a continuous interactive way, we also investigated
the continuation talk spurt of the Speaker following the onset of a
MTACK Response. For all MTACK Responses that do not interrupt
the Speaker (i.e. the Speaker continues speaking afther the onset of
the Response) we calculated the gap between the end of the Response
and the beginning of the continuation talk spurt of the speaker. This
gap has a negative value if the Speaker continues speaking before the
end of the Response. Figure [3]shows the distribution of the gap for all
Speaker continuation talk spurts. The figure shows that the Speaker
commonly continues to speak after roughly 0-400 ms. It also shows
that negative gap — that is, overlap — is not uncommon. This means
that for a responsive dialog with a Virtual Human, Responses from the
user need to be classified before they are finished. This might be done
using a speech recognizer running in incremental mode or by using a
specialized detector. Since a speech recognizer will only detect lexical
content, the special prosodic characteristics of listener responses
cannot be accounted for. It is also an open question how well a
speech recognizer will perform in detecting grunt-like nature of some
listener responses. This is because Responses such as “mmhmm” are
tokens which are shown to be unstable in their allophonic surface
realizationsm, and there is no standardized annotation scheme for
these [17].
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Fig. 3: The gap or overlap (negative gap) between a MTACK
Response and the incterlocutors’ continuation using bins of 100 ms.

C. Duration of COMPETITIVE and COOPERATIVE Responses

Figures [4] and [5] give the distribution of the duration of COMPET-
ITIVE and COOPERATIVE Responses, and of the durations of the
overlap for both types of Responses.

We notice that these distributions are different. Short overlaps
around 100 ms are more likely for cooperative speech rather than for
competitive speech. The most likely overlap duration for cooperative
speech is around 100ms, and it wears off around 2100 ms. The most
likely overlap duration for competitive speech is around 300ms, and
it wears off around 1100 ms. This means that a detector should
give a decision as early as possible after the onset of the Response:
preferably at 300ms, but no later than 1100ms.

Secondly, we observe that cooperative talk spurt tend to be shorter
in durations than talk spurt for competitive speech. This means that
duration may be used as a feature for competitiveness, but still
the decision to stop talking when incoming speech are observed in
overlap, is constrained by the observed durations of overlap explained
in the previous paragraph. Thus, there is a trade-off between these
two constraints, the different durations of talk spurt and overlap.

VII. CLASSIFICATION OF LISTENER RESPONSES

This section deals with the classification of Responses based on
audio input. Being an attentive speaker includes giving attention to
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Fig. 4: Durations of talkspurts in overlap with no MTACK context
(within the overlap). To the left are COMPETITIVE and to the right
COOPERATIVE Responses.
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Fig. 5: Durations of the overlap with no MTACK context (within the
overlap). To the left are COMPETITIVE and to the right COOPERA-
TIVE Responses.

what the listener says and taking appropriate action. First of all, this
involves recognizing Responses and the information they convey. We
approach this by classification of incoming voice activity in the audio
channel. As mentioned before (Sections and [VI), it is important
to classify incoming talk-spurts before they end, preferably within
300-700 msec of the onset of the speech.

The classifiers are needed for the system to determine, given in-
coming speech from the user, what the reaction of the Virtual Human
should be. If the incoming speech overlaps speech from the Virtual
Human, the decision may be to stop speaking, or to continue speaking
in overlap. The latter makes sense when the incoming speech is a
COOPERATIVE Response. If the incoming speech does not overlap,
the reaction of the Virtual Human should very much be determined
by the information conveyed by the Response. For example, an
MTACK Response probably requires no change of the dialog plan; a
Response expressing non-understanding or disagreement may require
elaboration, initiation of a clarification dialog, or other more drastic
revisions of the dialog plan. The last type of Responses are not dealt
with by the classifiers presented here.

We classify Responses using the cascade shown in Figure [6] The
first classifier in the cascade is trained on the MapTask corpus to
distinguish MTACK talk spurts from other talk spurts. MTACK talk
spurts are, among other things, by definition COOPERATIVE Re-
sponses. Talk spurts not classified as MTACK may be COOPERATIVE
or COMPETITIVE (see Section [V-A). Concerning these NONMTACK
talk spurts we focus on talk spurts produced by the user in overlap
as they more urgently require a decision from the Virtual Human
(namely, to continue speaking even while the user is speaking too, or
not). We tried two different approaches to classify those talk spurts.
The first approach was based on classifying them according to the
theoretical distinction between COOPERATIVE and COMPETITIVE
Responses. The second approach was pragmatically oriented, based
on predicting the outcome of the overlap, that is, predict whether
the Speaker or the Listener is the one who continues speaking after
the overlap. The third approach is a hybrid approach, and attempts
to exploit a possible relation between the pragmatic “outcome of
overlap” rules and the theoretical distinction from the first approach.
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All classification experiments were performed using openSMILE [18]
for automatic feature extraction and libsvm [19] for classification.
In summary, this leads to four main classification tasks.

o Classifier I Classification of all Responses into MTACK /
NONMTACK

« Classifier IIa Classification of NONMTACK, produced in over-
lap, into COOPERATIVE / COMPETITIVE, based on our manual
annotations (the theoretical approach)

¢ Classifier IIb Prediction of the outcome of the overlap for all
NONMTACK produced in overlap (the pragmatic approach)

o Classifier Ilc Classification of NONMTACK, produced in over-
lap, into COOPERATIVE / COMPETITIVE, based on the hybrid

approach
Voice Activit Classifier |
——Audio input—#-| D y YES
etector MTACK?
NO
NO——
Overlap?
YES
Classifier Il
—
Overlap
assessment

Fig. 6: Cascade used to classify incoming Responses from the user.

A. Maximum latency classification

The analysis of the gap after a listener response in Figure 3] showed
the presence of a negative gap, i.e. an overlap. This means a decision
whether incoming speech is a listener response or not has to be made
before the the listener response ends. Thus, we consider a maximum
latency design for the detector. It is implemented as a voice activity
detector which sends an end message after the talk-spurt ends, or at a
predefined duration threshold, denoted as the maximum latency. If the
duration reaches the threshold, it continues to work as normal voice
activity detector internally, otherwise it might trigger again. Note that
the detector may trigger before the maximum latency if the talkspurt
is shorter than the threshold subtracted by the minimum inter pause
threshold. For online detection, this maximum latency design was
implemented in openSMILE [18]].

B. Feature trajectories as length-invariant Discrete Cosine Coeffi-
cients

To parameterize the trajectories of each feature through out a
talkspurt, we use DCT coefficients invariant to segment length:
1

N-1
1 Z m
Xk; = ﬁ ~ ITn COS (N(n + 5)]{7))

where N is the segment length, x,, is the feature value at time n and
X}, is the k’th coefficient.

These DCT coefficients are much faster to compute than poly-
nomial regression coefficients, since polynomial regression require
matrix inversion. This makes length invariant DCT coefficients more

k=0,...,N (1)
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TRAINING  DEVELOPMENT  EVALUATION
MTACK 775 482 537
NONMTAcCK 1315 677 1138

TABLE III: Number of talkspurts used for training, developing and
testing Classifier 1.

suitable for online systems. The O’th coefficient is equal to the
arithmetic average, which means if it is omitted, then only the
relative shape of a trajectory is parametrized. This property is useful
for parameterizing features which has an highly speaker dependent
additive bias, such as FO. These DCT coefficients has been used to
visualize a single average trajectory of multiple speech segments [20].
When a DCT is applied on MFCCs, one obtain the cepstrum modu-
lation spectrum. The usage of length-invariant cepstrum modulation
spectrum was first introduced by [21]], although no specific term was
used at the time. The cepstrum modulation spectrum has been use for
speech recognition [22] and in its length invariant version for affective
detection [23]. By omitting the Oth DCT coefficient for MFCCs in
the time dimension, then any channel mismatch which appear as
an additive bias in the quefrency will not cause any problem. Our
experiments will determine whether omitting the 0’th coefficient still
gives a decent classifier. Unless anything else is stated, the 0’th DCT
coefficient in time dimension is always omitted.

C. Support Vector Machine classification

All classifiers use Support Vector Machines (SVM) with Radial
Base Function Kernel as implemented in /ibsvm [19]]. In a few cases,
we consider a minor but pragmatic modification to the standard SVM
scheme, which is here denoted as rescaling. When feature sets of
different nature are evaluated on the development set, quite different
optimal « values are found for each feature set. The v parameter in
a radial base kernel is proportional to the inverse of the variance in a
Gaussian. This means that if each feature set would have different ~,
then a more optimal decision hyperplane may be found. One solution
to this problem uses multiple kernels [24]]. Here we offer a simple
and pragmatic solution for this problem. After each feature set f has
been evaluated separately, the optimal “Y({ptimaz is saved. When the
combined feature set is created, a rescaling procedure is applied, after
the regular scaling to [—1, 1] or N(0,1) . The original scaled feature
set zf for each feature set is then rescaled by

f
:%f _ ’Yoptimal

= @)
ming=1...1 Vi

where ¢ denotes the indexes for all « in the grid search. This rescal-
ing procedure can be applied to most standard SVM implementations

with only minor modifications.

D. Experimental setup

For all experiments, the training set consists of so-called quads
1-4, the development set holds quads 5-6 and the evaluation set
holds quads 7-8. The number of talkspurts used in the classification
experiments can be found in Table The SVM regularization
parameters are optimized on the development set, and the best
parameters are then used for test on the evaluation set.

As explained in Section the first series of experiments
explores features and combinations thereof under the assumption that
an ideal voice activity detector is available (referred to as the “ideal
VAD talk spurt” situation). In the second series of experiments, the
ideal segmentation is replaced by an actual voice activity detector
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based on energy thresholds (referred to as the ‘OpenSmile VAD
talk spurt’ situation). This is done to ensure that the classification
results reflects real life conditions as closely as possible. Since a
parametrization of the trajectory of each feature is used, the resulting
models are expected to be sensitive to mismatch in segmentation.
Thus, the same segmentation should be used for training and on-line
recognition. Still we considered safe to extrapolate the results from
the first series, and use the best found combinations of features for
the experiments using the ‘OpenSmile VAD talk spurts’.

E. Classifier I: MTACK vs. Other

1) Features: For the task of classifying incoming speech as a
MTACK or not, a set of acoustic features are considered.

« FO: Back-channels has been shown to have a rise or drop in FO
[25[1120].

« Intensity: Back-channels has been shown to have distinct inten-
sity contours [25]

o« MFCC: Similar lexical content, see Table |lIl may be captured
by MFCCs.

o Duration: As seen in Figure 2] MTACKs have shorter duration
then other type of speech. For training, the full talk-spurt
duration was used, for testing, the duration up to the maximum
latency threshold was used.

o Spectral Flux: Common listener responses such as “mmhmm”
and “uh-huh” are relatively homogeneous throughout their real-
ization, and spectral flux should capture this property.

All features are parametrized using DCT-coefficients 1-6 or 0-6,
as described in Section As classification method, we used a
v-SVM. The parameters g and ¢ were optimized on the DEV set
(on F_avg) through a simple gridsearch with growing sequences
of the v (sequences growing linearly) and g (sequences growing
exponentially) parameters within ranges of [0.025, 0.6] and [0.0156,
4] respectively.

For this classifier, a maximum latency of 300ms or 500ms was
chosen.

Feature(s) 300 ms 500 ms
FO 55 59
Intensity 60 62
MFCC with Oth 72 75
MFCC without Oth 74 75
Duration 55 71
Spectral flux 66 67
Intensity, Sp. flux, MFCC with Oth 73 76
Intensity, Sp. flux, MFCC with Oth, Dur. 75 76
Intensity, Sp. flux, MFCC without Oth 74 76
Intensity, Sp. flux, MFCC without Oth, Dur. 73 76

TABLE IV: Average F-scores in percent for “MTACK vs other”
classification for all the “ideal VA Detector talk spurts” in the
development set.

max latency (ms) Features  Avg. F-score
300 Intensity, flux, mfcc without Oth 73
500 Intensity, flux, mfcc without Oth, dur 76

TABLE V: Average F-scores in percent for “MTACK vs other”
classification for all the “ideal VAD talk spurts” in the evaluation
set.

2) Results And Discussion: As expected, we observe in Table
that MFCCs and duration, at least in the 500ms case, are the main
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max latency (ms) Features  Avg. F-score
300 Intensity, flux, mfcc without Oth 68
500 Intensity, flux, mfcc without Oth, dur 69

TABLE VI: Average F-scores in percent for “MTACK vs other”
classification for the ‘OpenSmile VAD talk spurts’ in the evaluation
set.

Classified as

MTAcCKk NONMTACK
True MTACK 279 258
True NONMTACK | 171 967

TABLE VII: Confusion matrix of 500-Intensity-flux-mfcc-without-
Oth-dur, evaluated on evaluation set

contributors to the distinction between MTACK vs. NONMTACK.
The combination of features did not always yield better results.
However, note that we only tried a combination of features on feature-
level, and that a decision-level fusion might yield better results (which
will be investigated in future work). We observe that omitting the
Oth DCT for MFCCs, does not hurt performance. Table M shows
results for the proposed feature combinations on the evaluation set.
Surprisingly little gain is achieved by using the longer maximum
latency of 500 ms as compared to 300 ms. Table shows the
results for the more realistic ‘OpenSmile VAD talk spurts’. A small
performance drop is observed. Furthermore, the confusion matrix in
Table [VIIl shows that it is easier to miss a LR than to miss a NON-LR.

F. Classifier 1la: COMPETITIVE vs. COOPERATIVE

This task is based on the theoretical distinction between COMPET-
ITIVE vs. COOPERATIVE incoming speech. The classifier was trained
on agreed annotations made by two human annotators who labelled a
part of the HCRC Map Task Corpus on perceived COMPETITIVENESS
and COOPERATIVENESS of the incoming overlapping speech (as
explained in Section [V-A).

1) Features: Choosing a good acoustic feature set for this task
is not easy since only a few studies are available. Intensity is the
most widely studied cue for interruption ([6], [26]). Speaking rate has
been studied in [27]] where it was noted that competitive overlappers
make use of higher speaking rates. However, [28] found speaking
rate to be a weak cue for competitive speech. Speaking rate is very
difficult to estimate for segments lasting less than 1000 ms. Instead,
we try spectral flux which has been used for estimating tempo in
music [29]. While average FO (high) has shown to be a cue for
interruption (e.g., [6]), it requires adaptive estimation of FO range and
is not considered here. As shown in the analysis in Section [VII-G
talkspurt duration is a good feature. Based on the experience from
annotation, we noted a tension in the voice for some interruptions and
competitive speech. Thus, voice quality correlates may be useful for
this task. Voice quality was measured by spectral centroid, spectral
kurtosis, and spectral skewness. The final set of acoustic features was
comprised of:

« FO: DCT 1-6

o Intensity: DCT 1-6

¢ Duration: For training, the full talk spurt duration was used. For
testing, the duration up to the maximum latency threshold was
used.

o Spectral Flux: Oth DCT

o Voice quality: Oth DCTs of spectral centroid, spectral kurtosis
and spectral skewness
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TABLE VIII: Average F-scores for predicting Comp vs Coop on
development set using “ideal VAD talk spurts” from the corpus

Max lat.(ms) 300 500 700 900 1100
FO 54 57 58 57 57
Int. 56 53 59 56 55
Sp. Flux 63 61 60 60 58
vQ. 53 51 53 51 52
dur. 46 47 48 51 51
Combl 57 52 54 55 58
Comb2 58 52 54 55 57

TABLE IX: Average F-scores for predicting Comp vs Coop on
evaluation set using “ideal VAD talk spurts” from the corpus

Max lat.(ms) 300 500 700 900 1100

Sp. Flux 61 63 59 63 55

Combl 58 54 53 54 58

Comb2 57 53 54 53 58

outcome >0
[ Current speaker | [ Current speaker |¢——>
Incoming speaker [¢——» | Incoming speaker |
outcome <0

Fig. 7: The outcome of overlap that is to be predicted.

o Combl: FO, Intensity, Spectral Flux, and Voice Quality, as

specified above

o Comb2: As Combl with duration added, as specified above

2) Experimental setup: For training and testing the classifier, we
used the COMPETITIVE and COOPERATIVE annotations that were
obtained with two human annotators (see Section [V-A). Only those
talk spurts that were agreed upon by both annotators were included
which yielded 88 and 319 talk spurts for the COMPETITIVE and
COOPERATIVE class respectively. Since we have relatively little
data, an N-fold-cross-validation scheme was applied for training
and testing the classifier (contrary to what was done for the other
classifiers). There were 4 quads available. To ensure strict separation
of training, development and testing sets, in each fold, 2 quads
were held out for development or testing. The models trained for
optimization of the SVM parameters were trained with the other 2
quads. All possible combinations of quads with strict separation of
training, development, and testing sets were made which yielded 12
folds for the optimization phase. For final testing, the quad initially
used for development was added to the training set, which yielded 4
final folds for testing.

3) Results And Discussion: Table shows the results for the
development data and Table for the evaluation data. It is clear
that only spectral flux is the only feature which gives anything above
chance level. It is hard to speculate on the reason for this, but it
should be pointed out that data sparseness, i.e. very few competitive
samples, may have contributed to this.

G. Classifier 1Ib: Outcome of Overlap

The observed outcome from overlap is defined by a contextual
timing feature. This feature is the end-time of the talk-spurt for the
speaker who intercept in the overlap subtracted by the end-time of the
talk-spurt of the interlocutor, which is the speaker who talked before
the overlap. Thus, this feature measures the outcome of the overlap,
i.e the winner of the floor, and is hence denoted as the outcome.
This is illustrated in Figure [/l Based on the outcome, the following
labeling scheme is applied:

If outcome < 0 then
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Incoming speaker continues

Incoming speaker stops

Counts per bin
Counts per bin
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006 1152 26 336 4 4545
Incoming talkspurt duration (seconds)

DDDE 1 1522533‘54455

Incoming talkepurt duration (seconds)

Fig. 8: Durations of talkspurts in overlap with no MTACK context

(within the overlap). To the left is when the incoming speaker stops,
and to the right is when the incoming speaker continues.
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Fig. 9: Durations of overlaps with no MTACK context (within the
overlap). To the left is when the incoming speaker stops, and to the
right is when the incoming speaker continues.

label as incoming speaker stops;
else
label as incoming speaker continues.

By using this rule, instead of human annotations of interruptions,
or competitive and cooperative speech, the resulting labels are always
consistent and objective. If the labels generated by the rule may be
predicted using acoustic cues, then the predicted outcome from the
overlap can be forwarded to the dialog manager, which in turn can
make a decision. In this way, we can think of the rule as an observed
habit which may be predicted. However, the labels produced by the
rule has no correspondence with the labels derived from annotation,
the average F-score is 41.8.

Theoretically, one would expect a relation between the outcome
of the overlap described here, on the one hand, and the concept of
COMPETITIVE vs COOPERATIVE described earlier, on the other hand:
the Speaker will probably more often stop speaking due to incoming
COMPETITIVE Responses than due to COOPERATIVE Responses.
Figures [8] and [] show the histograms of the talk spurt durations
and the overlap durations for the two possible outcomes of overlap.
Compare these with Figures[d]and [5]to see that at least in this respect,
there is a relation between observed outcome of overlap, and the
manual annotation of COMPETITIVE vs. COOPERATIVE.

1) Acoustic Features: The final acoustic feature set is:

o FO: DCT 1-6

« Intensity: DCT 0-6 or 1-6

o Duration: For training, the full talk-spurt duration was used, for
testing, the duration up to the maximum latency threshold was
used.

o Spectral flux: 0’th DCT
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TABLE X: Development set Average F-scores for predicting outcome
of overlap given the “ideal VA talk spurts”

Max lat.(ms) 300 500 700 900 1100
FO 56 66 65 67 69
Int. 58 63 61 59 63
Int. + Oth 63 63 61 64 66
sp. Flux 61 62 62 62 64
v.q. 58 62 65 65 64
dur. 70 75 76 76 76
combl 57 62 66 66 66
comb2 54 66 71 73 74
combl rs 58 63 63 67 65
comb2 rs 60 63 69 77 71

TABLE XI: Evaluation set Average F-scores for predicting outcome
of overlap given the “ideal VA talk spurts”

Max lat.(ms) 500 700 900 1100
dur. 77 79 79 79
combl 52 54 55 58
comb2 62 67 70 63
combl rs 53 60 56 61
comb2 rs 58 71 77 74

« Voice Quality: 0’th DCTs of spectral centroid, spectral kurtosis

and spectral skewness.

« Combl: FO,Intensity, Spectral flux and Voice Quality, as speci-

fied above

o Comb2: As Comb 1 with duration added, as specified above

¢ Combl: Comb 1 with rescaling

o Comb2: Comb 2 with rescaling
The DCT coefficients are computed as described in Section

2) Results And Discussion: The results, measured by average F-
scores, for optimal parameters on the development set given the “ideal
VA talk spurts” are shown in Table [X] It is clear that performance
increases with the maximum latency duration threshold. Adding the
0’th DCT coefficient to Intensity gives some benefit, but it is not
included in the combined feature set since it might be sensitive to
recording conditions. Duration is the most salient feature overall
while the other features gives similar contributions. Rescaling does
not show any clear advantage. Eventually, we decided to evaluate
the combined feature sets, with and without rescaling, and, finally,
duration alone.

The results for the evaluation set are given in Table These
results verify that classifier performance increases with the maximum
latency duration threshold. Rescaling gives a clear advantage, but the
comb?2 feature set does not beat duration alone. Especially, the results
the combl1 feature set (acoustic features only), are not very strong but
clearly above chance for longer maximum latency thresholds.

Then we made the evaluation using the “OpenSmile VA talk
spurts”, the performance dropped significantly. The cause was hy-
pothesized to be inconsistent segmentation by the energy based
voice activity detector. Since he trajectory parametrization by DCT
coefficients is likely to be sensitive to segmentation inconsistencies,

TABLE XII: Evaluation set Average F-scores for predicting outcome
of overlap given the “OpenSmile talk spurts”

Max lat.(ms) 500 700 900
dur. 66 71 69
combl N/A 48 46
comb2 54 54 49
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we decided to only use the Oth DCT coefficient (i.e. corresponds to
the arithmetic average). However, this ruled out using FO and Intensity
as features since the arithmetic average of these are dependent on the
speaker and the distance between the speaker and the microphone.
Consequently, we ended up using the Oth coefficients of Spectral Flux
and Voice Quality. The results are shown in Table [XTI] It is clear that
the acoustic features does not perform above chance, leaving only
duration as a reliable feature.

H. Classifier llc: Hybrid approach

The pragmatic approach in Section doesn’t produce auto-
matic labels that relate to the labels from the annotation. This section
describes an attempt to derive a low complexity rule which shows
agreement with the labels derived from the human annotations.

Similar to the pragmatic approach in Section two types
of contextual timing features are defined first. The first one is the
duration of the overlap. The second is the end-time of the talk-spurt
for the speaker who intercept in the overlap subtracted by the end-
time of the talk-spurt of the interlocutor, which is the speaker who
talked before the overlap. Thus, this feature measures the outcome
of the overlap, i.e the winner of the floor, and is hence denoted as
outcome.

To derive a rule from the features a decision tree was used, where
the priors for the agreed labels were set to a uniform distribution.
The first two rules, at the top of the tree, was:

If overlap > 0.15 and outcome < -0.40 then
label as competitive;

else

label as cooperative.

This label scheme achieved an average F-score with our agreed
labels of 0.67. The value is above chance and should be compared to
the kappa which is decent but not high. Rules with higher complexity
may be derived by looking further down into the tree, but these high
complexity rules are difficult to explain and understand.

The part of the rule which concerns the amount of overlap, i.e.
a minimum overlap of 150 ms, may be interpreted as the minimum
duration of a perceivable overlap. Thus, if the overlap is below 150ms
it is not perceivable and hence no interruption is perceived either. It
should be noted, that despite no listener responses, as defined by
the acknowledgments moves, were included for annotation, more
than a few listener responses where observed during annotation.
These also tend to come immediately before the end of the talk-
spurt, possibly within the last 150 ms. Since listener responses are
considered as cooperative, the occurrences of these just toward the
end of a talk-spurt may be another explanation for this criterion. In
any case, a speaker change that is within 150ms before the end of
the talk-spurt may simply be considered as a smooth speaker shift.
Also, this criterion seem to be non-negligible, since if this part of
the rule was removed, the average F-score dropped below chance
level. The second part of the rule; outcome < —0.40; simply states
that the speaker who intercepts in overlap has to speak for 400 ms
after the overlap in order to consider it to be competitive. Finally,
we notice that the rule implies a minimum talk-spurt duration of
150 + 400 = 550 ms. We further notice from Figure [2] that listener
responses are more likely to be shorter than 500ms compared to non-
listener responses. This confirms the findings by [30], where duration
was found to be a highly reliable feature for back-channels.

Figures [T0] and [TT] show the histograms of the talk spurt durations
and the overlap durations for the labels generated by the rule.
We notice a greater similarity between these histograms and the
histograms for the manual annotations (Figures [4] and [5) compared
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Fig. 11: Durations overlaps with no MTACK context (within the over-
lap). To the left are COMPETITIVE and to the right COOPERATIVE
Responses, both according to the rule.

to the histograms which results from the pragmatic approach. This is
especially true for the overlap durations of competitive speech.

To summarize, the motivations for using the hybrid rule are:

1) The rule extracts labels which have some consistency with our
human annotations.
The rule generates labels which have overlap and duration
distributions similar to the human annotations.
We can generate labels for more data than what is provided by
the annotations.
The rule is always consistent and objective.

2)
3)

4)

If the labels generated by the rule may be predicted using acoustic
cues, then the predicted labels can be forwarded to the dialog
manager, which in turn can make a decision. In this way, we can think
of the rule as an observed habit which is also related to cooperative
and competitive speech, which may be predicted.

1) Results And Discussion: For this classifier, we use exactly the
same feature set as for the pragmatic approach (Section [VII-G).

TABLE XIII: Development set Average F-scores for predict-
ingCOMPETITIVE speech based on the hybrid approach given the
“ideal VA talk spurts”

Max lat.(ms) 300 500 700 900 1100
FO 57 64 64 66 67
Int. 61 67 63 64 67
Int. + Oth 61 64 63 69 72
spflux 63 66 64 62 62
vq. 62 64 67 68 69
dur. 41 71 79 79 82
combl 61 67 66 64 67
comb2 50 58 62 65 67
combl rs 60 64 66 72 70
comb2 rs 55 58 69 75 76
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TABLE XIV: Evaluation set Average F-scores for predicting COM-
PETITIVE speech based on the hybrid approach given the “ideal VA

1{ talk spurts”

Max lat.(ms) 500 700 900 1100
dur. 67 74 70 81
combl 57 57 60 60
comb2 55 61 55 62
combl rs 58 57 58 62
comb2rs 56 63 61 67

TABLE XV: Evaluation set Average F-scores for predicting COM-
PETITIVE speech based on the hybrid approach given the “OpenSmile
talk spurts”

Max lat.(ms) 500 700 900
dur. 57 63 67
combl 52 53 49
comb2 48 42 47

The results, measured by Average F-scores, for optimal parameters
on the development given the “ideal VA talk spurts” are shown in
Table The F-scores pretty much follows the same pattern as
for the pragmatic approach (Section [VII-G), but the observations
are rephrased where for clarity with few but some differences. It is
clear that classifier performance increases with the maximum latency
duration threshold. Adding the 0’th DCT coefficient to Intensity gives
some benefit, but it is not included in the combined feature set
since it might be sensitive to recording conditions. Duration is the
most salient feature overall while the other features gives similar
contributions. Rescaling does show an advantage for maximum
latency threshold of 700 ms and above. Eventually, we decided to
evaluate the combined feature sets, with and without rescaling and
finally duration alone.

The results for the evaluation set are given in Table These
results verify that classifier performance increases with the maximum
latency duration threshold. Rescaling gives a clear advantage, but the
comb?2 feature set does not beat duration alone. Especially, the results
the combl1 feature set (acoustic features only), are not very strong but
clearly above chance for longer maximum latency thresholds.

For the evaluation using the “OpenSmile VA talk spurts”, we
adopted the same procedure as for the pragmatic approach. Thus,
we ended up using the Oth coefficients of Spectral Flux and Voice
Quality along with duration. The results are shown in Table [XTI] It is
clear that the acoustic features does not perform much above chance,
leaving only duration as a reliable feature.

1. Conclusions from Classification Experiments

These series of experiments has shown successes and failures. First
of all, Classifier I (Classification of all Responses into MTACK
/ NONMTACK) has a clear potential in a fielded system. For the
Classifier II b/c versions, we have shown some success for acoustic
features by using “ideal VA talk spurts”. However, under the more
realistic condition where “OpenSmile talk spurts” are used, only
duration showed to be a reliable feature. It is not obvious to chose
between Classifier IIb and Classifier Ilc, mainly because the actual
performance is similar, but the more more pragmatic Classifier IIb
may be the choice since it does not rely on human judgments.
Finally, it should be noted that all these classifiers may run in parallel
for different maximum latency thresholds. Then different decision
thresholds may be applied for the more reliable classifiers, which
usually are the ones which has a higher maximum latency.
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VIII. EXISTING MODELS FOR BEHAVIOR GENERATION AND
SPECIFICATION

Here we describe Elckerlyc, the BML Realizer used to generate
virtual human behavior. It is based on the SAIBA Framework [31]]
(see Fig which describes a generic architecture for virtual human
applications. It contains a three-stage process: communicative intent
planning, multimodal behavior planning, resulting in a BML stream,
and behavior realization of this stream. The Elckerlyc framework
used in this project encompasses the realization stage. It takes a
specification of the intended behavior of a virtual human written
in the Behavior Markup Language (BML) [31] and executes this
behavior through the virtual human.

. I BML Behavior
Intent Behavior — Realizer
Planner ja-feedback— Planner j4—feedback— (EIckerch)

Fig. 12: The SAIBA framework.

The BML stream contains BML requests with behaviors (such
as speech, gesture, head movement etc.) and specifies how these
behaviors are synchronized (see also Fig. [I3). Synchronization of
the behaviors to each other is done through BML constraints that
link synchronization points in one behavior (start, end, stroke, etc;
see also Fig.[T4) to synchronization points in another behavior. BML
can be used to append or merge new behaviors into a running BML
stream. Some extension have been proposed to allow the specification
of instant removal of a running BML requesﬂ

<bml id="bmll">
<gaze type="AT” id="gazel"
target="AUDIENCE" />

<speech |start="gazel:ready” id="speechl">|
<text>Welcome ladies and gentlemen!
</text>

</speech>

</bml>

Bml Request
— Behaviors

Fig. 13: An example of a BML request containing a gaze and a speech
behavior. A synchronization constraint ensures that the speech starts
after the gaze is aimed at the audience.

8 6 8 & 6 @

IStart Ready Stroke Relax End

Stroke-start Stroke-end

Pre-stroke Hold Post-stroke Hold

Fig. 14: Standard BML synchronization points (picture from http:
/Iwiki.mindmakers.org/projects:bml:main)

IX. SCHEDULING AND PLANNING FOR CONTINUOUS
INTERACTION

Currently, BML does not contain mechanisms to slightly modify
behavior that is already running, or to interrupt behavior in a more
graceful manner. Such mechanisms are crucial to achieve continuous

I'See http://wiki.mindmakers.org/projects:bml:multipleblockissue
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interaction [32]]. Some desired changes to planned behavior are only
on their timing or parameter values (speak louder, increase gesture
amplitude) and should not lead to completely rebuilding the animation
or speech plan. Such small adaptations of the timing or shape of
planned behavior occur in conversations and other interactions [2].
Elsewhere, we discuss the specification and Elckerlyc’s implementa-
tion mechanisms that allow such small behavior plan changes to occur
instantly [32]. In this paper we focus on graceful interruption and
preplanning of behavior that were developed during the eNTERFACE
workshop.

We have defined a custom BML extension BMLT [ to allow
the expression of behaviors and the scheduling and interruption
mechanisms discussed above that cannot be expressed in BML (yet).

A. Preplanning

Planning a BML request typically takes a non-neglectable amount
of time, especially if the timing of speech is to be obtained through
speech synthesis software. This is problematic for developing highly
responsive Virtual Humans like the one described in this paper.
Elckerlyc explicitly models the scheduling stage of BML requests
and makes it transparent to the Behavior Planner by providing it
with feedback on when the scheduling of a BML request is started
and when it it done. BMLT provides preplanning as a mechanism
to construct a behavior plan that can be activated later on. In a
typical usage scenario of pre-planning, the Behavior Planner already
knows what behavior to execute, and wants to execute it (near)
instantly later on, for example in reaction to some event such as an
incoming Response from the user. Preplanning is set up for a BML
request, using the BMLT preplan attribute in that request. Preplanned
BML requests can be activated using another BML request with an
onStart attribute. The preplanned behavior is activated as soon as
the scheduler finishes planning the behavior with the onStart that
activates it. Example [1] illustrates the BML used for preplanning.

BML Example 1 Several BML requests illustrating the preplanning
and activation of pre-planned behavior.

<bml xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt"
id="bmll" scheduling="merge" bmlt:preplan="true">

;}gml>
(a) Preplan bmll.

<bml xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt"
id="bmlx"
bmlt:onStart="bmll"/>

(b) Activate preplanned behavior bmll.

<pbml id="bml3"

xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt"
scheduling="append-after (bml2)"
bmlt:onStart="bmll,bml5">

</bml>

(¢) Schedule bm13 to be appended after bm12, activate

preplanned behaviors bm11 and bm15 as bml3 is started.

B. Graceful interruption

The interrupt behavior, first proposed and implemented in the
SmartBody BML realizer [33], is used to interrupt a running BML
request. This can be used to schedule the interrupt of a BML request
relative to some other behavior (e.g. VH looks at the interlocutor

2See http://wiki.mindmakers.org/projects:bml:bmit
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before it stops to speak). In both BMLT and the SmartBody BML,
the interrupt behavior by default immediately interrupts all behaviors
in the BML request it targets at the start of the interrupt behavior.

In its simplest form (See Example [2), the BMLT interrupt behavior
acts the same as the SmartBody interrupt behavior. The syntax is also
very similar.

BML Example 2 Interrupt bml1 as soon as shakel:stroke is
reached

<pbmlt:interrupt id="interruptl"
target="bmll" start="shakel:stroke"/>

We have extended the interrupt behavior to allow a more fine-
grained interrupt specification, using the interruptspec element
inside an interrupt behavior. Using the interruptspec we
can define exactly when certain behaviors inside the target BML
request are to be interrupted. All behaviors in the target BML
request that are not described in an interruptspec are inter-
rupted instantly. The interruptspec also allows us to specify
preplanned BML requests that are to be activated as soon as a
certain behavior is interrupted using the onStart attribute. This
combination of the interruption behavoir and preplanning allows us
to specify the graceful interruption of behavior in other BML blocks,
with alternative continuations after the interruption (See Example [3).

BML Example 3 The realizer interrupts all behaviors in bml1.
speechl is interrupted at syncl and gracefully ended with
some trailing speech using bml3, gesturel is interrupted at its
stroke-end, and followed by the content of bml4. All other
behaviors in bm11 are interrupted at the start of interruptl (that
is, at shakel:stroke).

<bmlt:interrupt id="interruptl"

target="bmll" start="shakel:stroke">
<bmlt:interruptspec behavior="speechl"
interruptSync="syncl" onStart="bml3"/>
<bmlt:interruptspec behavior="gesturel"
interruptSync="stroke-end" onStart="bml4"/>

</bmlt:interrupt>

X. LISTENER RESPONSE ELICITATION

Before going into monitoring and handling Responses it is impor-
tant that the system is able to elicit these Responses. In human-human
conversation the speaker often elicits such responses. The speaker
creates Response opportunities through vocal and non-vocal cues,
such as pausing between statements, modifying the prosody of the
speech, and using gaze and face expressions. This section discusses
the literature in order to find possibilities for response elicititation
cues that can be used in our pilot experiment.

Prosodic elicitation cues for responses are quite well described
in literature. Gravano and Hirschberg [34] observe that the final
intonation of the interpausal unit (IPU) preceding a response rises
in 81% of the cases. Furthermore the mean intensity and pitch
level of the preceding IPUs which are followed by a response are
higher than IPUs not followed by a response. Furthermore Ward and
Tsukahara [35] use in their handcrafted rule based model an area of
110ms of low pitch to predict a response 700ms after this cue.

Nonverbal cues are far less concretely described in literature. Such
work mostly concerns gaze behavior. In a detailed study Bavelas et
al. [36] conclude that 83% of listener responses in their corpus occur
during mutual gaze, confirming earlier intuitions of Kendon [37] and
Duncan Jr. [38]]. Furthermore, head movements have been associated
with eliciting responses [39], but there are, to our knowledge, no
concrete findings directly applicable to virtual humans.
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We performed an observatory study on the MultiLis corpus, where
we analyzed the speakers who elicited the most responses from the
listeners, with special attention to their nonverbal behaviors. Some
speakers were very expressive in their nonverbal behavior, while
others were not. For one of the speakers his blinking behavior really
stood out. In general his blinking rate was high, but at the end of
statement, where he expected a response from the listener, he stopped
blinking and stared at the listener. He started blinking again as soon
as the listener provided a response.

A. Enhancing MARY TTS to realize vocal elicitation cues

The MARY TTS platform is an open-source, modular architec-
ture for building text-to-speech systems, including unit selection
and statistical parametric waveform synthesis technologies. It has
been described in detail elsewhere [40], [41]. The present paper
only describes the aspects relevant in the current context. One of
those aspects is how to realize vocal elicitation cues using MARY
TTS. Prosody modification techniques are the key to realize vocal
elicitation cues. Traditionally in MARY, the applications that require
control over prosody were using MBROLA diphone synthetic voices,
though the voices are unnatural. Nowadays HMM-based voices are
reaching high quality synthetic speech.

In HMM-based speech synthesis, trained statistical models
(context-dependent HMMs) are used to predict duration and generate
parameters like mel-cepstral coefficients, log FO values, and bandpass
voicing strengths using the maximum likelihood parameter generation
algorithm including global variance [42]. In the later stages, FO
parameters, bandpass voicing strengths, and the five bandpass filters
are used to generate a mixed excitation signal. Finally, speech is syn-
thesized from the mel-cepstral coefficients and the mixed excitation
signal using the MLSA filter [43].

Although MARY already supports realization of predicted prosody
parameters using HMM synthesis, it did not support explicit prosody
specification. This project requires support for prosody modifications
specified in MARYXML requests. So, as part of this project, we
implemented support for ‘prosody’ element as described in W3C
Speech Synthesis Markup Language (SSML) recommendations; and
the different attributes in ‘prosody’ element like ‘rate’, ‘pitch’ and
‘contour’ are used as specifications to modify predicted phone dura-
tions and pitch contour before passing them to the HMM synthesizer.
Once the modifications are done according to given specifications,
they are realized as normal with HMM-based synthesis strategies.

MARYXML Example 1 An example which supports explicit
prosody specifications

<?xml version="1.0" encoding="UTF-8"
<maryxml version="0.4"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://mary.dfki.de/2002/MaryXML"
xml:lang="en-US">
<p>
<prosody rate="fast"
pitch="+10%"
contour="(10%, low) (80%,+10%) (100%, +5st) ">
Welcome to the world of speech synthesis!
</prosody>
</p>
</maryxml>

?>

XI. PILOT EXPERIMENT

As a setting for our experiments we chose the route description
domain. This domain was chosen since in this domain the fact
whether the information given by the agent has reached the user,
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and is understood by the user or not, is crucial to the success of
the interaction. In this setting, continuous monitoring of the user and
reacting appropiately to their responses is very relevant. You may
want to repeat certain elements of the explanation to get your point
across or skip a part depending on the actions of the user.

Before going into monitoring and handling the responses it is
important that your system is able to elicit these responses. In human-
human conversation the speaker often elicits such responses. The
speaker creates response opportunities by providing eliciting cues
to the listener, such as pausing between statements, modifying the
prosody of the speech and displaying various nonverbal behaviors.
In this experiment we aim to recreate these signals based on lit-
erature and corpus analysis and evaluate them in our agent to see
which elicitation strategy elicits the most responses. Furthermore we
assess each version of our agent on subjective measures related to
conversational skill, rapport, personality etc.

A. Task

During the experiment our route giving agent explains a route to
the participants. Afterwards the participant needs to draw the route
on a map, which is presented before the interaction begins.

B. Stimuli

The map contains the layout of a fictional city. Landmarks are
highlighted on the map, such as a cathedral, a stadium, and bridges.
With the map comes a legend explaining the terminology used by the
agent to identify the landmarks. The current position of the participant
is also shown on the map.

There are three different starting points, for three different routes.
Each route consists of n stepsﬂ that take the user to their final
destination. Each step is realized by specifying a BML block. The
BML block specifies the speech and the behavior the agent performs.
The speech is synthesized using Mary TTS [41]. The speech is
manually cleaned up, using the prosody tags described in Section [X]
We removed, where necessary, peculiarities in the synthesized speech,
added some extra pause moments and changed the speech rate, to
make the agent sound more natural. Aligned with the speech, gestures
are added to accompany the explanation of the route (e.g. pointing
to the left or making an iconic gesture representing a landmark). The
pause between the blocks is 1.5s, which is based on the mean pause
between statements in the MultiLis corpus.

These pauses between the blocks are the response opportunities
where we explicitly elicit responses. For each route we created four
versions, each with different response elicitation behavior. These four
different behavior are:

o Default: No explicit elicitation behavior.

« Vocal: Rising pitch at the end of the step.

« Nonverbal: Emphasis head and face gestures, interruption of

blinking and gaze away as conformation behavior.

o Combined: Combination of the Vocal and Nonverbal behavior.

In the Default version no explicit elicitation behavior is employed.
This version was our baseline from which we created the three
following versions, by changing the pitch contours, or adding extra
behaviors according to strict rules.

In the Vocal version we modified the pitch of the speech. The
modification were inspired by Gravano and Hirschberg [34]. In
their analysis of the Columbia Games Corpus, which is a task-
oriented corpus, comparable to our setup (as opposed to spontaneous
dialogues), they concluded that, among other features, the rising of
the pitch in the final 200 to 300ms of speech is a response eliciting

3For Route 1 and 3, n = 8, for Route 2, n = 7.
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cue. We applied this finding to our synthesized speech in this version,
by giving the last word of a step in the route a rising pitch contour.

In the Nonverbal version we added nonverbal inviting behavior
found in the MultiLis Corpus [13]. More specifically we choose
one of the speakers and recreated his nonverbal response eliciting
behavior. This speaker was chosen by looking at the top 5 speakers
with the highest rate of elicited responses per minute and selecting
the speaker where nonverbal cues were most prominently present (ac-
cording to our perception). His eliciting behavior was the following.
He emphasizes the last word in a sentence by accompanying it with
a subtle head nod and short eyebrow raise. At the same time he stops
blinking (he generally has a pretty high blinking rate, so this actually
stands out) and stares at the listener. As soon as a response is given,
he starts blinking again and averts his gaze to formulate his next
sentence. This behavior is recreated in the nonverbal version.

In the Combined version we combine both the vocal and nonverbal
behavior changes to the default version.

C. Methodology

We invited 9 participants (8 male, 1 female, aged between 25 and
54, all non-native English speakers) to interact with our route agent.
Participants are told that the agent is able to perceive and react to
short vocal and nonverbal responses (like nodding, saying “Uh-huh”,
or “Yes”).

Before each interaction the user was presented the map with
the starting point of the route. This map is taken away before the
interaction starts. During the interaction the route agent gave a route
description to the user. It was the task of the user to remember the
route and reproduce it on the map afterwards.

Each participant interacted three times with the route agent. During
each interaction the agent explained a different route. Each route
description was given with a different elicitation strategy. Every
participant interacted with the Default and Combined agent and
either the Vocal or the Nonverbal agent. Permutations of routes and
elicitation strategies were varied among participants.

D. Measures

Before the experiment the participants filled in a prequestionnaire
measuring their age, gender, native language and highest level of
education.

After each route they filled out a questionnaire about the inter-
action. The questionnaire measures the rapport between the agent
and the participant, based on the questionnaire used in De Kok and
Heylen [13]. Furthermore we measured the perceived impression of
the agent by having the participants rate the agent on 26 bipolar
semantic differential adjective scales taken from the study of Ter
Maat et al. [44]. All questions are on a 7-point Likert scale.

In the postquestionnaire after the final route, we asked which
version of the agent they liked best, they thought was the most natural,
the most social and the most attentive.

Our final measures are on the video recordings of the interaction.
In these video recordings we counted the number and the type
(nonverbal, vocal or both) of the responses they provided to the agent.

E. Results and Discussion

We succesfully elicited responses from the subjects (see Ta-
ble [XVI). The amount of response given seems highly subject
dependent (see Table [XVI). Over half of the subjects gave a response
on all response elicitation positions in the route explanation, even if
no explicit elicitation strategy was used. Perhaps the pauses between
segments in the route explanations provide a very strong feedback



ENTERFACE’ 10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.

subject  default combined vocal nonverbal average

1 1 1 1 - 1

2 0.6 0.9 - 1 0.8
3 1 0.8 - 1 0.9
4 1 1 0.8 - 0.9
5 1 1 1 - 1

6 0.3 - - 0.6
7 0.6 0.2 - 0.3 0.3
8 1 1 0.3 - 0.8
9 0.3 0.5 0.3 - 0.4

TABLE XVI: Response ratio (Responses given/Response opportuni-
ties in the route-description) per subject per elicitation strategy. The
value ‘-’ means that the specific elicitation strategy was not presented
to the subject or that the recording failed.

Default ~ Combined Vocal Nonverbal
Like best: 5 (56%) 3 (33%) 0 (0%) 2 (50%)
In between: 2 (22%) 4 (44%) 1 (20%) 1 (25%)
Like least: 2 (22%) 2 (22%) 4 (80%) 1 (25%)
Most natural: 5 (56%) 2 (22%) 1 (20%) 1 (25%)
In between: 2 (22%) 3 (33%) 1 (20%) 3 (75%)
Least natural: 2 (22%) 4 (44%) 3 (60%) 0 (0%)
Most social: 5 (56%) 3 (33%) 1 (20%) 0 (0%)
In between: 2 (22%) 4 (44%) 1 (20%) 3 (75%)
Least social: 2 (22%) 2 (22%) 3 (60%) 1 (25%)
Most attentive: 5 (56%) 3 (33%) 0 (0%) 1 (25%)
In between: 2 (22%) 5 (56%) 1 (20%) 1 (25%)
Least attentive: 2 (22%) 1 (11%) 4 (80%) 2 (50%)

TABLE XVII: Results of the post-questionnaire in which the
participants ranked the agents on likeability, naturalness, social ability
and attentiveness. Especially the agent with the Vocal elicitation
strategy performs bad on these scales. The Default agent seems best.

elicitation cue. Only 6 out of 237 responses were non-verbal only.
137 were both verbal and nonverbal.

We observed the use of one or more repetions in the responses of
five of the subjects (cf. Interaction Example [2).

Interaction Example 2 Example of repetition in the recordings.
Virtual Human: Take the second street on your right.
Subject: second street on my right.

Non-understanding was expressed in both intrusive (13x, for exam-
ple: “over the square with the what?”’) and non intrusive ways (5x, for
example: hesitant feedback: “Oh.. Keeeey” or with a puzzled look).

If we look at the result of the post-questionnaire (presented in
Table[XVII|we notice the bad performance of the agent with the Vocal
elicitation strategy. Most of the five participant that interacted with
this agent rated it the lowest on all scales. The prosodic modifications
to the speech to elicit responses should thus be improved. Now
they are perceived as very unnatural. These modification also have a
negative influence on the Combined elicitation strategy, since in this
condition the same prosodic modifications are used. We think this is
the reason why Default is generally considered the best condition on
these measures.

The questionnaire after each session did not yield any insightful
results.
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F. Lessons learned

From the results of the pilot we learned that several improvements
can be made to the setup. First we want to expand the experiment
with a fourth route. This was always our intention, in order to let
every participant interact with every elicitation strategy, but due to
time constraints we decided to drop one of the routes for the pilot.

Furthermore the vocal elicitation strategy needs some work. On the
postquestionnaire it was consistently rated as the least likable, natural,
social and attentive of the four strategies. Since the vocal elicitation
strategy is also included in the combined strategy, it probably had a
negative impact on that condition as well.

Finally, we want to vary the pause between two sentences, since
pause in itself is also a response elicitation cue [45], [46]. At this
moment this pause is 1.5 seconds, based on the average pause in the
MultiLis Corpus. We see in our data that in almost every response
opportunity we explicitly created, we get a response. We suspect that
the length of the pause is such a strong cue that this dominates our
four different strategies and is the cause for this.

XII. DISCUSSION AND CONCLUSIONS

In this Enterface workshop, we have developed a virtual human
that is able to interact with a ‘real’ subject in an continuous manner.
That is: being capable of interaction in which all partners perceive
each other, express themselves, and coordinate their behavior to each
other, continually and in parallel. The project resulted in progress on
several aspects of continuous interaction such as flexible and adaptive
scheduling and planning of multimodal behavior (speech, gestures,
facial expressions) including graceful interuption, automatic real-
time classification of listener responses and models for appropriate
reactions to listener responses. We have set up a pilot experiment
in which a virtual human interacts with a subject. The aim of the
experiment was to elicit Response behavior, to provide us with more
information on what user responses occur, and to serve as inspiration
for further interaction models.

In this experiment, we have observed that some Responses given by
our subjects are much shorter than the waiting time between steps;
other Responses are much longer. Furthermore, Responses are not
given at every Response Oppurtunity. Starting to speak through a
repetition or waiting for a Response that is already finished confused
some of our subjects. In a responsive version of the virtual human, we
should add dynamic pauses: if no Response comes, continue speaking
after a smaller wait. If feedback comes, the virtual human can wait
until Response is finished. If a Response is cooperative it often makes
sense to immediately continue speaking in overlap.

We have observed several repetitions from the listener, related to
speech from the speaker. Detecting such repetitions is still an open
issue. Since the repetitions often repeat the landmarks used in the
route, perhaps the occurence of landmarks (as detected by a keyword
spotter) could be used as one of the cues for the identification of
repetions. Assumed that we can automaticly asses whether a response
is a repetition, the preplanning mechanisms we have developed during
the workshop can be used to generate an acknowledgment of the
repetition (see Interaction Example [3).

Interaction Example 3 Handling repetition.

Virtual Human: Turn right before the obelisk.
Subject: right before the obelisk.
Virtual Human: Yes. Then turn left and cross the bridge.

A generic set of such acknowledgements (e.g., “that’s correct”,
“yes”, “uhhuh”) can be preplanned and activated instantly when

needed. If the route description after the acknowledgements is already
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planned, Elckerlycs retiming mechanisms (see [47]) can be used to
shift it in time so that a full replan of the route description is avoided.

Interruptions are detected as Competitive Responses by our clas-
sifier. If the subjects interrupts the Virtual Human (as in Interac-
tion Example [)), his ongoing route description can be gracefully
interrupted using mechanisms discussed in Section We can
either preplan all alternative explanations, or use in-between generic
preplanned sentences to cover up the scheduling, like “Ok, let me
explain that again”.

Interaction Example 4 Graceful interruption.

Virtual Human: Turn left at the square with the obelisk. Then take
the second ...

Subject: over the square with the what?

Virtual Human: [gracefully interrupts ongoing behavior, selects an
alternative for “Turn left at the square with the obelisk”] So you
enter the square, there is an obelisk at the center of the square.

In the current implementation we have not yet explored different
strategies to handle Responses from the user. Depending on the type
of behavior that we would like to realize such strategies are selected
in concordance with a politeness strategy and certain personality
traits (e.g., dominance or impatience). For example: a rude or
dominant virtual human could explicitly ignore interruptive responses
by speaking louder and leaning forward to keep the turn, while a
insecure virtual human could explicitly wait for feedback after each
of its utterances. Some of this strategies can potentially already be
realized with the existing system (e.g. merge a lean forward behavior,
wait for feedback then continue). Elckerlyc can modify parameter
values of ongoing behavior in an adhoc manner, allowing changes to
for example gesture amplitude or speech volume. We are currently
exploring how such parameter value changes can be specified in
a formal manner, either through BML or through another channel
that communicates with Elckerlyc (See [32] for a more elaborate
discussion on this topic).

XIII. DELIVERABLES

The project has resulted in several software components, corpora
and annotations, that will be made available to the public:

1) Automatic, real-time classifiers for Responses, implemented as
openSMILE components E]

2) The addition of cooperative/competative annotations in the
MapTask corpus [[12]

3) A motion capture corpus containing over 100 gestures related
to route-giving

4) Extensions that allow prosody modification in HMM voices in
the open source speech synthesis system Mary, these will be
included in its new release [

5) Several extensions and tools for the open source virtual human
platform Elckerlyc ﬂ which will be included in its next release:

a) A generic WoZ interface framework that allows the set up
of Wizard of Oz experiments with Elckerlyc in an easy
and flexible manner

b) Implementation of preplanning and scheduling algorithms
that allow gracious interruption of ongoing behavior

c¢) Integration of Elckerlyc with the open source SEMAINE
api [11], an open source middleware framework that

4http://sourceforge.net/projects/opensmile/

SFreely available at http:/hmi.ewi.utwente.nl/mocapdb
6 Available at jhttp://mary.dfki.de/
http://hmi.ewi.utwente.nl/showcases/Elckerlyc
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allows easy connection of different modules in emotion-
oriented systems.

6) An annotated video corpus of user-interactions with our virtual
human during the pilot experiment
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