
Refinement for Administrative Policies

M.A.C. Dekker1,2 and S. Etalle2

1 Security group, TNO ICT, The Netherlands
2 Distributed and Embedded Systems group, University of Twente, The Netherlands

Abstract. Flexibility of management is an important requisite for ac-
cess control systems as it allows users to adapt the access control system
in accordance with practical requirements. This paper builds on ear-
lier work where we defined administrative policies for a general class of
RBAC models. We present a formal definition of administrative refine-
ment and we show that there is an ordering for administrative privileges
which yields administrative refinements of policies. We argue (by giving
an example) that this privilege ordering can be very useful in practice,
and we prove that the privilege ordering is tractable.

1 Introduction

Role-based access control (RBAC) [1] is a well-known standard for access con-
trol, aimed to make the assignment of users to privileges more easy. In practice
however, for example in hospitals or enterprises, RBAC policies can be very large
and dynamic, consisting of thousands of roles [6], and changing frequently. In
such cases policy management can be a daunting task. The usual approach to
this problem is to divide the work and to delegate (bits of) administrative au-
thority to other users. The advantage is that users can adapt the access control
policy to changing circumstances more easily, without an administrative bot-
tleneck. Not only does this reduce the cost of maintaining the access control
policy, it also avoids bad security practices, such as sharing passwords or keys
that should really remain secret. For example, it may be convenient to allow the
head nurse to delegate database access to other nurses when they need it for
particular tasks, without having to recur to the hospital’s security officer. On
the other hand, this kind of flexibility also introduces security risks as changes
made to the RBAC policy could entail privacy breaches.

The issue of designing flexible yet safe policy administration mechanisms for
RBAC has received much attention recently [3,4,6,9,14]. To mention some of the
research: In ARBAC [9] administrative privileges are assigned to a separate hier-
archy of administrative roles and defined by specifying a range of roles that can
be changed. Crampton and Loizou [4] take a more general approach, by using the
same hierarchy for both administrative privileges and ordinary user privileges. Us-
ing the concept of administrative scope, they define which roles should have admin-
istrative privileges over other roles. In a similar approach, Wang and Osborn [12]
divide the role-graph (a type of RBAC policy) into administrative domains. Each
administrative domain has one administrator with privileges about the (roles in

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 33–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 M.A.C. Dekker and S. Etalle

the) domain. In the Role-Control Center [6], administrative privileges over roles
are defined in terms of views, which are subsets of the role-hierarchy, and they can
only be assigned to users that are assigned to these roles. There seems to be no
consensus (yet) about which administrative privileges belong to which roles; each
of the above mentioned frameworks differs on this issue. Some models motivate
their choice by considerations that include the meaning of a role in a company, or
the concepts of ownership, and responsibility, as one would find it in a company.
On the other hand, Li et al. argue that interpreting the RBAC role hierarchy as a
business organization chart can be misleading [8].

This paper aims to be a contribution to the above-mentioned lines of research
on management of RBAC policies. In this paper we introduce the concept of ad-
ministrative refinement, and we show that this concept yields a more flexible, and
at the same time more safe administrative model. This paper builds on earlier
work [5], where we argued informally that there is a natural ordering for admin-
istrative privileges. In this paper we present a formal definition of administrative
refinement, and we show that it yields an ordering on the administrative privileges,
which allows for a more flexible policy management. Furthermore, we present the
formal proof that this privilege ordering is tractable. Note that in this paper we
do not assume any features that go beyond the General Hierarchical RBAC model
(such as constraints), and that we do not restrict which administrative privileges
can be assigned to which roles. We are hence led to believe that our results are
also applicable to a range of more advanced RBAC models.

2 Preliminaries

We first introduce shortly the General Hierarchical RBAC model, as defined
in the ANSI RBAC standard, because it is the most commonly used RBAC
model [1,6]. In Section 3 we extend this model with administrative privileges,
yielding a general class of administrative policies.

The goal of an RBAC policy is to specify which users are permitted to per-
form which actions on which objects. We denote the sets of users, roles, actions,
and objects, by U , R, A, and O. Permissions for performing actions on ob-
jects are called user privileges, forming a set P ⊆ A × O, e.g. (read , ehrtable),
(print , colorA4).

A non-administrative RBAC policy assigns users to roles, roles to user privi-
leges, and it defines an order on the roles; the role-hierarchy1 .

Definition 1 (Non-administrative Policies). Let U , R, and P be sets of
users, roles, and user privileges, a non-administrative RBAC policy φ is a tuple

φ = (UA,RH ,PA),

1 In the RBAC standard the relation RH is defined to be acyclic, reflexive and tran-
sitive, i.e. it is defined to be a partial order. Li et al., however, showed that this
definition causes problems when changes are made to the role-hierarchy [8]. Here,
for the sake of generality we do not assume that RH is a partial order.

Refinement for Administrative Policies 35

nurse

(prnt,black)

staffdiana

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

Fig. 1. Sample Non-Administrative RBAC policy

where UA ⊆ U × R determines which users are member of which roles, RH ⊆
R × R is the role-hierarchy, and PA ⊆ R × P determines which roles have which
privileges.

The set of non-administrative RBAC policies is denoted ΦU,R,P . To simplify our
exposition we treat a policy φ as a directed graph, defined by the set of directed
edges UA ∪ RH ∪ PA. If there is a path from one vertex v to another v′ we write
v →φ v′. Below we sometimes omit the subscript φ when the policy is clear from
the context.

The RBAC reference monitor uses the policy φ as follows. Any user u can
start a session. The reference monitor allows the user to activate a role r in a
session iff u →φ r. The privileges of the user’s session are all the privileges p such
that r →φ p for some role r activated in the session. Sessions are an important
safety mechanism, allowing users to apply the principle of least privilege. Here,
for the sake of simplicity we ignore the details about sessions. For details about
sessions we refer the reader to the ANSI RBAC standard [1]. Let us give a simple
example of a non-administrative RBAC policy.

Example 1 (Basic RBAC). Consider the setting of a hospital, where a database
system dbms stores electronic health records in a number of tables t1, t2, t3 etc.
The health records can only be seen or changed by authorized personnel. To
enforce this the system dbms uses the RBAC policy depicted in Figure 1: The
employee Diana can activate the role nurse or the role staff. In the former case
she can read the tables t1 and t2, while in the latter case she can also write the
table t3.

3 Administrative RBAC Policies

The RBAC standard specifies a number of administrative functions and controls,
which can be used by an administrative authority to make policy changes [1].

36 M.A.C. Dekker and S. Etalle

In this paper we express administrative authority in terms of administrative
privileges to model which users (or roles) can make which policy changes. There
are two types of privileges: privileges for making new edges (denoted here by
�), and privileges for removing edges (denoted here by ♦). We assign the ad-
ministrative privileges to roles just like the user privileges are assigned to roles
in standard RBAC. This approach is also advocated in the literature2 and the
intuition behind it is that the RBAC policy can also be used to specify who can
change the RBAC policy [4,12].

Clearly, administrative privileges must be an infinite set, even if we assume
that the sets of users, roles and user privileges are finite. The reason is that
administrative privileges over administrative privileges are also administrative
privileges. For example, consider the privilege to give someone else the privilege
to change the members of a role. The number of administrative levels (the num-
ber of nestings of the � connective to be introduced below) is often restricted
in existing literature (sometimes to one [10] or to two levels [14]). We agree that
in some settings multiple levels of administration are not useful, however, here
we prefer to take a general approach, leaving it up to security officers to choose
which administrative privileges to use in their systems.

We formalize the full set of privileges by defining a grammar that encompasses
both user privileges and administrative privileges.

Definition 2 (Privilege Grammar). Let U , R, P be sets of users, roles and
user privileges, the set of all privileges P †

U,R,P is defined by the following grammar:

p ::= q | �(u, r) | ♦(u, r) | �(r, r′) | ♦(r, r′) | �(r, p) | ♦(r, p).

where u ∈ U , r, r′ ∈ R, and q ∈ P .

Each administrative privilege corresponds to an administrative action in a
straightforward way. For example, the privilege �(u, r) allows to add a member
u to the role r. The privilege ♦(u, r) allows to remove a member u from the role
r. For simplicity we do not model privileges to change the sets U , R, or P , and
we assume that they are chosen sufficiently large and fixed. The rationale is that
changes to U , R, or P do not actually change the policy, rather they change
which policies are well-formed. For example, in practice the set of users could be
chosen to be all strings starting with ’uid’, which is independent of which users
are assigned to roles in the RBAC policy.

As mentioned, � and ♦ are connectives and the set P † is infinite. (Even if U ,
R, P are finite.) For example, one could have an expression �(r,�(u, r′)), which
expresses the privilege to give to role r, the privilege to a user u to the role r′.
We can now define administrative policies.

2 Existing literature focusses however on defining constraints on which roles can have
which administrative privileges. For example, to prevent low roles from obtaining
privileges about higher roles [4]. For the sake of generality we do not make choices
with respect to such constraints.

Refinement for Administrative Policies 37

Definition 3 (Administrative Policies). Let U , R, P be sets of users, roles
and user privileges, an administrative RBAC policy φ is a tuple

φ = (UA, RH , PA†),

where UA ⊆ U × R is a set of user assignments, RH ⊆ R × R a role-hierarchy,
and PA† ⊆ R × P † are the assignments to user or administrtaive privileges.

The set of administrative policies is denoted Φ†
U,R,P , which is a superset of the

policy set ΦU,R,P from standard RBAC (see Definition 1). Administrative poli-
cies allow users to make policy changes. We model this formally by defining
administrative commands.

Definition 4 (Administrative Commands). Let U , R, P , be sets of users,
roles and user privileges, an administrative command is a term

cmd(u, a, v, v′),

where u ∈ U , a ∈ {�,♦} and v, v′ ∈ U ∪ R ∪ P †.
A command queue is a list of administrative commands, denoted cq =
cmd(u, a, v1, v2) : cmd(u′, a′, v′1, v

′
2)..., where : denotes the list constructor.

The set of command queues is denoted CQ . The empty command queue is
denoted ε. The administrative functionality of the RBAC reference monitor is
modeled by a command queue, and an administrative RBAC policy. The RBAC
reference monitor changes the policy by executing administrative commands in
the command queue. We formalize this by a transition function.

Definition 5 (Administrative Transition). Let cq ∈ CQ be a command
queue, and φ ∈ Φ† an administrative policy, the administrative transition func-
tion, denoted ⇒:⇒: CQ × Φ† → CQ × Φ†, is

〈cmd(u,�, v, v′) : cq, φ〉 ⇒ 〈cq , φ ∪ (v, v′)〉, if u →φ r and r →φ �(v, v′).
〈cmd(u,♦, v, v′) : cq, φ〉 ⇒ 〈cq , φ \ (v, v′)〉, if u →φ r and r →φ ♦(v, v′).

〈cmd(. . .) : cq, φ〉 ⇒ 〈cq , φ〉, otherwise.

Note that if an administrative command is not allowed by the policy φ, then
the command is removed from the queue, without changing the policy φ. Below,
a sequence of executions of commands in the queue is called a run, denoted by
⇒∗. We give a brief example by applying this model in a practical situation.

Example 2. Consider the policy in Example 1. Alice, the security officer, wants
to delegate some of her administrative authority to the employees of the Human

38 M.A.C. Dekker and S. Etalle

 (dbusr1, .)

HR

nurse

(prnt,black)

staff

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

 (bob,staff)

 (joe,nurse)

 (joe,nurse)HRSO
dbusr3

Fig. 2. The administrative RBAC policy deployed by Alice, the security officer

Resource department (HR). In this way, members of HR can appoint new staff
members or nurses, without having to recur to Alice each time. To delegate these
administrative privileges, Alice uses an administrative policy.

Figure 2 shows Alice’s policy: Members of HR can assign and revoke certain
users to staff and nurse roles. Additionally, to protect the confidentiality of
health records in the tables t2 and t3 Alice delegated a revocation privilege about
the role dbusr2 to the role dbusr3. The administrative policy hence not only
describes who can access which resources, but also which roles have privileges
to change to the policy.

4 Administrative Refinement

In the previous section we have defined a general class of administrative poli-
cies for the General Hierachical RBAC model. In existing literature [3,4,6,9,14],
the administrative privileges in RBAC policies are treated just like ordinary
user privileges. In this section we show that this is more restrictive than nec-
essary for safety, and that a more flexible approach can be very useful in prac-
tice. This section is organized as follows. First we formalize the notion of ad-
ministrative refinement. In section 4.1 we show that the privilege ordering
for assignment privileges [5] yields administrative refinements of policies,
and in section 4.2 we present the formal proof that the privilege ordering is
decidable.

Refinement for Administrative Policies 39

Ignoring policy changes for the moment, an access control policy ψ is safer
than a policy φ, if ψ grants users to less privileges than φ does. We call this
non-administrative refinement.

Definition 6 (Non-Administrative Refinement). Let φ, ψ ∈ Φ† be two
RBAC policies. We say that ψ is a non-administrative refinement of φ, denoted
φ 	 ψ, iff for any v ∈ U ∪ R and any user privilege p ∈ P , v →ψ p implies
v →φ p.

We give a basic example to illustrate this definition.

Example 3 (Non-Administrative Refinement). Consider the policy depicted in
Figure 1. Clearly, by removing any of the edges in the policy one obtains a
refinement of the policy. For example, by removing Diana from the staff role.
There is a more fine-grained type of refinement that rearranges edges. For ex-
ample, if we replace the edge between Diana and staff with an edge between
Diana and nurse, then we have another refinement of the policy. On the other
hand, if we replace the edge between nurse and dbusr1 with an edge between
nurse and dbusr2, we do not obtain a refinement, as nurses get more privileges.

We can now define administrative refinement. The goal of an administrative
policy is to allow certain policy changes. Basically, an administrative refinement
of a policy is a policy that allows safer policy changes. Note that a policy change
made by one user may allow other users to make new policy changes, and so on.
Therefore, to determine the possible policy changes that are allowed, we must
take into account which users are performing administrative actions, and in
which order3. We formalize administrative refinement as follows.

Definition 7 (Administrative Refinement). Let φ, ψ ∈ Φ† be administrative
RBAC policies. We say that ψ is an administrative refinement of φ, denoted
φ 	† ψ, if, for any queue of administrative commands cq ∈ CQ, there is a queue
of administrative commands cq ′ ∈ CQ, such that φ′ 	 ψ′, where 〈cq, φ〉 ⇒∗

〈ε, φ′〉, and 〈cq ′, ψ〉 ⇒∗ 〈ε, ψ′〉, and cq ′ is such that, it contains the same number
of commands, and the n-th command in cq and the n-th command in cq ′ are
both of the form cmd(u, ., .), where n ranges over the number of commands in the
queue cq.

Basically the definition states that, if ψ allows a certain policy change then either
the same policy change is also allowed by the policy φ, or it is a policy change
that results in a safer policy. It is easy to see that administrative refinement
implies non-administrative refinement; take cq = cq ′ = ε. In other words, if
φ 	† ψ holds then also φ 	 ψ holds.

3 Taking into account the order is more precise than in the HRU model [7] where it is
assumed that there is a group of untrusted users who can collude in any order, which
does not allow to distinguish the policy lowrole → �(r, p) from highrole → �(r, p)
(but the latter is more safe).

40 M.A.C. Dekker and S. Etalle

4.1 Ordering Administrative Privileges

In this section, we introduce first a privilege ordering on administrative privi-
leges [5] and we show that the ordering of the administrative privileges yields
administrative refinements of a policy. At the end of this section we show how
the privilege ordering can be used in practice to allow more flexible policy
management.

Consider a simple setting where a sub-administrator has the explicit right to
assign a user u to a high role in the role-hierarchy. There is no reason to forbid
the sub-administrator to assign the user to a lower role. This can be seen as
follows. If u becomes a member of the high role, then u can activate also the
lower roles and obtain their privileges, as if u was assigned to it explicitly. In
existing RBAC literature administrative privileges are not interpreted in this
way. The ordering of privileges, just described here, can be defined formally as
follows.

Definition 8 (Privilege Ordering). Let φ ∈ Φ† be an administrative policy,
let p, p1, p2 be privileges in P †, and let v1, v2, v3, v4 be users (U) or roles (R).
We define the relation �φ as the smallest relation satisfying:

p�φ p (1)

�(v2, v3)�φ �(v1, v4), if v1 →φ v2 and v3 →φ v4. (2)

�(v2, p1)�φ �(v1, p2), if v1 →φ v2 and p1 �φ p2. (3)

The ordering�φ is both reflexive and transitive. In practice the privilege order-
ing can be used to allow users, with administrative privileges, to be implicitly
authorized for weaker administrative privileges.

It can be shown (see the Theorem 1 below) that by replacing an adminis-
trative privilege by a weaker one (with respect to the ordering), one obtains an
administrative refinement of the policy. In other words, giving administrative
users also the weaker administrative privileges allows them to perform also safer
administrative operations than the ones originally allowed.

Theorem 1. Let φ ∈ Φ† be an administrative policy, let (r, p) ∈ φ be a privilege
assignment, and let q be a privilege such that p �φ q, then the policy ψ =
(φ \ (r, p)) ∪ (r, q) is an administrative refinement of φ, that is φ 	† ψ.

Proof. (Sketch) The proof is by case analysis over the different cases in
definition 8.
The first case is trivial, since the relation 	† is reflexive. For the second case
take a policy φ with privilege assignment (r,�(v2, v3)), and v1 →φ v2, and
v3 →φ v4. Let ψ be the same policy where this privilege assignment is replaced
by (r,�(v1, v4)). So φ allows the command

cmd(u,�, v2, v3),

Refinement for Administrative Policies 41

which changes φ to φ′ = φ ∪ (v2, v3), while ψ allows the command

cmd(u,�, v1, v4),

which changes ψ to ψ′ = ψ ∪ (v2, v3). To show that φ 	† ψ it is sufficient to
show that φ′ 	 ψ: In ψ′ v1 has the privileges of v4, but in φ′ v1 has the same
privileges, due to the edges v1 →φ v2, v3 →φ v4 and v2 → v3.

For the third case take a policy φ with privilege assignment (r,�(v2, p1)),
and v1 →φ v2, and p1 �φ p2. Let ψ be the same policy where this privilege
assignment is replaced by the weaker privilege (r,�(v1, p2)). So φ allows the
command

cmd(u,�, v2, p1),

which changes φ to φ′ = φ ∪ (v2, p1), while ψ allows the command

cmd(u,�, v1, p2),

which changes ψ to ψ′ = ψ ∪ (v1, p2). In case p1 is a user privilege, p1 equals
p2 and the proof is the same as for the second case. We simply show that ψ′

is a non-administrative refinement of φ′. On the other hand, if p1 is an admin-
istrative privilege we must show that the subsequent commands allowed by ψ′

yield refinements of the policies created by commands allowed by φ′. This can
be shown by induction over the structure (the number of nestings of �) of p1.

Let us now give an example of how the privilege ordering can be used in a
practical situation.

Example 4 (A Flexworker). Consider the administrative RBAC policy depicted
in Figure 2. The role HR has the administrative privilege to add new members
to the staff role. There is also a role below staff called nurse, with additional
privileges. Bob is a flexworker, Jane is from the HR department.

Bob arrives at the hospital and his job is to put some order in the health record
database. To do the job he needs to have dbusr2 privileges. Jane a member of
the role HR can give the necessary clearance to Bob. Jane can give Bob staff
privileges (the dashed edge in Figure 3). If she does so, then she must urge Bob
to apply the principle of least privilege, by activating only the role dbusr2, and
not e.g. the staff or the nurse role, which would yield excessive privileges, for
instance medical privileges. But Jane can only hope that Bob does so.

The privilege ordering implies that Jane can assign Bob directly to the dbusr2
role (the dotted edge in Figure 3) because of her privilege to add Bob to the staff
role. In a way, instead of preaching the principle of least privilege to Bob, Jane
applies it for him.

Remark 1 (Less privileges, safer policies). In this paper we have defined a policy
to be safer when the policy gives users less privileges. The principle of least
privilege, and the way it is supported by the RBAC session mechanism, is a
well-known example of the usefulness of this definition. One could perhaps argue
that there could be practical situations where having less privileges is not more

42 M.A.C. Dekker and S. Etalle

mayRevoke(dbusr1, .)

nurse

(prnt,black)

staff

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

bob
dbusr3

Fig. 3. A practical example of the use of administrative refinement

safe. For example one could imagine a privilege to append to a log file. Removing
this privilege could cause programs to run unsafely, that is without writing logs.
We believe however that such peculiarities should be resolved at the application
layer. For example by changing the program so that it halts when no logs can
be written.

4.2 Tractability

In this section we address an important practical issue. We prove that the or-
dering relation (Definition 8) is tractable. Since the full set P of privileges is
infinite, this result is not immediate. For instance, a naive forward search does
not necessarily terminate (see the example at the end of this section). The proof
indicates how a decision algorithm, deciding which privileges are to be given to
which roles, can be implemented at an RBAC reference monitor.

Lemma 1 (Decidability of the Ordering Relation). Let φ ∈ Φ† be an
administrative policy, and p, q ∈ P † be two privileges, it is decidable whether
p�φ q.

Proof. The proof is by structural induction over q.
The base cases are when q is not of the form �(r, r′). We show that for the

three base cases p�φ q is decidable:

– Either q is a user privilege from P . In this case p �φ q holds only when
p = q (see rule (1) in Definition 8).

– Or q is of the form �(v, v′) for some v, v′ ∈ U ∪ R, in which case only rule
(2) needs to be checked, which has finite premises.

For the induction step, suppose that q is �(r′, p′), for some role r′ and privilege
p′. Now, p � q can only hold if the premises of rule (3) hold. The premises of

Refinement for Administrative Policies 43

rule (3) are decidable, either because they are finite, or because the induction
hypothesis is applicable (in p′ � q′, q′ is structurally smaller than q, regardless
of p′).

Let us show how the proof above can be used in practice, as a procedure for
checking whether one privilege is weaker than another.
Example 5. Consider Example 4 again. Can Jane assign Bob to the dbusr2 role?
We have to check that the role staff inherits the privilege �(bob, dbusr2). Us-
ing the first part of Definition 8, one finds that the staff role has the privilege
�(bob, staff). Now we should decide whether

�(bob, staff)� �(bob, dbusr2).

This follows trivially from the first rule of Definition 8.
To give a more involved example, suppose that the system administrator Alice

has the privilege �(staff ,�(bob, staff)). Can Charlie give to staff, the privilege
�(bob, dbusr2) directly? We have to check whether

�(staff ,�(bob, staff))� �(staff ,�(bob, dbusr2)).

This is indeed the case by using rule (3) first, and then rule (2).
Now, for the sake of exposition, let us remove the edge between the staff

and the dbusr2 role. Let us show how to determine that the previous relation
does not hold: Now only rule (3) applies, in which case we must decide whether
�(bob, staff) � �(bob, dbusr2). This is a base case of the induction described
in the proof of Lemma 1: Only rule (2) remains to be checked and than we can
conclude that it does not hold.

It could be useful to find all the privileges p′ weaker than a given p. To our
surprise, in some cases the set of all privileges p′ weaker than a given privilege
p, is infinite. Let us give an example.
Example 6 (Infinitely many weaker privileges). Consider a policy where
(r2,�(r1, r2)) ∈ PA. We should stress here that this is by no means an arti-
ficial, or peculiar policy: Members of r2 can make members of r1 member too.

Suppose we are interested in finding all the privileges weaker than �(r1, r2).
The first weaker privilege we discover by applying rule (2) in definition 8:

�(r1,�(r1, r2)).

Using this result in rule (3), we find another weaker privilege,

�(r1,�(r1,�(r1, r2))),

and we can use this again in rule (3), and so on.

Remark 2. The outer nesting in the last term in the previous example is in a sense
redundant. Instead of assigning the privilege �(r1, r2) to r1, one assigns the priv-
ilege to do so, to r1. This only requires the users in role r1 to perform an extra
administrative step, which seems unnecessary. It is cumbersome for the user in
r1, and it does not introduce any safeguards. We conjecture that for all practical
purpose one could stop after n applications of rule (3), where n is the length of
the longest chain in RH . We do not make this observation more formal here.

44 M.A.C. Dekker and S. Etalle

5 Related Work

The problem of administration of an RBAC system was first addressed by
Sandhu et al. [10]. Later, numerous articles have been published extending or im-
proving the administration model proposed there [3,4,6,9,11,13,14]. We discuss
some of them.

Barka et al. [3] distinguish between original and delegated user role assign-
ments. Delegations are modeled using special sets, and different sets are used for
single step and double step delegations (which must remain disjoint). A function
is used to verify if membership to a role can be delegated. Privileges can also be
delegated, provided they are in the special set of delegatable privileges belonging
to the role. In their work, each level of delegation requires the definition of tens
of sets and functions, whereas in our model administrative privileges, of an arbi-
trary complexity, are simply assigned to roles, just like the ordinary privileges.
The PDBM model [14] defines a cascaded delegation. This form of delegation is
also expressible in our grammar (by nesting the � connective). In the PDBM
model, however, each delegation requires the addition of a separate role, which is
cumbersome given the fact that there are already many roles to manage. In our
model the administrative privileges are assigned to roles just like the ordinary
privileges. It is not required to add any additional roles.

A number of proposals define general constraints on the administrative privi-
leges. For example, the constraint that a user must first have a privilege, before
being allowed to delegate it to other users. Note that, as mentioned earlier, in
this paper no particular choice is made with respect to such constraints. Zhang
et al. [13] implement rule based constraints on delegations. They demonstrate
their model using a Prolog program. Basically, they analyze the properties of
a centralized RBAC system, focussing on so-called separation of duty policies.
Crampton [4] defines the concept of administrative scope. Basically a role r is
in the scope of a role r′ if there is no role above r′ that is not below r. They
show how administrative scope can be used to constrain delegations to evolve
in a natural progression in the role hierarchy. Bandman et al. [2] use a general
constraint language to specify constraints on who can receive certain delegations.

6 Conclusion

With this work we make a contribution to the design of flexible administration
models for RBAC. Flexible administration is important to cut the cost of main-
tenance and to enable the RBAC system to adapt to changing circumstances.
In general, the flexibility of management is a very important requisite for access
control systems. Discretionary access control systems are prevalently used (see
for instance Linux, Windows) because users can change the policies about their
files so easily. Mandatory access control systems, on the other hand (such as
RBAC) are deployed to a lesser extent because they are too inflexible. There
are settings where flexibility is required, but discretionary access control is in-
appropriate. A good example is the setting of the protection of electronic health

Refinement for Administrative Policies 45

records. The high availability requirements for health records require flexibility,
and at the same time, policies protecting health records are not at the discretion
of medical personnel creating and using them. RBAC, with a flexible decen-
tralized policy management mechanism could be an interesting solution in such
settings.

The issue of designing flexible yet safe policy administration mechanisms for
RBAC has received much attention recently [3,4,6,9,14]. With this paper we
contribute to these lines of research. We introduce the notion of administrative
refinement of policies, and we show how it can be used to allow more flexible
management of the RBAC policy. Concretely, our contribution is a the defi-
nition of a general class of administrative policies, and a formal definition of
administrative refinement. We have shown that there is a natural ordering for
administrative privileges which yields administrative refinements of policies, and
we have presented the proof that this ordering is tractable. We also showed how
useful our extension is in practice. Our approach allows administrative users
to be implicitly authorized for weaker administrative operations, which is thus
more flexible and more safe as well.

Revocation privileges are included in our model, but we have not identified
(yet) a separate ordering for revocation privileges. We believe that this is an
interesting possibility for further research.

References

1. Standard, R.B.A.C.: ANSI INCITS 359-2004 (2004)
2. Bandmann, O.L., Sadighi Firozabadi, B., Dam, M.: Constrained delegation. In:

Abadi, M., Bellovin, S.M. (eds.) Proc. of the Symp. on Security and Privacy (S&P),
pp. 131–140. IEEE Computer Society Press, Los Alamitos (2002)

3. Barka, E., Sandhu, R.S.: Framework for role-based delegation models. In: Epstein,
J., Notargiacomo, L., Anderson, R. (eds.) Annual Computer Security Applications
Conference (ACSAC), pp. 168–176 (2000)

4. Crampton, J., Loizou, G.: Administrative scope: A foundation for role-based ad-
ministrative models. Transactions on Information System Security (TISSEC) 6(2),
201–231 (2003)

5. Dekker, M.A.C., Cederquist, J., Crampton, J., Etalle, S.: Extended privilege in-
heritance in RBAC. In: Proc. of the Symp. on Information, Computer and Com-
munications Security (ASIACCS), ACM Press, New York (2007) (to be published)

6. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-based Access Control. Com-
puter Security Series. Artech House (2003)

7. Harrison, M.A, Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Co-
munications of the ACM 19(5) (1976)

8. Li, N., Byun, J., Bertino, E.: A critique of the ANSI standard on role based access
control. IEEE Security and Privacy (page in press)

9. Sandhu, R.S., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. Transactions on Information and System Security (TIS-
SEC) 2(1), 105–135 (1999)

10. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

46 M.A.C. Dekker and S. Etalle

11. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method
in RBAC. In: Ferrari, E., Ahn, G. (eds.) Proc. of the Symp. on Access Control
Models and Technologies (SACMAT), pp. 59–66. ACM Press, New York (2005)

12. Wang, H., Osborn, S.L.: An administrative model for role graphs. In: Proc. of the
IFIP TC-11 WG 11, pp. 302–315. Kluwer Academic Publishers, Dordrecht (2003)

13. Zhang, L., Ahn, G., Chu, B.: A rule-based framework for role-based delegation
and revocation. Transactions on Information and System Security (TISSEC) 6(3),
404–441 (2003)

14. Zhang, X., Oh, S., Sandhu, R.S.: PBDM: a flexible delegation model in RBAC. In:
Ferraiolo, D. (ed.) Proc. of the Symp. on Access Control Models and Technologies
(SACMAT), pp. 149–157. ACM Press, New York (2003)

	Refinement for Administrative Policies
	Introduction
	Preliminaries
	Administrative RBAC Policies
	Administrative Refinement
	Ordering Administrative Privileges
	Tractability

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

