
A Service Architecture for Context Awareness and Reaction Provisioning

Luiz Olavo Bonino da Silva Santos1, Fano Ramparany2, Patricia Dockhorn Costa3, Peter Vink4,
Richard Etter5, Tom Broens6

University of Twente1,3,6, France Telecom2, Philips Research4, Fraunhofer IPSI5
{l.o.bonino11,p.dockhorncosta3,broens6}@ewi.utwente.nl, fano.ramparany@orange-ftgroup.com2,

peter.vink@philips.com4, etter@ipsi.fraunhofer.de5

Abstract

Context awareness has emerged as an important element
in distributed computing. It offers mechanisms allowing
applications to be aware of their environment and
enabling them to adjust their behavior to the current
context. In order to keep track of the relevant context
information, a flexible service mechanism should be
available for the client applications. In this paper we
present a service architecture to provide context-
awareness capabilities to users and client applications.
Moreover, the service is able to react depending on the
user’s preferences and context. The conditions for the
reaction and the reaction itself are defined in rules the
users submit to the service by means of a convenient rule
language.

1. Introduction

Context awareness represents an important use of
distributed computing and introduces a new class of smart
applications. Awareness of user’s surroundings and state
helps applications to adapt their functionality depending
on context changes and without direct user interaction.
However, introducing context-awareness in applications
demands a series of features such as: discovery and
selection of context sources and interaction with them;
manipulation and interpretation of contextual information;
among others. These factors make difficult for system
designers and developers to introduce ad-hoc context-
awareness solutions. To tackle these requirements, a
flexible mechanism allowing user applications to easily
specify the relevant changes in the environment is of
need.

Commonly, context-aware systems involve the
interaction of distributed, mobile and heterogeneous
applications and devices. Therefore, the use of concepts
and technologies of Service-Oriented Computing can
support tackling these issues of distribution, mobility and
heterogeneity.

In this paper we present an Awareness and Reactive
Service – ARS – following a rule-based approach which
provides reactions (notifications, service/application
invocations) depending on users’ context. The following

section (2) presents the context-aware reactive service.
Section 3 details the Awareness and Reactive Service’s
architecture. Section 4 introduces the ARS rule language.
Section 5 exemplifies the creation of a client application.
Section 6 presents a use case in a home to home scenario
and section 7 gives conclusion and points to future work.

2. The Awareness and Reactive Service

The Awareness and Reactive Service supports
developers in adding context-awareness capabilities to
their applications. Thus developers do not have to deal
with monitoring, controlling and managing contextual
information inside their applications. This avoids the
necessity of creating specific context-awareness features
for each application and, therefore fostering a rapid
development. Applications are only responsible of
registering monitoring rules. These rules specify which
context should be monitored and which reaction should be
triggered once the expected context holds.

Once the client application has subscribed the
monitoring rule, ARS starts gathering the required
contextual information. In the case that the triggering
condition contained in the monitoring rule holds, ARS
proceeds to the reactive phase according to the reaction
specified in the rule. An example of such rule specifies
that when the user John enters his home, the lights should
be turned on. In this example, the ARS monitors the
location of John and when he enters his home, the service
invokes the illumination control system to turn on the
lights.

Our approach considers that changes in the
application’s environment are modeled by means of
Event-Condition-Action (ECA) rules [1][2]. Our domain
specific language has been developed to define context
and context events supporting the specification of
context-based reactive behaviors.

3. The ARS architecture

Following the Event-Control-Action pattern described
in [1], three main parts are present in ARS as depicted in
Figure 1. The EventMonitor receives context data events
from context sources through the Context Management

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

Service (CMS). The EventMonitor sends these events to
the Manager that monitors them and evaluates the
registered rules. If the triggering condition of the rule is
evaluated true, the Reactor is triggered to perform the
suitable action. The subscribed rules and the ontologies
used in ARS are stores in the KnowledgeRepository and
made available for both the Rule Manager and the
EventMonitor.

Figure 1 –The ARS architecture

The architectural design of ARS follows the Service-
Oriented Architecture (SOA) principles. The service is
implemented as a web service relying on standards such
as SOAP, WSDL, UDDI and XML. The external entities
with which ARS interacts are also implemented as web
services, such as the client applications and the CMS. In
the internal perspective, the ARS implementation follows
the OSGi component based framework approach [3]. The
current implementation of ARS uses the Oscar OSGi
Framework [15].

The ARS web service exports two interfaces:
• IManageRule, used by client applications to

manage rules, and;
• IReceiveContext, which is a call back

mechanism to receive information from context sources
through the context management service.

These interfaces are available both in the Oscar
framework and as web service’s interfaces through
WSDL.

The Manager is the central component of ARS and is
responsible to handle the client’s rule subscriptions. The
Manager is composed of two sub-components, namely the
Controller and the RuleManager. The RuleManager is
externally accessed via the IManageRule interface. The
RuleManager provides facilities for unsubscribing,
updating, starting and stoping rules. When a client
application wants to register a rule, it sends the rule to the
RuleManager that is responsible for parsing, validating

and storing the incoming rule. In the parsing and
validating phases, the RuleManager translates entered
user rules to reaction rules that can be handled by the
Controller.

The rules received by the RuleManager from client
applications are expressed in the ARS domain-specific
ECA language called ECA-DL [11]. The RuleManager
transforms this ECA-DL rule into a rule that can be
handled by the underlying rule-engine. Currently, ARS
uses the JESS rule engine [10].

Once a rule is registered, it is available to the ARS but
not yet subjected of monitoring, i.e., the rule is only
registered in the system but its triggering condition is not
going to be evaluated. To start evaluating the rule’s
triggering condition is necessary to “start” the rule. When
a registered rule is started the RuleManager sends it to the
Controller. The Controller then extracts the eventing part
of the rule and subscribes these events to the
EventMonitor to search for and request information from
context sources. Figure 2 shows a fragment of an UML
Sequence Diagram depicting the message exchange for
subscribing a rule.

Figure 2 – UML fragment of the rule subscription
activity

The main functionality of the EventMonitor is to
provide easy access to context data. This includes
searching for context sources, selecting a context source,
registering to the context source eventing mechanism and
deregistering when a context source is no longer needed.

The EventMonitor provides to other ARS components
a mechanism for subscribing to or querying for context
data. As an example, if the Controller needs to monitor
the battery level of a device, the EventMonitor, through
CMS, searches for an appropriate context source that
could supply this information. Once found, EventMonitor
subscribes to the request battery level data and informs
the Controller of events containing the request data.

The EventMonitor maintains a subscription to the
corresponding context source for every event that the
Controller has requested. The maintenance of a list
relating events and context sources is important to avoid

Awareness and Reactive Service

EventMonitor

CMS

Knowledge
Repository

Manager

Rule Manager

Controller

Reactor

Notifier

Invoker

Client
Application

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

redundant subscriptions. To accomplish this, the
EventMonitor analyzes the requested subscriptions
searching for overlaps in the subscription’s requirements.
An example of a requirement overlap is when a single
context source can provide two different events. In this
case the EventMonitor keeps only one subscription to the
context source.

After subscribing the events contained in the rule to
the EventMonitor, the Controller starts receiving
notifications of the occurrence of these events. For every
event notification received, the Controller evaluates the
notification rules. When the rule’s condition is evaluated
true, the Controller invokes the Reactor requesting the
appropriate reaction.

In the current version of ARS, the Reactor is composed
of two sub-elements, namely the Notifier and the Invoker.
Depending on the type of reaction requested in the user
rule, the Notifier or the Invoker or both are activated.

The task of the Notifier is to send notifications to
applications and users. For each notification it determines
the appropriate level of intensity before sending the
notification. The intensity of notifications is based on the
current context of users and their personal notification
preferences.

If users want to receive personalized notifications, they
create individual user notification profiles. A user
notification profile defines which level of intensity is
appropriate in which context. The intensity of
notifications can be based on availability of the user that
is to be notified, or where the user is currently located. A
further option is to take the co-presence of other persons
into account. In general, the notification profiles are
dynamic and allow users to take into account all available
context data. When editing a personal user notification
profile, a user is free to combine the different parameters
in order to specify the appropriate level of intensity for
certain situations. In case a user defines settings that are
conflicting, an implemented conflict strategy
implemented in ARS resolves the issue. A user can use
one of the predefined profiles or refine one the profiles. If
a user has not created a notification profile, a standard
profile is used.

The notification of a user works as follows. If a rule in
the Controller evaluates to true, the Controller sends a
notification event to the Notifier. The Notifier transforms
the event into a notification. An event encompasses the
message, the UserIDs of the users that are to be notified
and references to applications. First the Notifier
determines the right intensity for the notification. It does
so by retrieving the relevant user notification profiles. In
case additional context parameters are necessary in order
to determine the intensity of the notification, the Notifier
queries the EventMonitor. This is for example the case, if
a user has specified not to be notified at home. In this case
the Notifier queries the EventMonitor for the location of
the user. Once the notification profiles are evaluated and

the intensity of the notification is determined, the Notifier
sends the notification to the application. It is then the task
of the application that receives the notification to interpret
the level of intensity, e.g. to change the color of an
ambient light in order to send a notification with a low
level of notification to a user.

The Invoker is responsible for reacting to the
occurrence of situations by invoking services and
applications. It calls the service’s method passing the
specified parameters. The introduction of the Invoker
relieves the applications to take actions based on the
event’s notifications.

4. The rule language

The ARS rule language, coined ECA-DL, allows
application developers to conveniently enhance their
applications with reactive context aware behavior by
using a scripting format. This relieves the developer from
writing programming code inside his application to deal
with notifications. This is handled by the ARS service
when initiating the rules.

ECA-DL is a domain specific language developed with
the purpose of specifying event-condition-action (ECA)
rules to be used in context-aware scenarios. Rules in
ECA-DL are composed by an Event part that models an
occurrence of interest in the context, a Condition part that
specifies a condition that must hold prior the execution of
the action, and an Action part which consists of reactive
invocations.

ECA-DL is defined upon two complementary
foundations: information and behavior foundations.
Information foundation refers to the representation of the
applications’ universe of discourse, i.e., a domain
ontology. For example, we should be able to express
within ECA rules whether people are in the house or not,
whether objects are plugged or not, whether persons and
objects are collocated, among others. Behavior foundation
of the ECA language refers to the dynamics of rule
execution, i.e., how and when a rule should be executed
and what are the elements of the language that should be
used to perform a particular piece of reactive behavior.

For the information part, a domain ontology should be
referenced. In the scope of the Amigo project [9], where
this work is being developed, the Amigo ontology is
referenced. ARS assumes that one is only allowed to use a
piece of knowledge in the ECA rule, if this has been
previously defined in the ontology. If the ontology does
not define the concept co-location, for example, this
concept cannot be referenced in ECA rules.

When designing the ARS ECA rule language, high
attention has been paid to the following qualities:

• Expressive power: the language permits the
specification of complex event relations. It
allows the use of relational operator predicates
(e.g., < , >, =), and the use of logical

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

connectives (e.g., AND, OR, NOT) on
conditions to build compound conditions.

• Convenient use for application developers: It
provides high-level constructs that facilitate
event compositions.

• Extensibility: The language allows the addition
of new predicates to accommodate events
being defined on demand.

4.1. Basic Concepts

Context changes are described as changes in situation
states. Situations represent specific instances of context
information, typically high level context information.
Situations may be defined upon other Situations or Facts
[12].

Facts define current “state of affairs” in the user’s
environment. Example of a Fact is Jerry is married to
Maria. The situation context abstraction allows
application developers and users to leverage on the fact
abstraction in order to derive high-level context
information. Example of a situation is isOccupied,
derived from the fact “Jerry is cooking” or “Maria is
working”. Situations may be built upon other situations,
for example, isAvailable may be defined as not
isOccupied and isReachable. Facts and situations are
defined as part of the overall information models
(ontologies).

An event expresses a change in state, which is of
interest to particular applications or users. For example,
an application may be interested to know when Jerry
enters the TV room, when Jerry and Roberto get close, or
when Pablo becomes online in the instant message
system. These scenarios refer to changes of state:

• Jerry enters TV room: State (Jerry is not in TV
room) followed by State (Jerry is TV room);

• Jerry and Roberto get close to each other: State
(Jerry and Roberto are far from each other)
followed by State (Jerry and Roberto are close
to each other);

• Pablo becomes online: State (Pablo is offline)
followed by State (Pablo is online).

In ECA-DL, we allow the definition of events in two
ways: expressed as an explicit change of state, or
expressed as an event description. Consider the examples
defined above. We may express the situation “Jerry enters
room” as EnterTrue (LocatedIn (Jerry, TVRoom)) or
EnterRoom (Jerry, TVRoom). Similarly, we may define
“Jerry and Roberto get close” as EnterTrue (CloseBy
(Jerry, Roberto)) or GetClose (Jerry, Roberto). Finally,
we may define “Pablo becomes online” as EnterTrue
(OnLine(Pablo)) or BecomesOnline(Pablo).

When defining in the ECA rule the change of state, for
example using the state transitions EnterTrue and
EnterFalse, the application developer expresses events by
explicitly defining the state transition for a given

situation. Conversely, application developers may express
events by using pre-defined event descriptions. This
requires these events to be previously defined in the
ontology.

In ECA-DL there are three possible states (true, false
and unknown) and six state transitions. The unknown
state accommodates uncertainty of context information
(when the value of context information in unknown).
Figure 3 presents the possible state transitions.

Figure 3 – State transitions for a situation

Events can be any of the following transitions, for a
given situation S:

• EnterTrue(S) – transition 2 or 3
• EnterFalse(S) – transition 4 or 6
• EnterUnknown(S) – transition 1 or 5
• ExitTrue(S) – transition 1 or 4
• ExitFalse(S) – transition 3 or 5
• ExitUnknown(S) – transition 2 or 6
• TrueToFalse(S) – transition 4
• TrueToUnknown(S) - transition 1
• FalseToTrue(S) – transition 3
• FalseToUnknown(S) – transition 5
• UnknownToTrue(S) – transition 2
• UnknownToFalse(S) – transition 6
• Changed (S) – any transition

The condition part of a rule describes extra conditions
that must hold prior the invocation of a notification. It
differs from the event part, since it does not define a
change of state it only specifies additional requirements
(states) that must hold. In addition to specifying an event,
application developers may be interested in more specific
situations. For example, an application may need to be
notified upon Jerry entering the TV room, under the
condition that Jerry should be alone. The condition that
Jerry should be alone does not define a state transition; it
just expresses extra requirements for the notification to be
invoked.

Conditions are logical expressions that inquire whether
(a combination of) situations are true or false. Situations
refer to concepts defined in the ontology.

Actions describe operations that should be invoked
when both the event and conditions parts of rules are
fulfilled. In ARS, actions are currently restricted to
notification and invocation operations. The way

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

notifications are delivered depends on the users’
preferences and context.

4.2. Syntax and Semantics

The condition part of ECA rules comprises two parts:

an event part that defines a relevant situation change; and
a precondition part that defines a logical expression that
must hold following the event and prior to the execution
of the notification. Both events and pre-conditions are
defined in terms of situation and facts.

Each rule is associated with a lifetime, which can be
always, once, from <start> to <end>, to <end>, <n>
times, frequency <n> times per <period>. Always defines
that a rule should be triggered whenever events and
conditions turn true. Once defines that a rule should be
triggered one time, and then should be deactivated. From
<start> to <end> defines a period for the rule to be active
for triggering. To <end> defines when a rule should be
deactivated. <n> times says the number of times a rule
should be triggers. Frequency <n> times per <period>
defines the number of times a rule should be triggered in a
certain period of time, for example, once a day or twice a
week.

Events are defined in the Upon clause, while
conditions are specified in the When clause and finally,
notifications are specified in the Do clause. In the case
there are no conditions to be specified the When clause
may be omitted.

ECA rules can be parameterized. Parameterization is
necessary when the rule should be applied to a collection
of entities. It would be cumbersome to write a rule for
each target entity. For example, a medical clinic would
like to apply a general rule (notify when sugar levels go
above 110) to all patients suffering from diabetes.
Parameterization allows the specification of a single rule
to be executed for all the diabetic patients. We have
introduced the Scope clause to define rule
parameterization.

From the necessity of filtering entities’ collections
respecting a certain condition, we have defined the Select
clause. It allows the selection of a subset of a collection
respecting context and/or attributes constraints. For
example, it may be necessary to select all users that are in
the house and taking a shower, or we would like to select
all devices that are currently being used, or even all the
patients of the clinics that have diabetes. Figure 4 depicts
the ECA language metamodel in UML.

Scope ScopeVariable

Parameter

ReactionCondition

RuleLifetime

Event

Attribute

1 1 * 0..*

1

0..*

1 0..*

*

*

1

1

11

1
0..*

1
1

1
1

Figure 4 – The ECA-DL metamodel

A simple, non-parameterized rule is composed by the
basic structure:
Upon <event-expression>
When <condition-expression>
Do <action>
<lifetime>

We have defined an XML schema representing the
ECA-DL syntax. This schema allows the validation of
ECA-DL rules written as XML documents. An example is
the following rule: “Invoke the lightning service to turn
on the bedroom lights when baby Anna cries and notifies
Luciana”.

In ECA-DL:

Upon EnterTrue(isCrying(Anna)
Do Notify (Luciana, “Anna is crying”) AND Invoke
(LightingService, TurnOnLights(BedroomAnna))
Always

In XML, this rule would look like:

<ECARule
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\ECAXML.xsd">
<upon>

<event name="isCrying" state_transition="EnterTrue">
<param>

<literal value="Anna"/>
</param>

</event>
</upon>
<do>

<reaction type="Notify">
<param>

<literal value="Luciana"/>
</param>
<param>
<literal value="Anna is crying"/>
</param>

</reaction>

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

<reaction t
<param

<se
</para
<param

<m

</m
</para

</reaction>
</do>
<lifetime va
</ECARule

5. Creatin

The ARS
applications’
client applic
interface. T
aforementione
functionality:

• Subs
• Quer
• Enab
The code

interface.

public interfac
public int

public bool
public bool

public Rule

public bool
public bool

}
The first th

and deletion
rule expressed
identification
and validatin
identification
the other meth
If, during th
malformed e
thrown causin

The queryR
XML of an
identification

The last tw
Starting a rule
engine check
reached. Stop

type="Invoke">
m>
ervice name="L
m>

m>
method name="

<param>
 <literal va

</param>
method>
m>
>

alue="always"/
e>

ng an ARS c

S offers an
developers. A

cation should
This interfac
ed RuleManag

scribing, updat
rying of registe
bling and disab

snippet below

ce IManageRul
subscribe (Ru

thro
lean unsubscri
lean updateRu

e queryRule (in

lean startRule
lean stopRule

hree methods
of rules. The

d in the ECA-D
of the subscrib

ng the rule, t
of the rule. Th

hods as the ref
he validation
element, a R
ng the subscrip
Rule method i
already subs

.
wo methods ar
e means that it

ks whether its
pping a rule

>

LightingService

TurnOnLights"

lue=”BedroomA

/>

client

API to be u
A developer wi
d invoke the
e is conne

ger and define

ting and unsubs
ered rules;
bling rules.
w presents th

e {
ule rule, Strin
ows RuleForma
be (int ruleID);

ule (int ruleID, R

nt ruleID);

(int ruleID);
(int ruleID);

allow the subs
subscribe me

DL XML form
bing applicatio
the method re
he rule identifi
ference for the

of the rule
RuleFormatExc
ption to fail.
s used to retrie
cribed rule u

re used to start
t is enabled an

defined cond
only disables

e"/>

">

Anna”/>

used by clie
illing to create
e IManageRu
ected to th
es the followin

scribing rules;

he IManageRu

g applicationID
atException;

Rule rule);

scription, upda
ethod requests
mat and a uniqu
on. After parsin
eturns a uniqu
ication is used
subscribed rul
ARS finds

eption error

eve the ECA-D
using its uniqu

t and stop rule
nd the evaluatio
ditions has bee
 it causing th

ent
e a
ule
he
ng

ule

D)

ate
a

ue
ng
ue
in
le.

a
is

DL
ue

es.
on
en
he

evalua
from th

In t
reactio
interfa

public

pub
inte

}

The
notific
parame
parame
his per

Sim
INotify
the clie

6. A

In t
curren
Amigo
source
project
applica

The
with a
presen
explici
contac
is the
display

Figure

1 Aware

ating engine to
he system, the
the case of a

on, the client a
ace INotifyApp

interface INotif
blic void notify
ensity);

e notify meth
cation is trig
eters are de
eter is based o
rsonal notificat

milarly to t
yApplication s
ent application

A home to ho

this section we
tly being imp

o project [13],
e components
t to support
ations.
e overall goal
a tangible inter
nce of their c
it communica

cts. One tangib
e Awareness
yed in Figure 5

e 5 – The Awar

eness Globe – Phil

o ignore that r
unsubscribe m
rule requestin

application sho
plication as pre

fyApplication {
y (String mess

hod is called
ggered. The
fined in the

on the current
tion preference
the IManage
should be imple
n as a web serv

ome use cas

e briefly introd
plemented in
as an assessme
that will be m
development

of the concep
rface to stay a
contacts and t
ation between
ble interface th

Globe1 whic
5.

reness Globe

lips Design, The N

rule. To remov
method should b
ng a notificatio
ould implement
esented next.

sage, String us

by the ARS
message and

e rule. The
context of the

e.
eRule interfa
emented and pu
ice.

e

duce a use cas
the framewor

ent of a numbe
made availabl
of ambient in

pt is to provide
aware of activ
to initiate am

n the user a
at is being inv

ch early prot

prototype

Netherlands

ve a rule
be used.
on as the
t also the

serID, int

when a
d userID

intensity
user and

ace, the
ublish by

se that is
rk of the
er of open
le by the
ntelligent

e persons
vities and
mbient or
and their
vestigated
totype is

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

Figure 6 d
Figure 7 show
by color chan

Figure 6 – Th

Figure 7 –
presentation

As illustra

describe the
home. By pla
she accesses
can control h
with the outsi

A home t
the ARS is cu
the Amigo pr
is introduced

User Modeling
and Profiling

Service

Figure 8 – Th

depicts the Aw
ws how the de

nge.

he Awareness

– The Awa

ation of the us
following sc

acing her car k
the in-house

her own availab
ide world.”
to home comm
urrently being d
roject. The ove
in Figure 8.

Co
Mana

Se

Pres
Se

A

he home to ho

wareness Glob
evice presents

Globe interfa

reness Glob

e of the Awar
cenario: “Mar
key on the Aw
services and a
bility and pres

munication sys
developed in th

erall architectur

ontext
agement
ervice

sence
ervice

ARS

ome communic

be interface an
the informatio

ace

be informatio

reness Globe w
ria comes bac
wareness Glob
applications an
sence to intera

stem integratin
he framework
re of this syste

Awareness
Globe

cation system

nd
on

on

we
ck

be,
nd
act

ng
of

em

m

The

role is
depicte
ARS’
and fas

One
separa
invoca
and the
provid
(by on
possib
Ambil
of a TV

7. C

In t
been p
implem
their e
(i.e. sp
corresp
interes
Hereby
delega
evalua
one of
provid
situatio
notific
is dete
provid
possib

At
has ga
use inc

•

•

•

•

A f
Java
implem
based
betwee
implem
[16]. R
service

e ARS interac
s to control t
ed in Figure 7
notifications i
st visualization
e main advan

ation between
ation will be su
e awareness an

des. For examp
nly changing t
le to replace
ight [14] (peri
V.

Conclusions

this paper, an
presented. The
ment applicatio
environment. A
pecification o
ponding action
sted in, by u
y, the managem

ated to ARS.
ated by ARS an
f the rules eval
des notification
on (context). B

cation, the app
ermined. This
des notification
le and as intrus
the light of th

ained in using
clude:
• Its flexib

presence a
ARS rules

• Its capabil
presence o

• Its capabi
changes in

• Its capabil
profile an
condition

first version o
and the g

mentation is b
framework to

en the AR
mentation vers
Remotely ARS
e technologies.

cts with the P
the Awareness
7, the Awaren
in a graphical
n of a user cont
ntage of the

n the way
upported in the
nd reactive serv
ple, with almo
the destination
e the Awaren
ipheral multi-h

and future

awareness an
service enable

ons that allow
Applications re
of conditions b
ns) that specif
using a conv
ment or monito
The entered
nd proper reac
luate to true. A
ns that are t

Before the noti
ropriate intens
ensures that t

ns that are as u
sive as necessa

he first experie
the ARS, the

bility to han
and availabilit
s.
lity to set rules
of other users.
lity to subscri

n other users co
lity to take into
nd preferences
part of ARS ru

of ARS has be
generic rule
ased on the O

o get a clear s
S sub-compo

sion, called AN
S can be access
.

resence Servic
s Globe funct
ess Globe pre
form allowing
tact’s locations

ARS service
the notificat

e physical env
vice itself that
ost the same A
n of the reacti
ness Globe w

hued ambience

work

nd reactive ser
es developers t

w users to be
egister monitor
based on con
fy what their u
venient rule l
oring of contex
rules are cont
ction is produc

Additionally, th
tailored to th
fication servic
sity for the no
the notification
unobtrusive for
ary.
ence the Amig
main advantag

ndle the not
ty in the action

s and to notify

ibe to events r
ontext.
o account users
s for notifying
ules.
een implement

engine JES
Oscar OSGi co
separation of
onents. The
NS, can be acc
sed using stand

ce which
tions. As
esents the
g an easy
s.
e is the
ion and

vironment
the ARS

ARS rule
ion) it is
with the
lighting)

rvice has
to rapidly
aware of
ring rules
ntext and
users are
language.
xt data is
tinuously
ced when
he service
he user’s
e sends a

otification
n service
r users as

go project
ges of its

tification,
n part of

about the

related to

s context,
g, in the

ted using
SS. The
omponent
concerns

current
cessed at
dard web

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

Current approaches for context-aware support
middleware [17][18][19] provide ways to subscribe to and
manage context data. But they fall short on providing a
decision support, i.e., providing a mechanism that
applications could specify what context data they are
interested in and what to do in the case a given situation is
achieved. Moreover, these approaches do not offer a
reaction process based of the users’ context.

The ARS rule language currently does not provide
means to specify temporal ordering of events. The
language will be extended to support temporal aspects,
such as sequencing and concurrency of events. Secondly
context models will be considered. Moreover, the current
version of ARS implements location-based primitives
such as isLocatedIn, isAtHome. The work to support
other primitives in an intelligent home environment is
underway.

Acknowledgement

The work reported here is supported by the European
Commission as part of the IST-IP Amigo project under
contract IST-004182.

References

[1] Dockhorn Costa, P., Pires, L. F., Sinderen, M.,
“Architectural Patterns for Context-Aware Services
Platforms” in Proceedings of the Second International
Workshop on Ubiquitous Computing (IWUC 2005),
Miami, May 2005, pp 3-19.
[2] Ipina, D., Katsiri, E., “An ECA Rule-Matching
Service for Simpler Development of Reactive
Applications”. Published as a supplement to the Proc. of
Middleware 2001 at IEEE Distributed Systems Online,
Vol. 2, No. 7, November 2001.
[3] OSGi Consortium, http://www.osgi.org.
[4] Weiser, M., The Computer for the 21st Century,
Scientific American, pp. 94-10, September, 1991.
[5] Satyanarayanan, M., “Pervasive Computing:
Vision and Challenges”. IEEE Personal Communications,
pp. 10-17, August 2001.
[6] Bardram, J. E., “Applications of Context-Aware
Computing in Hospital Work – Examples and Design
Principles” in Proceedings of the ACM Symposium on
Applied Computing, pp. 1574-1579, 2004.

[7] Chen, H., “An Intelligent Broker Architecture
for Context-Aware Systems”, PhD proposal in Computer
Science, University of Maryland, Baltimore County,
USA, 2000.
[8] Dey, A. K., “Providing Architectural Support for
Building Context-Aware Applications”, PhD thesis,
College of Computing, Georgia Institute of Technology,
2000.
[9] Ambient Intelligence for the Networked Home
Environment – AMIGO. http://www.hitech-
projects.com/euprojects/amigo/.
[10] JESS – the Rule Engine for the Java Platform.
Available at http://herzberg.ca.sandia.gov/jess/.
[11] Dockhorn Costa, P., Ferreira Pires, L., van
Sinderen, M., Broens, T., “Controlling Services in a
Mobile Context-Aware Infrastructure”, in Proceedings of
the Second Workshop on Context Awareness for
Proactive Systems – CAPS 2006, Kassel, Germany, June
2006.
[12] Henricksen, K. and Indulska, J., “A software
engineering framework for context-aware pervasive
computing” in Proc. of the 2nd IEEE Conference on
Pervasive Computing and Communications
(Percom2004), Orlando USA, 2004, pp 67-77.
[13] Ambient Intelligence for the Networked Home
Environment – Amigo, http://www.hitech-
projects.com/euprojects/amigo/
[14] Philips Ambilight System –
http://www.research.philips.com/technologies/syst_softw/
ami/ambilight.html
[15] Oscar OSGi Framework -
http://forge.objectweb.org/projects/oscar/
[16] Amigo Open Source Repository –
http://amigo.gforge.inria.fr/home/index.html
[17] Bardram, J. E., “Applications of Context-Aware
Computing in Hospital Work – Examples and Design
Principles” in Proceedings of the ACM Symposium on
Applied Computing, 2004, pp. 1574-1579.
[18] Chen, H., “An Intelligent Broker Architecture for
Context-Aware Systems”, PhD proposal in Computer
Science, University of Maryland, Baltimore, USA, 2003.
[19] Dey, A. K., “Providing Architectural Support for
Building Context-Aware Applications”, PhD thesis,
College of Computing, Georgia Institute of Technology,
2000.

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

