Fast, Accurate and Detailed NoC Simulations

Pascal T. Wolkotte and Philip K.F. Holzenspies and Gerard J.M. Smit
University of Twente, Department of EEMCS
P.O. Box 217, 7500 AE Enschede, The Netherlands
P.T.Wolkotte @utwente.nl*

Abstract

Network-on-Chip (NoC) architectures have a wide vari-
ety of parameters that can be adapted to the designer’s re-
quirements. Fast exploration of this parameter space is only
possible at a high-level and several methods have been pro-
posed. Cycle and bit accurate simulation is necessary when
the actual router’s RTL description needs to be evaluated
and verified. However, extensive simulation of the NoC ar-
chitecture with cycle and bit accuracy is prohibitively time
consuming. In this paper we describe a simulation method
to simulate large parallel homogeneous and heterogeneous
network-on-chips on a single FPGA. The method is espe-
cially suitable for parallel systems where lengthy cycle and
bit accurate simulations are required. As a case study, we
use a NoC that was modelled and simulated in SystemC.
We simulate the same NoC on the described FPGA simu-
lator. This enables us to observe the NoC behavior under
a large variety of traffic patterns. Compared with the Sys-
temC simulation we achieved a speed-up of 80-300, without
compromising the cycle and bit level accuracy.

1 Introduction

In the Smart chipS for Smart Surroundings (4S) project
[1] we propose a heterogeneous Multi-Processor System-
on-Chip (MPSoC) architecture. The SoC architecture con-
tains a heterogeneous set of processing tiles interconnected
by a Network-on-Chip (NoC). Future systems will consist
of several tens or hundreds of tiles [3].

The development of such a heterogenous multi-tiled
platform introduces problems related to hardware/software
codesign. The MPSoC architect wants to study all kinds of
trade-offs, e.g. operation bit-widths, memory sizes, and per-
formance parameters/bottlenecks, e.g. latency and through-
put. Common practice is to do extensive simulations of the
MPSoC architecture before the system can be realized in
silicon. In general the approach of simulating such large
MPSoC designs is to either use (non-cycle accurate) high

*This research is conducted within the Smart Chips for Smart Sur-
roundings project (IST-001908) supported by the Sixth Framework Pro-
gramme of the European Community.

level modelling or accept long simulation times with cycle
accurate simulations. For systems consisting of several tens
or hundreds of tiles, cycle-true simulation leads to excessive
simulation times.

Despite these excessive simulation times, cycle and bit
accurate tests are required. These tests enable the designer
to verify the design before manufacturing. Furthermore, it
is possible to make accurate performance trade-offs and de-
termine the consequences in area and power consumption of
the actual design. Using the same concrete implementation
(i.e. the same HDL source code) for simulation as well as
synthesis we minimize the risk of errors in the design flow.

Future on-chip communication networks, the routers and
their interfaces to the tiles, will have to support an increas-
ing amount of services [16] compared to traditional busses.
The communication infrastructure has to be able to provide
guarantees, for example, guaranteed throughput, bounded
latency and/or low jitter. These network services are re-
quired, because of the increasing number of applications
that require real-time support. To understand those require-
ments and their influences on the NoC design we need to
study the application-generated traffic on the on-chip net-
work in detail. For the performance of the NoC, we cannot
just analyze a single router and determine a local optimal
schedule, because this might cause buffering problems in
the neighboring routers. Testing the network under random
traffic load and evaluating its routing or arbitration mecha-
nism will not be sufficient to understand the extra levels of
services required by real-time applications.

In this paper, we present a method to study the design
choices of the network at the highest level of detail, without
sacrificing simulation speed. We will demonstrate this by
analyzing the latency and throughput behavior of our NoC
[13] under different scenarios and configurations.

1.1 Related Work

There are several methods to analyze large heteroge-
neous systems. High level formal analysis methods can be
applied [17], where an application of the system is char-
acterized by high level parameters (e.g. latency of a task).
Data dependencies and interactions of processes can only
be analyzed if their characteristics can be described with

IEE |-:

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

the high level model. However, this is only applicable for
a restricted number of cases. For example, at design time
the latency and execution time of a task have to be known
(manifest).

Another method is system level simulation, such as Sys-
temC [2] at different levels of abstraction. It can be used
to describe systems from functional level to RTL level. The
level of abstraction determines the speed of simulations. An
example of SystemC simulation for NoC is the On-Chip
Communication Network (OCCN) project [5], which de-
fined a universal Application Programming Interface (API)
for specification, modelling, simulation, and design explo-
ration of NoCs. Another framework is presented by Kogel
[14]. In the design flows of Athereal [11] and xpipesCom-
piler [12], SystemC simulation is used for performance
validation. The level of detail in the SystemC simulation
tremendously influences the speed of simulation. Transac-
tion Level Modelling (TLM), abstract data types and timed
simulations showed almost a 3 orders of magnitude speed-
up compared to Register Transfer Level (RTL) modelling
[14]. However, optimizations to increase the simulation
performance sacrifice the level of detail in the simulated re-
sults.

For our packet switched NoC, we would like to moni-
tor the cycle and bit accurate behavior under different traf-
fic loads. A bit and cycle accurate simulation is required,
because adaptations to the logic behavior of the router and
the network as a whole are foreseen. Furthermore, we need
to do extensive cycle true simulations, with the synthesized
sources, before a chip can be realized. We developed a Sys-
temC description of the router [13], but the simulation fre-
quency was disappointing. Seriously testing a single sce-
nario on one specific network configuration already took
a full day. Therefore, an FPGA based simulator was con-
sidered. For very large multiprocessor systems, an FPGA
based emulation platform makes accurate and fast system
simulation possible, as proposed in the RAMP project [4].
This approach requires multiple FPGA platforms as for ex-
ample provided by the Zebu-XL system emulator [8]. We
would like to adopt the RAMP method and develop a simu-
lator that requires a single FPGA.

Several FPGA based implementation to validate NoCs
are described. Marescaux [15] describes their implementa-
tion of interconnection networks on an FPGA. Genko [10]
proposed a NoC emulation framework implemented on a
Virtex-II FPGAs. The emulation platform combines traffic
generators, network interfaces, routers and traffic receptors.
The platform is controlled by the FPGA’s PowerPC and can
work at 50 MHz. Genko’s approach is bounded by the max-
imum available slices. For example, a 6 router network re-
quired 79% of a Virtex-II Pro VP20. The approach in this
paper can simulate far more routers in a single FPGA. By
sequential simulation we relaxed the hardware requirements
and increase the size of the simulated NoC. We demonstrate
the power of the simulator with a series of test scenarios us-
ing our Network-on-Chip.

The rest of the paper is organized as follows. In section

2, we describe the NoC that we would like to analyze. In
section 3, we describe three methods we evaluated to sim-
ulate this network. In section 4, we describe the method
that is used to simulate a parallel system sequentially. In
section 5, we describe the implementation of this method
onto the FPGA platform. In section 7, we show the speed
improvements that are achieved by the FPGA method. In
section 8, we discuss the simulator and conclude the paper
in section 9.

2 Network-on-Chip

For the NoC, we have defined two networks (packet-
switched [13] and circuit-switched [18]) that can both han-
dle guaranteed throughput (GT) traffic and best-effort (BE)
traffic simultaneously. The guaranteed throughput traffic is
defined as data streams that have a guaranteed throughput
and a bounded latency. The best-effort traffic is defined
as traffic where neither throughput nor latency is guaran-
teed. In this paper we focus on the packet-switched net-
work. However, the approach can also be used for the
circuit-switched network and other designs.

2.1 Packet-Switched Network-on-Chip

The packet-switched router described by Kavaldjiev [13]
implements wormhole routing with virtual channel (VC)
flow control. The advantage of wormhole routing is the
packet-size independent buffer-size. The virtual channels
are used to decrease the chance of blocking and enable the
routing of GT traffic. Each packet in the network consists
of H header flits to setup a route, an arbitrary number of
data flits that contain the packet’s information and one tail
flit that will free the router’s resources for other packets.
The header describes the route, which is predetermined via
source-routing, and one header flit is consumed at each hop
of the route.

The router has five input and five output ports and four
virtual channels per port. The flits (atomic unit) of a packet
are labelled with their virtual channel number and they are
buffered in four flit deep queues at the input ports. Per port,
four queues are available — one queue per virtual channel.

The outputs of the queues are not multiplexed per port,
but directly connected to the crossbar. This is used to ease
the arbitration compared to a standard wormhole router with
virtual channels [6]. The crossbar is asymmetric and has 20
inputs, one input for every queue, and five outputs that are
directly connected to the router’s output ports.

The access to the crossbar is arbitrated by 5 round-robin
arbiters - one arbiter per crossbar output. This arbitration
is sufficient, since a conflict can only arise when more than
one queue contains flits destined for the same output port.
Due to the predictable round-robin arbitration the router is
able to handle GT traffic, if one single data stream is as-
signed per VC. Multiple BE packets can be assigned to the
same output VC.

IEE I-'

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

600

Guarantee
—»— GT mean
500 - % - GT max
—&— BE mean

S

S

S
b
X
¥

XXX % X% — XXX —X— X

- L33

Latency [cycles]
w
o
o
X
\

n
o
o

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
BE load per PE [fraction of channel capacity]

Figure 1. Message delay of the GT and BE
traffic vs. BE load for 6-by-6 network (queue
size 2 flits)

For BE packets, the packets competing for the same out-
put VC are tagged by the sender with an unique header
identifier (ID) per header flit. The routers are connected
to a free-running global counter whose value is distributed
to all inputs. When an output VC is freed the next packet
that claims it is the one whose header ID equals the cur-
rent counter value. The uniqueness of the BE ID guaran-
tees conflict-free arbitration and crossbar access, but does
not guarantee bandwidth or latency. Since, at any time, the
counter contains a arbitrary value, fairness is provided.

Although the output round-robin arbitration is determin-
istic and maximum latency per hop can be determined, the
specific latency and timing of packets largely depends on
the global behavior of the network. Figure 1 shows the
result of the latency simulation for a 6-by-6 network that
has been performed in SystemC. A similar simulation is
also performed on the new FPGA based simulator, where
a faster and more extensive exploration of the results is pos-
sible. The details of this detailed simulation are described
in section 6.2.

The graph shows how the latencies of the GT and BE
messages depend on the offered BE load. For the GT traf-
fic, the mean and the maximal latency of packets are given.
When the offered BE load is low, the latency of the GT
packets is smaller than the guaranteed (or allowed) latency.
The reason is that the GT traffic utilizes the bandwidth un-
used by the BE traffic. Note: the latency of the GT packets
is higher than the latency of the BE traffic because in this
experiment the GT packets are larger (256 bytes against 10
bytes for BE packets). With the increase of the BE load, the
average and maximum latency of the GT traffic increases,
but the maximum GT latency never exceeds the guaranteed
latency.

3 Simulation of Network-on-Chip

To simulate a NoC (a network of routers) we examined
three options using:

1. VHDL
2. SystemC
3. An FPGA

For all options we modelled the NoC cycle and bit accu-
rate. We started with a VHDL description, that could also
be used to obtain synthesis results. A VHDL description
was necessary, because, besides latency analysis, we are
also interested in the area and power consumption of the
NoC design. Router implementation with with very good
throughput and latency, might result in a very high power
consumption. For example, we found that buffers require
a relatively large amount of area and energy. So we would
like to redo the simulation of Figure 1 with different buffer
sizes and investigate what the effect of buffer size on per-
formance and energy consumption is.

For the latency and throughput analysis, we were ham-
pered by the 10 cycles per second simulation speed of the
VHDL simulation. Therefore, a SystemC model seemed a
good approach with, as literature suggests, orders of mag-
nitude speed improvements [14]. The SystemC simulations
gave the first insights into the behavior of the network as is
shown by Figure 1. However, to generate all the informa-
tion that was required for this single graph we needed 29
hours of simulation time on a single Pentium 4.

The attempt to simulate a NoC in an FPGA was inspired
by the fact that an FPGA has a lot of internal storage, which
enables updating a large number of registers in a single cy-
cle. In our lab we have a platform available with a multi-
processor SoC as is described in section 5.1. This SoC has
two ARM processors that can communicate via a memory
interface with a single Virtex-II FPGA. This platform was
used in our experiments. The method to simulate the net-
work in an FPGA is described in the next section. In sec-
tion 5 we describe the details of the FPGA simulator.

4 NoC Simulation in an FPGA

There are several ways to simulate a Network-on-Chip
in an FPGA. The first idea was to instantiate the whole net-
work in the FPGA including simple traffic generators, but
initial synthesis tests showed a limitation of approximately
24 routers in a Virtex-II 8000. These results were obtained
with a reduced data-path of 6-bit and without the network
interfaces, traffic generators and simulation controllers. The
two major bottlenecks were the number of CLBs and avail-
able number of tri-states in the FPGA.

Therefore, a sequential simulator of the network was
considered. The sequential simulator has another trade-
off between hardware resource requirements and simulation
speed. The details of this sequential method are described
in [19], but a coarse description is given in this section.

4.1 Sequential simulation

The basic idea of the sequential simulator is as follows.
In a synchronous parallel system, each block has some func-

IEE I-'

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

tionality (its combinatorial circuitry) and a number of reg-
isters that store the block’s internal state. In a normal single
system cycle, all the blocks will update their state concur-
rently, based on the current state and its inputs. In our se-
quential simulator we will sequentially evaluate each block
in one function cycle, which requires more overall clock cy-
cles but less hardware. A system cycle is partitioned in NV
function cycles, where IV is the number of parallel func-
tions (blocks) that are sequentially simulated. All blocks
that have identical functionality can reuse the combinato-
rial circuits. The block’s state is stored in a large memory
to maintain the state of the complete parallel system. When
the state of all blocks is modified we switch to a new system
cycle.

The method described above can be used to simulate any
parallel system on any sequential processor. The frequency
of the processor, the simulated functionality and the amount
of registers that have to be updated determine the speed of
the simulation. If we use a 32-bit processor like the Pen-
tium 4 we can update at most 32 bits per function cycle in
a bit accurate simulation. Furthermore, the evaluation of a
function cycle will require multiple clock cycles. Although
a Pentium 4 is a very fast processor, the simulation will not
be very fast. Speed improvements can be achieved by only
scheduling the registers that require evaluation in the system
cycle because their inputs have changed (event driven).

The number of bits that can be updated in a function
cycle is much larger in an FPGA. It can read and write a
large number of bits in the available internal RAM. For ex-
ample the Xilinx Virtex-II 8000 FPGA has 192 dual-port
block-rams of 512 positions each 36 bits wide per RAM.
This makes it theoretically possible to access 6912 regis-
ters in parallel. Furthermore, the FPGA has a large amount
of logic, which can evaluate the functionality of multiple
blocks in parallel or a single large block. This also makes
it possible to do both the evaluation and update of the reg-
isters in parallel. A function cycle can be evaluated in one
FPGA clock cycle.

4.2 Sequential simulation of a NoC

In a synchronous, homogeneous NoC, each router has an
identical functionality. We partition each router into a sin-
gle large block and sequentially evaluate each router in one
function cycle. The partitioning of a whole router per block
is possible due to the amount of registers and functionality
per router. The amount of function cycles per system cycle
equals the amount of routers in the network.

Our NoC routers are described in VHDL, which can im-
mediately be used to synthesize to FPGA or silicon tech-
nology. It is very important that we can use (almost) un-
modified VHDL sources, as this will minimize the risk of
errors between the synthesized hardware and the simulator.
For the sequential simulator it is required to apply a small
modification of the sources, i.e. we have to re-map all the
registers of the router to a large memory.

The current values of the links are stored in a memory as

SoC-board
R | e
=

AHB BUS

FPGA-board

l

address

ﬁ
1]

ARM
9

soepialul lowsly

NoC
design

aoepajul Aowsy

:]
110
Aoeus ===

Figure 2. Schematic view of the hardware

well. Any network consisting of a homogeneous set of [V
routers can be simulated independent of its interconnection
topology. The topology is determined by the generated read
and write address pattern for the link’s memory.

S Implementation

The implementation of the simulator requires a hardware
platform, an FPGA design and software. First, we need a
hardware platform with a (large) FPGA that is able to simu-
late the network. In section 5.1 we describe the platform we
had available. Second, we need an FPGA design that is able
to simulate the router according to the described method of
section 4. In section 5.2 we describe the architecture and
functionality of our FPGA design. Third, the NoC design
needs stimuli and analysis software to evaluate the router’s
performance. This is described in section 5.3.

5.1 Hardware Platform

Figure 2 depicts the general block diagram of the avail-
able platform with the most important components. It con-
sists of a SoC board and an FPGA board. The SoC board
contains a dual-core ARM general purpose processor. The
two ARM processors have a frequency of 86 MHz and 192
MHz. The SoC is connected with 1 MB of on-board SRAM
memory and lots of peripherals and connectors. One of the
connectors connects the FPGA board with the SoC board.
This connector contains a memory interface with a 32-bit
wide data-bus and a 17-bit wide address-bus. Via this mem-
ory interface we can control the logic of the FPGA and ex-
change blocks of data between the RAM of the SoC and the
memory instantiated in the FPGA. The FPGA board itself
does not have a separate off-FPGA memory. The FPGA
board contains a Virtex-II 8000 FPGA.

Any other platform that has a large FPGA and on-board
SRAM memory available will be suitable for the simula-
tions. The on-board SRAM is required by the general pur-
pose processor that controls the simulation. This control is
both generation of stimuli vectors as well as analysis of the
results. This general purpose processor can either be imple-
mented on the FPGA or, as in our case, a separate processor.
With the dual-core ARM chip we can partition the control
software among the two processors.

IEE l-:

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

Router Global
Stimuli External
imul interface
blblb|b control
ufjujulu
ff | ff | ff | ff TI(;‘?
ejeje e =8 Simulation
rlrjr|r ® o
T < control
Input @ g
stimuli

Access Received
control flits

Access:
log

Link Link
state state

Link IRemiEzr Link
state state
- Local router -
Link state Link
state state

Input link
log
Link
state

Figure 3. Schematic view of the FPGA design

State Size
Input queues 1440 bits
Router control and arbitration 292 bits
Links 200 bits
Stimuli interfaces 180 bits
Total 2112 bits

Table 1. Required number of bits per router

5.2 FPGA implementation

Figure 3 depicts the major blocks of the FPGA design.
The design can be partitioned in two major parts.

1. The router part, that describes the logic of a single
router and its stimuli interface.

2. The global part, which controls the FPGA and the
Network-on-Chip that is simulated.

For the router we separated the combinatorial logic from
the registers in the original router design. The inputs and
output signals of all registers are concatenated into two
memory words: old and new. The old word is the current
state of the router and is read from the memory at the start
of a function cycle. The new word is the result of the eval-
uation and has to be written into the memory at the end of a
function cycle. The address of the memory corresponds to
the router that is evaluated. Table 1 summarizes the width
of the memory word. The number of routers in the network
determine the depth of the memory.

In the current implementation reading the values from
memory takes 1 cycle. Evaluation of the combinatorial
logic and writing the result in memory takes another cycle.
In total a function cycle equals 2 FPGA cycles. For a design
with NV routers one system cycle takes 2N FPGA cycles.

The stimuli for the design are generated by software in
the ARM9. We have chosen to generate the stimuli in soft-
ware, because it is easier to define new tests and analyze the
results in software. The disadvantage is the large amount
of data that has to be copied from the ARM9 to the FPGA
and vice versa. The stimuli are buffered per virtual channel
(VC) in cyclic buffers in the FPGA. The output values of
the network are stored per router, and not per VC, because a
tile will receive at most 1 flit per system cycle. The data in
the buffers have a timestamp and can be read or written by
the ARM9. The timestamps make it possible to store only
valid data, which requires less storage space and less time
to copy data. Two extra cyclic buffers make it possible 1) to
log the traffic of a specific link and 2) to log the access delay
a flit notices before it enters the network. These two buffers
cannot influence the traffic in the NoC.

The cyclic buffers make it possible to run the simula-
tion independently from the copying of data. Of course, we
have to prevent buffer under- and overrun, because it will
influence the traffic in the NoC. The ARM will request the
FPGA to simulate a specific number of system cycles. The
FPGA will signal the ARM when it is ready with the re-
quested number of system cycles. During the simulation in
the FPGA, the ARM performs other tasks as described in
the next section.

5.3 Software

The simulation is completely controlled in software by
one or two ARM processors. The choice for one or two
processors depends on the estimated simulation length and
desired simulation speed. The software is partitioned in
processes that communicate via cyclic buffers. All the pro-
cesses can run in parallel and do not have dependencies.

Figure 4 depicts the organization of these processes and
what part of the hardware is involved. The top processes
require only the ARM processor and the NoC simulation
itself only requires the FPGA. The two processes that in-
terchange data between the boards require both ARM and
FPGA. Each process that requires an ARM can be mapped
on either of the two ARM processors.

Because each process uses its own cyclic buffers, it only
needs to be fired when data and free memory are available.
The processes that only require the FPGA or ARM run in
parallel, which tremendously reduces the simulation time.
We also have two ARMs available on the SoC-board that
make it possible to run the generate and analysis process
in parallel. Running the two processes in parallel requires
more effort and time from the simulator user. Therefore, the
parallelism with two ARMs is only beneficial if long simu-
lations are performed. The simplest partitioning is running
the generating and loading of data on one ARM, and retriev-
ing and analyzing on the other ARM. This requires the least
amount of inter processor communication and gives a good
speed-up.

The simulation is performed in steps. We start with gen-
erating a routing information table. After all routes are de-

IEE I-'

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

Legend

Il rcANC
[FPGA Other

[] FPGANoC & ARM

[] ArRm

Figure 4. Software processes of the simula-
tion

termined, a loop is started that has five phases. 1) We start
by generating the traffic for each node in a stimuli table.
Any data pattern can be generated as the generation is done
in software. The generation process uses a random number
generator on the FPGA. Reading a 32-bit random number
from the FPGA is noticeably faster compared to the stan-
dard rand() function in C. The generated stimuli table con-
tains stimuli for at least x system cycles. 2) The gener-
ated stimuli have to be written into the input buffers of the
FPGA. All input buffers are maximally filled unless no data
is available. 3) After filling the buffers we start the simu-
lation in the FPGA and evaluate x system cycles. This se-
quence of x simulated system cycles is called a simulation
period. To prevent buffer underrun, the simulation period
is fixed to the size of the VC stimuli buffers in the FPGA.
The simulation in the FPGA needs to be started by software,
but can run autonomously. 4) After a single simulation pe-
riod, we have to empty the output buffers. We retrieve the
data from the output buffers that we think are interesting for
the analysis. For the buffers that are not interesting we can
update the read-pointer, which empties the buffer. 5) Af-
ter the data is retrieved from the FPGA it is analyzed and
the desired statistics are stored. When the simulation is not
finished we go to step 1 and generate extra traffic in the
stimuli table. This makes it possible to simulate an arbi-
trary number of simulation periods which is not limited by
the software or hardware. However, due to back-pressure
in the network, not all generated data might have been writ-
ten into the FPGA. To prevent the loss of this data and the
potentially resulting undefined state of the stimuli, all un-
consumed data will eventually be written into the FPGA. If
the network is overloaded with traffic and it does not accept
data on virtual channels for a longer time, this is reported to
the user and simulation is stopped.

6 Simulation examples

In this section we describe simulation examples that are
performed on the NoC simulator. These examples are used
both to analyze the behavior of the network and to profile
the simulator. The analysis of the NoC is included in this
section and the profile results are described in section 7.

6.1 Best effort traffic

Most of the NoC architectures are simulated with ran-
dom traffic uniformly distributed over time and tiles. The
average latency per packet is calculated and plotted versus
the packet injection rate. In this example we apply differ-
ent traffic patterns to a various set of NoC configurations.
As areference we use the virtual channel wormhole routing
router as described in section 2 and a two dimensional 6x6
mesh topology.

Before the start of the simulation we randomly select
pairs of communicating tiles. Per communicating pair of
tiles, we determine the route through the mesh-topology via
XY-routing. XY-routing is applied, because it is deadlock-
free. For a 6x6 network we could map 493 randomly se-
lected pairs onto the network. On average, a tile commu-
nicates with 14 other tiles, which is close to the maximum
of 16 (4 VCs and 4 IDs per VC). All the routes that use a
specific link are uniformly distributed over the four virtual
channels and four IDs per virtual channel.

Each communicating pair will transport a packet of D
data flits at random moments in time. The data flits are pre-
ceded by H header flits that contain the routing informa-
tion and followed by single tail flit that will free the router’s
resources for other packets. The number of header flits is
equal to the number of hops of the packet’s route. Per hop,
a header flit is consumed, which reduces the average num-
ber of flits/cycle that arrive at a specific tile. Therefore, the
latency figures in this section are plotted versus the injection
and extraction rate of the tiles. The injection rate is defined
as the average number of flits per system cycle a tile injects
into the network. The extraction rate is defined as the av-
erage number of flits per system cycle a tile receives from
the network. The latter represents the amount of useful data
transported by the network. The latency per packet is mea-
sured and grouped depending on the length of its route. The
minimum latency per packet is equal to 2H + D + 1 (the
number of hops + the length of the packet).

Figure 5 depicts the average and maximum latency of
a packet versus the injection and extraction rate when all
packets contain 5 data flits. The difference of the average la-
tency depending on the injection or extraction rate is caused
by the header consumption of the network. Furthermore, it
is visible that the average latency is influenced by the length
of the route. The average latency is given for a selection of
route lengths. However, the maximum latency of a single
packet is not directly related to the length of the route, but
mainly dependent on the packet injection rate.

6.1.1 Improvements

The majority of the latency seems to be caused by the ac-
cess mechanism to the crossbar for BE traffic at the setup
of the route through the network. The access mechanism
prevents two or more packets to be granted to access the
crossbar and select the same output virtual channel. The
packets from different input VCs have an unique ID if they

IEE |-:

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

140

T T
Average, 2 hops
—>— Average, 5 hops
—o— Average, 9 hops ||
—&— Maximum latency
100 — — - Extraction rate

120

Latency [cycles]

0 0.1 0.2 0.3 0.4 0.5 0.6
Injection / Extraction rate [flit/cycleftile]

Figure 5. Average and maximum latency for 5
flits BE packets

80

Reference 4 ,’ /
—=— Optimal header ID i, /
70| —o— Header compr. and ID sel. 7% !
; ay
—=— Reduced buffer size s &

Latency [cycles]

0 005 01 015 02 025 03 035 04
Extraction rate [flit/cycle/tile]

Figure 6. Improved latency for 5 and 9 hops

compete for the same output virtual channel. At most one
packet per VC is granted if its header ID matches the global
counter. In the reference simulation we chose a random ID
for each header. Although this is fair, it is not fast. As
the ID counter is global for the whole NoC, we can pre-
dict what the counter value is when the next header of the
packet requests crossbar access at the next router, based on
the minimum header delay. In the current design this delay
is 3 cycles. Figure 6 depicts the latency if the header ID
is optimized to this 3 cycle delay. Especially for low traf-
fic loads the latency is reduced by approximately 20%. The
network almost saturates at the same extraction rate.
Furthermore, for these small packets of 5 data flits we
noticed a relatively large overhead of the header flits as the
average route in a 6x6 network is 4.7 hops. The header/data
ratio is almost one. Each header uses only 6 of the available
16 bits, which makes it possible to combine two header flits
into one and reduce the average number of header flits to
2.4. The router requires only one extra multiplexer per VC
to select the correct bits when it receives its first header of a
packet. We expected the network to saturate at higher loads

80 T

6x6, 5 data flits

70H — — — 8x8, 5 data flits
- 6x6, 11 data flits

Latency [cycles]

0
0 005 01 015 02 025 03 035 04
Extraction rate [flit/cycle/tile]

Figure 7. Average and maximum latency for 5
flits BE packets for different topologies

and have a lower latency, which is depicted in Figure 6.
In this case we combined optimized header ID selection
with header compression. Solely header compression did
not show a major improvement. Header compression is es-
pecially beneficial for higher loads and small packets. The
latency at low loads is mainly effected by the ID selection.

A third test was to reduce the queue size (2 flits) of the
NoC and see its effect on the performance. Both header
compression and ID optimization were included as well. At
low traffic loads the buffer size marginally influences the
latency. Due to the smaller buffers, the network saturates at
lower loads.

6.1.2 Other scenarios

For a second scenario we varied the network size and num-
ber of data flits in the packet. We simulated various mesh
topology sizes and packet sizes. In Figure 7, the latency de-
pending on the extraction rate is depicted for both a 6x6 net-
work and 8x8 network. For the 6x6 network we display the
average latency for the scenarios with 5 or 11 data flits per
BE packet. From this figure, it is clear that a larger network
will saturate at a lower extraction rate (lower throughput per
tile). Similar behavior is observed by Duato [7, chapter 9].
Larger packets have a higher average latency, but no notice-
able change of the saturation rate.

6.2 Jitter analysis

As described in section 2 our virtual channel wormhole
router can support both best-effort and guaranteed through-
put traffic. Kavaldjiev [13] performed latency measure-
ments to show that a guaranteed throughput stream will
never violate its given deadline, independent of other traffic
in the NoC. Figure 1 shows an example where an increasing
best-effort load will increase the average and maximum la-
tency of the guaranteed streams, but the maximum latency
never exceeds the guaranteed latency.

IEE I-'

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

In the following test we performed a similar test, but we
want to study the inter packet jitter of the various guaranteed
throughput streams. We assume the simulated network has
a clock frequency of 333 MHz and uses applications that are
similar to HiperLAN/2 [9]. In this application all commu-
nication occurs in burst with periods of 4 ps. We mapped
the following three types of streams onto the network:

1. Guaranteed throughput (GT) packets of 128 flits with
an average inter-packet time of 1333 cycles. At 333
MHz this is equal to the 4 us period.

2. GT packets of 256 flits with an average inter-packet
time of 4000 cycles.

3. Best effort packets with 5 data flits. The inter-packet
time is varied to increase the load in the network. All
BE streams are mapped on one single virtual channel.
The unique ID will prevent conflicts at the crossbar.

Both GT streams have minimum guarantee of 1/3 of
the link bandwidth. The maximum latency of a single GT
packet equals: 3 - (H + D) cycles, where H is the length of
the route and D the length of a single packet. The test has 29
streams of type 1, 18 streams of type 2 and 103 streams of
type 3, all uniformly distributed over the NoC. In this test,
we are interested in the inter-packet jitter of the GT pack-
ets. Of course, it is important that the packets will arrive at
the destination in less than the guaranteed latency. An extra
level of service is that the packets will also arrive at a very
regular interval (low jitter).

In the test, we examine the latency of the two GT packet
types and we make a histogram of the latencies that are
grouped in the length of the route. We vary the best ef-
fort load over time and see how this influences the latency
of the other streams. With this test we are able to show one
of the major benefits of the fast, but accurate, simulator.

We need a very large number of packets to get enough
accuracy of the variation in the packet latency. Suppose we
simulate for 1.5 million cycles. This transports 1125 pack-
ets per stream of type 1 and only 375 packets of type 2. If
we want to calculate an average latency, this is possible as
we can group multiple streams of a type that have the same
length, but for a histogram a lot of detail is still missing,
as the latencies range from 130 to almost 400 clock cycles.
Simulation of 1.5 million cycles in the SystemC simulator
required roughly 1 hour and 45 minutes. In the FPGA sim-
ulator we do the same test in less then a minute. There-
fore, we simulated for 15 million cycles in approximately
10 minutes and obtained detailed histogram results.

Figure 8 depicts the distribution function (the percent-
age of packets that notice a specific maximum latency) of
the latency of all streams of type 1 under different best ef-
fort loads. The y-axis gives the percentage of the packets
notice the latency on the x-axis or less. For different BE
loads, the distribution function changes. From this figure,
it is clear that under almost no BE load, 50% of the pack-
ets arrive with the minimum latency (length route + length
packet) and use the maximum bandwidth of the links. Be-
cause there are multiple GT streams in the NoC, part of the

“Minimum
90 - Latency

- 1/2 Through— Maximum :
“put of link Latency -

Percentage [%]
[4))
o

— BE: < 0.002 flit/tile/cycle

- — - BE: < 0.05 flit/tile/cycle |]
—— BE: < 0.10 flit/tile/cycle ||
— % - BE: < 0.15 flit/tile/cycle
—&— BE: < 0.20 flit/tile/cycle |
- 8 - BE: < 0.28 flit/tile/cycle

200 250 300 350 400
Latency [cycles]

Figure 8. Latency distribution under different
BE loads

100 T T T T T 22
90
801
70t]
£ ol
o) h
% 501 Minimum 1/2 Through- Maximum
'q:: Latency put of link Latency |
5 4of
o —— BE: < 0.002 flit/tile/cycle
07| - - - BE: < 0.05 flitttile/cycle
o0l = BE: < 0.10 flit/tile/cycle
- % — BE: < 0.15 flit/tile/cycle
10+ —=— BE: < 0.20 flit/tile/cycle
— 8 - BE: < 0.28 flit/tile/cycle

150 200 250 300 350 400
Latency [cycles]

Figure 9. Latency distribution under different
BE loads, where the GT streams are traffic
shaped at the input

packets have to share bandwidth of the link. Depending on
the phase alignment of the packets they influence each other.
However, this can be at most a reduction to half the band-
width under low BE load. A little more than 10% of the
packets observe this reduced throughput. Under higher best
effort loads the GT packets gets influenced more and more.
This has a major impact on the latency distribution function.
This change in the distribution function will be noticed by
the receiver as jitter in the arrival time of packets.

If we now apply traffic shaping and release the packets
with their given bandwidth of 1/3, we expect them to expe-
rience less jitter in the network. This is depicted in Figure 9.
It is clear that the streams do not get influenced by the BE
traffic, but experience a large latency as the packets enter
the network at their guaranteed bandwidth.

Although it is not directly visible in the graphs, this level
of detail is only possible with long simulation times. In the
previous SystemC simulations, this would have taken weeks
and with our simulator the results were obtained in less than

IEE |-:

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

Block CLB RAM
Router 1762 61
Stimuli interface 540 62
Network 2103 16
Random number generator 2021 0
Global control 627 0
Total 7053 (15%) 139 (82%)

Table 2. FPGA resource usaae

110 : : :
—&— 4x4 BE (5 flits)
100 6x6 BE (5 flits) |
—s— 8x8 BE (5 flits)
%0y - - —6x6 BE (11 flits) |
8ol -6 -6x6GT

Simulation frequency [cycles/ms]

005 01 015 02 025 03 035 04
Injection rate [flit/cycle/tile]

Figure 10. Simulation frequency versus injec-
tion rate

5 hours for 30 different levels of BE loads. Both simulation
approaches can be speeded up by running multiple tests in
parallel on multiple platforms.

7 Profile Results

In this section we describe the performance of the simu-
lator. The simulator is realized for a Xilinx Virtex-II 8000
FPGA. Table 2 shows the resource usage of the simulator
in the FPGA. From these results, it is clear that the limiting
factor of the design is the number of RAM-blocks that are
used. It would be possible to simulate the design in smaller
FPGAs, but it would limit the maximum number of routers
and/or the amount of state registers of the design.

The router design is synthesized for a frequency of 6.6
MHz, which gives a function cycle frequency of 3.3 MHz.
This limits the maximum simulation frequency of the sim-
ulator to (3.3 - 10%)/36 = 91.6 kHz for a 6-by-6 network.
No effort was made to increase this frequency, because it
was sufficient for the current tests. The interface frequency
is equal to the ARM frequency of 86 MHz, which makes it
possible to copy data at a higher frequency.

The number of system cycles that can be simulated de-
pends on the simulation settings. As a reference we use
the simulation frequency of our SystemC simulator that was
used to derive Figure 1. These and other SystemC simula-
tions on a 6x6 mesh network had an average frequency of
0.215 cycles/msec independent of the applied network load.

6x6 mesh 8x8 mesh

45\
Il Generate & Simulate
I Generate g
[ISimulate
I Load
[Retrieve
[JAnalyze

Time [sec]
Time [sec]

Generate

Generate

Generate & Simulate
Generate & Simulate

0
0.1 0.2 0.3 0.1 0.2 0.3
Injection rate [flit/cycle/tile] Injection rate [flit/cycle/tile]

Figure 11. Simulation times for 0.5M cycles

Figure 10 depicts the simulation frequency (in cycles/msec)
under different network loads for the series of performed
tests as described in section 6. In all tests, we use the slow-
est of the two ARM processors at 86 MHz. From this figure
we can conclude that the FPGA simulator is a factor of 80-
300 faster compared to our SystemC simulation. Under low
traffic loads, the frequency is close to the theoretical max-
imum that is limited by the FPGA. Under higher loads the
frequency decreases due to extra time required by the soft-
ware processes of Figure 4. Furthermore, it is visible that
the frequency is approximately inversely proportional to the
size of the network.

For different tests on the 6x6 topology with identical
load, the minor differences are caused by the relation be-
tween injection rate and packet rate. For example, the anal-
ysis and generation time for the BE tests is almost indepen-
dent of the packet size. Larger packets (11 flits) will cause
a higher injection rate, which results in shorter simulation
times at identical injection rates.

The time required per process of Figure 4, to simulate 1/2
million system cycles, is depicted in Figure 11 for the best-
effort tests with 5 data flits in each packet for two network
topologies. In these tests we run the generation and simu-
late process in parallel on ARM and FPGA. For most loads,
the simulation process requires less time than the generation
process, which completely hides the simulation time spent
in the FPGA. Only in the 8x8 topology and under low loads
can we achieve lower simulation times if we run more pro-
cesses in parallel to the simulation process on the FPGA.
Although the exact time varies between tests, in general we
see that approximately 55% of the time is spend in genera-
tion of the stimuli. Loading, retrieving and analyzing data
all require 15% of the time. The time for analysis increases
if complex analysis techniques are included (e.g. determine
variance of inter-flit arrival times). As most of the time is
spent in software and not by the FPGA, there is no reason
to increase the FPGAs function cycle frequency.

IEE l-:

COMPUTER
SOCIETY

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

8 Discussion
8.1 Flexibility of the NoC simulator

The simulator on the FPGA is implemented as a homo-
geneous wormhole switching network with virtual channel
flow control with a torus topology. The software on the
ARM can change the network size from 1-by-2 to any 2
dimensional size with a maximum number of 256 routers.
The maximum number of routers is limited by the amount
of RAM that is required for the cyclic buffers and the
router’s state.

In the current simulator we have the same functionality
for all the routers. It is possible to select a different router
functionality depending on the position in the network. The
limiting factor is the number of registers in the router. The
topology of a network tested was either a torus or a mesh,
which is determined by software. Other topologies are pos-
sible and only require a change in the addressing function
of the link memories in the FPGA.

The same technique used for the NoC simulator can also
be used for testing other parallel systems on an FPGA. In
particular systolic algorithms with many equal parts with a
small state space. If the source code for synthesis is avail-
able, it is relatively straightforward to modify the code for
the sequential framework. Heterogeneous systems can be
supported as well, as long as the required extra combinato-
rial logic fits in the FPGA. In the NoC case, less then 10%
of the logic resources are used for combinatorial circuitry
of the routers. The registers can be mapped in the same
memory space.

9 Conclusion

In this paper we described the results obtained with
our FPGA based network-on-chip simulation method. The
method is especially suitable for parallel systems were
lengthy cycle and bit accurate simulations are required.
Those tend to demand a considerable amount of time us-
ing software only simulation on a desktop PC. Using an
FPGA, we are able to speed up the simulation with a fac-
tor of 80-300 compared to a SystemC simulation without
loss of accuracy and a small code difference with the origi-
nal VHDL source code. Although an FPGA cannot handle
high frequencies, it benefits from its large internal mem-
ory bandwidth and parallel execution of many combinato-
rial circuitries.

The simulator gave us detailed insights in the behavior of
our wormhole network. Detailed latency histograms were
possible, because millions of system cycles can be simu-
lated in less than a minute. This enabled us to modify and
verify the router’s circuitry like, for example, header com-
pression, or adapt the routing function for optimal header
ID selection. Many other tests were performed as well, but
were not included in the paper.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007 IEEE

References

(1]
(2]
(3]
(4]
(5]
(6]

(7]

(8]
(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

4S-project. http://www.smart-chips.com.

Open SystemC Iniative OSCI, SystemC documentation.
http://www.systemc.org, 2004.

International Technology Roadmap for Semiconductors
(ITRS’05). Technical report, Semiconductor Industry As-
sociation, http://public.itrs.net/, 2005.

Arvind et al. RAMP: Research Accelerator for Multiple Pro-
cessors - a community vision for a shared experimental par-
allel HW/SW platform. Technical report, MIT, 2005.

M. Coppola et al. OCCN: A NoC modeling framework for
design exploration. Journal of Systems Architecture: the
EUROMICRO Journal, 50(2-3):129 — 163, 2004.

W. J. Dally. Virtual-channel flow control. /EEE Trans. Par-
allel Distrib. Syst., 3(2):194-205, 1992.

J. Duato, S. Yalamanchili, and L. Ni. Interconnection Net-
works, An Engineering Approach. Morgan Kaufmann Pub-
lishers, San Fransisco, CA, USA, revised printing edition,
2003.

Emulation and Verification Engineering. ZeBu-XL system
emulator. http://www.eve-team.com, 2007.

European Telecommunication Standard Institute (ETSI).
Broadband Radio Access Networks (BRAN); HIPERLAN
Type 2, ETSI TS 101 475 v1.2.2 (2001-02) edition, February
2001.

N. Genko et al. A complete network-on-chip emulation
framework. In Proceedings of DATE’ 05, pages 246-251,
2005.

K. Goossens et al. A design flow for application-specific
networks on chip with guaranteed performance to accelerate
soc design and verification. In Proceedings of DATE’05,
pages 1182-1187, Washington, DC, USA, 2005. IEEE
Computer Society.

A. Jalabert et al. xpipesCompiler: A tool for instantiating
application specific networks on chip. In Proceedings of
DATE’04, Paris, France, Februari 2004.

N. K. Kavaldjiev. A run-time reconfigurable Network-on-
Chip for streaming DSP applications. PhD thesis, Univer-
sity of Twente, Enschede, The Netherlands, January 2007.
T. Kogel et al. A modular simulation framework for archi-
tectural exploration of on-chip interconnection networks. In
Proceedings of CODES+1SSS°03, pages 7-12, New York,
NY, USA, 2003. ACM Press.

T. Marescaux et al. Networks on Chip as Hardware Com-
ponents of an OS for Reconfigurable Systems. In Field-
Programmable Logic and Applications, volume 2778/2003
of Lecture Notes in Computer Science, pages 595-605.
Springer Berlin / Heidelberg, 2003.

E. Rijpkema et al. Trade-offs in the design of a router with
both guaranteed and best-effort services for networks on
chip. IEE Proceedings: Computers and Digital Techniques,
150(5):294-302, sep 2003.

M. H. Wiggers et al. Buffer capacities for multi-rate
real-time systems with backpressure. In Proceedings of
CODES+I1SSS°06, pages 10-15, Seoul, Korea, October
2006. ACM Press.

P. T. Wolkotte et al. An energy-efficient reconfig-
urable circuit-switched network-on-chip. In Proceedings of
IPDPS’05, Denver, Colorado, USA, April 4-5 2005.

P. T. Wolkotte, P. K. F. Holzenspies, and G. J. M. Smit.
Using an FPGA for fast bit accurate SoC simulation. In
Proceedings of IPDPS’07, Long Beach, California, USA,
March 26-27 2007.

IEE |-:

COMPUTER
SOCIETY

