
Evolvability as a Quality Attribute of Software
Architectures∗

Selim Ciraci, Pim van den Broek
Software Engineering Group

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente

PO Box 217
7500 AE Enschede

The Netherlands
Email: {s.ciraci, pimvdb}@ewi.utwente.nl

Abstract— We review the definition of evolvability as it ap-
pears on the literature. In particular, the concept of software
evolvability is compared with other system quality attributes,
such as adaptability, maintainability and modifiability.

Keywords: Software evolvability, Software evolution, Qual-
ity Attributes.

I. INTRODUCTION

In recent years, IT industry has faced the problem of
evolving their software products in order to stay on the market
and to compete with similar products. For software systems to
stay on market, they should inherit new requirements and adapt
themselves to the changing environment. However, today’s
marketing trends do not allow the industries to work on
changing their products for a long time. Thus the need for
designs that can withstand and easily adapt new requirements
and changes has emerged, which put the focus on evolvability
to be considered as a software quality.

Two trends have been identified to allow software systems
to become evolvable: component exchangeability and increase
in component distance [2]. Architecting software products has
allowed the designers to divide the system in consideration
into components. These components exchange messages or
request services of other components by means of connections
between them. This decoupling of systems at the architecture
level reflected itself into detailed design stages like Object
Oriented design. In that case, components become classes
and connections between components become inheritance,
message passing and so on. Besides reducing the understand-
ability of complex systems, this decoupling of components
allowed exchangeability. System architects can easily replace
a component in the architecture of a system by a better one.
In code level design, this change is reflected by changes in
the inheritance hierarchy, replacing a class by a newer one
and updating dynamically linked libraries [2]. According
to [2], development and improvement of networking tech-
nologies also contributed to evolvability of software systems.

*This work has been carried out as a part of the DARWIN project under the
responsibilities of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Bsik
program.

Networking allowed different components to be designed to
work at different entities in a networking environment and
these components exchanged messages by means of remote
procedure calls (RPCs) and sockets. Thus a component can
easily be changed or upgraded without affecting other compo-
nents working with different entities. In summary, decoupling
complex systems into components allowed software systems
to become evolvable. However, decoupling caused other prob-
lems like keeping the same communication interface between
components, in order that a component change doesn’t affect
other components. Studies have shown that evolution and
maintenance are the longest and the most expensive phase
of software life-cycle. This drew the attention to consider
evolvability further in research.

Lehman et al. [8] focus on two different uses of the
term evolution; as a noun and as a verb. The first and the
largest group of researchers focuses on the question ”how” to
effectively and reliably evolve a software system; this includes
the theories, abstractions, languages and methods. This group
is considered to be using the term evolution as a verb. The
second group of users ,of the term evolution, uses it as a noun
and focuses on the question ”what” to investigate and learn
properties of software evolution. We think that evolvability
research belongs to this group, since it is asking the question
”what is evolvable”.

In this paper, we present our view of the term evolvability
and the operations in software evolution. In the next section the
definition of evolvability is presented. Section 3 explains the
reason behind considering evolvability as a quality attribute.
In section 4, evolvability and some other quality attributes
are compared in order to depict where evolvability stands.
In the last section, conclusions and some research topics are
provided.

II. DEFINITION OF EVOLVABILITY

In this section, we present the definition used in the lit-
erature for the term evolvability and then we present our
definition of evolvability which explains our scope for the
term. Evolution first appeared in the software engineering
literature in 1970s by the study conducted in [3]. In that study

p. 29 of 199



the authors have tried to measure the complexity, size, cost and
maintenance, using the source code of 20 releases of Os/360
operating system. All measures have shown an increasing
trend, which led the authors to compose the five laws of
software evolution: Continuing Change, Increasing Complex-
ity, Fundamental Law of Program Evolution, Conservation of
Organizational Stability and Conservation of Familiarity.

Since then software evolution has been used to describe
the ”long and broad view of change in software systems”
[4]. Thus, from this definition of software evolution, the term
evolvability is defined as: ”the capability of software products
to be evolved to continue to serve its customer in a cost
effective way” [4]. Although this definition gives a common
ground on evolvability, it doesn’t describe the scope of changes
that are meant by the term evolution.

To address this problem, we begin constructing our evolv-
ability definition from identifying the changes that cause
systems to evolve. Currently, three sources of evolution have
been identified [14]:
• Domain: covers the model of the real world considered

by the system, i.e., the environment. Any change in that
model may force the system change.

• Experience: The users of the system gain experience
over time and they may require some suggestions for the
system, which in turn may cause the system to evolve.

• Process: includes the organizations and methods that may
also impact the system and cause it to change.

Considering these sources, we describe evolution as changes
in a system’s environment (domain), requirements (experience)
and implementation technologies (process). Then we define
evolvability as a system’s ability to survive changes in its
environment, requirements and implementation technologies.
It is important to notice here that this definition of evolution
modifies the original focus presented in [3] to include the
evolution that may occur during the initial development of
the system, since these sources of changes may also occur
during initial development. For example, during development
of the initial system, new implementation technologies may
be developed which may cause changes in the requirements
of the system.

III. EVOLVABILITY AS A QUALITY ATTRIBUTE

Most of the research on software evolution is focused on
analyzing the properties of evolution on the source code level.
The majority of these studies try to capture the properties of
software evolution by analyzing the changes on the source
code in release cycles of software systems. The research on
this field has mainly considered size (number of modules) as a
principal measure for evolvability [5]. However, studies show
that using different metrics may result in different distribu-
tions. Kemerer and Slaughter [1] list some of these studies and
continue with conducting time, sequence and gamma analysis
on two different software systems. An important observation
from this study is that these software systems start their
evolution cycle with similar activities, such as addition of new
modules.

Besides their help on understanding the properties of soft-
ware evolution, such empirical studies may also provide
estimates on the future changes that the source code of a
software system is going to face and predict the cost of these
changes, such the number of module additions on the next
release and the cost of adding these. However, the problem
with these estimates is that they do not provide information
on how evolvable the initial system is. The system may be
designed without considering the changes, so that adding or
removing components from it may be very costly. Thus, we
believe that the research on evolution should raise the level
of abstraction so that systems are designed in a way that they
can withstand changes. In other words, evolvability should be
a non-functional requirement of a system.

The IEEE 1061 standard [9] defines software quality as the
degree to which the software system fulfills a selected group
of attribute requirements. In [7] a quality attribute is defined
as a non-functional characteristic of a component or a system.
Since evolvability is a non-functional requirement of system,
it can also be considered to be a characteristic of the system;
thus one can conclude that evolvability is a quality attribute.
Bennet and Rajlich [6] also mention the importance of raising
the abstraction level and point out two research topics on this
subject:

• Architecting systems in a way that they allow changes
without damaging the integrity of the system

• Constructing architectures which can be evolved in a
controllable way.

To measure how evolvable a system is, it is desirable to
have a mechanism that evaluates the system at high levels of
abstraction. Currently, there are methods that can estimate how
a system meets certain quality requirements and we believe
that some of these methods can be adapted to measure evolv-
ability. For example, evaluation techniques based on scenarios
can be easily adapted to evaluate designs with respect to
evolvability; SAAM [11] may be specialized to work with
evolution scenarios and ATAM [12] can be used to measure
the trade-off between evolvability and other quality attributes.
Although scenario based techniques may supply great value of
information for many quality attributes, they may not be very
useful for quality attributes that deal with future changes. This
is due to the limitation of the scenario generation process to the
generators’ view of the future. For example, when evaluating
with respect to evolvability most of evolvability scenarios may
be missed by the scenario generators (most of the time the
stakeholder) which may result in wrong judgments about the
current architecture. It is obvious that a model based evaluation
technique may be more suitable for evolvability; though a great
deal of work has to be conducted in order to find metrics for
evolvability.

Currently, ISO/IEC 9126 standard [10] derives metrics for
evolvability based on the goal-question-metric (GQM) [4],
[13]. The steps that are taken during an evolution request act
as the goal (e.g., analyze the current system). Then, for each
goal a set of questions is generated and for each question a

p. 30 of 199



metric is associated (e.g., what is the time required to the
find the changes that need to be done in order to analyze
XYZ change in the requirements?). Finally, from these metrics
the architectures average response to an evolution request is
evaluated; which in turn may give some insight about the
evolvability of the current architecture.

IV. EVOLVABILITY AND OTHER QUALITY ATTRIBUTES

This section of the paper tries to depict where evolvability
stands with respect to other quality attributes that deal with
”changes” in a system and tries to distinguish these attributes
from evolvability. In the literature, most of the time the term
evolution is used with maintenance, and evolvability is used
to mean maintainability or modifiability. This is because the
changes that evolution refers to are not identified and since,
in this paper, we identify these changes, we should also
provide means of distinguishing evolvability from other quality
attributes. Before going to the further details of comparing
these attributes, we first present their definitions.

The ISO/IEC 9216 standard [10] defines maintainability as
the set of attributes that have a bearing on the effort needed
to make specified modifications. These modifications include
corrections, improvements and adaptations to the changing
environment [7]. Modifiability is defined as the ability to make
changes quickly and cost effectively [10]. These changes in-
clude addition of new requirements (extensibility), deleting un-
wanted capabilities and portability. Evans and Marciniak [15]
define adaptability as the ease with which software satisfies
differing system constraints and user needs.

As it can be seen from the definitions of these quality
attributes, it is difficult to distinguish evolvability from them;
however, by considering the laws of evolution the difference
between them becomes clearer. The tasks included in adapt-
ability and maintainability, for example, disobey the increasing
complexity law, since when a system is corrected or adapted
to another environment, the complexity of the system does
not change, although the complexity of these operations on
the system may be too high.

We think that the definition given for modifiability is too
broad; the changes included for adaptability and maintainabil-
ity can easily be fitted to modifiability. This is also true with
our definition of evolvability. For this, we view modifiability
as a superset of all quality attributes that deal with changes in
a system. Then one can easily say that a modifiable system
is also evolvable; we think further attention has to be paid in
order to understand the relation between the evolvability and
modifiability quality attributes.

V. CONCLUSIONS AND FUTURE WORK

In the literature, most of the research on evolvability focuses
on source code level evolvability analysis; though, we believe
that evolvability should be considered while designing the
initial system. For this, we will develop techniques that can
evaluate architectures with respect to evolvability. In order to
achieve this goal, we first need to define evolvability and in
this paper we present our definition of evolvability.

Our next step, towards pursuing the goal of finding tech-
niques that can evaluate architectures with respect to evolv-
ability, is identifying the operations involved in evolvability
and conducting empirical analysis on these operations. To do
so, we are going to use the architecture of a system that has
been evolving for years. This empirical analysis study is going
to be similar to the ones conducted on the source code level;
however, it is going to allow us to understand the evolution at
the architecture level. For example, from this study we may
see a relationship for the number of addition operations done
over time; we can use this relationship to estimate how many
component additions will be made in the next release.

Then we are going to focus on identifying metrics for
evolvability so that we can reason about the evolvability of
an architecture. For example, let us assume that the number
of connections to a component is our metric for evolvability.
Obviously, removing or making additions to a component with
many connections would be very costly. Furthermore, if the
architecture is composed of such components then the system
would not be very evolvable.

REFERENCES

[1] C. F. Kemerer and S. Slaughter: An Empirical Approach to Studying
Software Evolution. IEEE Trans SE 25(4) pp 493-509 (1999).

[2] C. Ler, D. Rosenblum, and A. van der Hoek: The Evolution of Soft-
ware Evolvability, International Workshop on the Principles of Software
Evolution: 131-134 (2001)

[3] L.A. Belady and M.M. Lehman: A model of large program development,
IBM Sys. J. vol. 15, no. 1, pp. 225-252 (1976).

[4] S. Cook, H. Ji and R. Harrison: Software evolution and evolvability.
Technical Report, University of Reading, UK (2000)

[5] M.M. Lehman and L.A. Belady, Program evolution - processes of
software change. London: Academic Press (1985).

[6] K. H. Bennet, V. T. Rajlich: Software Maintenance and Evolution: a
Roadmap. International Conference on Software Engineering. Proceed-
ings of the Conference on the Future of Software engineering, pp. 73-87
(2000).

[7] L. Dobrica, E. Niemel: A Survey on Software Architecture Analysis
Methods. IEEE Trans. Software Eng. 28(7): 638-653 (2002).

[8] M M Lehman, J F Ramil and G Kahen, Evolution as a Noun and
Evolution as a Verb, Workshop on Software and Organisation Co-
evolution, Imp. Col., London (2000).

[9] IEEE Standard 1061-1992, Standard for Software Quality Metrics
Methodology, New York: Institute of Electrical and Electronics Engineers
(1992).

[10] ISO/IEC91Int’l Organization of Standardisation and Int’l Electrotechni-
cal Commission, Information Technology and Software Product Evalua-
tion and Quality Characteristics and Guidelines for Their Use, ISO/IEC
9216, (1991).

[11] R. Kazman, L. Bass, G. Abowd, and M. Webb: SAAM: A Method for
Analyzing the Properties of Software Architectures. Proc. 16th Int’l Conf.
Software Eng., pp. 81-90 (1994).

[12] R. Kazman, M. Klein, M. Barbacci, H. Lipson, T. Longstaff, and S.J.
Carriere: The Architecture Tradeoff Analysis Method. Proc. Fourth Int’l
Conf. Eng. of Complex Computer Systems (1998).

[13] V. R. Basili, G. Caldiera and H. D. Rombach: Goal Question Metric
Paradigm. In: ”Encyclopedia of Software Engineering”, Volume 1, pp.
528-532, (1994).

[14] D.E. Perry: Dimensions of Software Evolution. Procedings Conf. Soft-
ware Maintenance, (1994).

[15] W, M. Evans and J. Marciniak: Software Quality Assurance and Man-
agement. New York, NY: John Wiley & Sons, Inc. (1987).

[16] T. Mens,J. Buckley,M. Zenger and A. Rashid: Towards a Taxonomy of
Software Evolution. International Workshop on Unanticipated Software
Evolution, Warsaw, Poland (2003).

p. 31 of 199




