
BUSINESS PROCESS VISUALIZATION –
USE CASES, CHALLENGES, SOLUTIONS∗

Stefanie Rinderle1, Ralph Bobrik1, Manfred Reichert2 and Thomas Bauer3
1Dept. DBIS, University of Ulm, Germany, {rinderle, bobrik}@informatik.uni-ulm.de

2Information Systems Group, University of Twente, The Netherlands, m.u.reichert@cs.utwente.nl
3DaimlerChrysler Research Center Ulm, Germany, thomas.tb.bauer@daimlerchrysler.com

Keywords: Business Processes Visualization.

Abstract: The proper visualization and monitoring of their (ongoing) business processes is crucial for any enterprise.
Thus a broad spectrum of processes has to be visualized ranging from simple, short–running processes to
complex long–running ones (consisting of up to hundreds of activities). In any case, users shall be able to
quickly understand the logic behind a process and to get a quick overview of related tasks. One practical
problem arises when different fragments of a business process are scattered over several systems where they
are often modeled using different process meta models (e.g., High–Level Petri Nets). The challenge is to find
an integrated and user–friendly visualization for these business processes. In this paper we discover use cases
relevant in this context. Since existing graph layout approaches have focused on general graph drawing so
far we further develop a specific approach for layouting business process graphs. The work presented in this
paper is embedded within a larger project (Proviado) on the visualization of automotive processes.

1 INTRODUCTION

The proper visualization and monitoring of their (on-
going) business processes is crucial for any enterprise.
Thus a broad spectrum of processes has to be visual-
ized ranging from simple, short-running workflows to
complex long-running processes (consisting of hun-
dreds of activities). In the automotive sector, for ex-
ample, this includes e-procurement and change man-
agement processes whereas the latter may be long-
running car engineering or release management pro-
cesses. In any case, users shall be able to quickly un-
derstand the logic behind a process and to get a quick
overview of their tasks. In practice, business process
data are often scattered over several application sys-
tems; i.e., a business process is splitted into differ-
ent more or less explicit fragments which are kept
and executed within different systems (Bobrik et al.,
2005). One consequence is that the definition and
control of these fragments are often based on different
process meta models1. One first important challenge

∗This work was conducted during a post doc stay at the
University of Twente which was fundend and supported by
DaimlerChrysler Research Ulm, Germany.

1A meta model defines the constructs available for mod-
eling the process. Examples include Petri Nets, Activity

arising from the visualization of business processes
is to extract data about process fragments from the
different source systems and to provide an integrated
model of the overall process. Further if business pro-
cess data is completely available the challenge is to
find a user-friendly layout of that process. Business
processes are often very complex as we have learned
from case studies in the automotive domain (Bobrik
et al., 2005). A typical process consists of dozens
up to hundreds of activities and comprises numerous
additional information (e.g., about process data ele-
ments, actors, and resources, cf. Fig. 2).

So far a lot of layout approaches for all kinds of
graphs (e.g., trees, DAGs, planar graphs, etc.) have
been presented in the literature (Eades et al., 1993;
Sugiyama, 2002). There are few approaches deal-
ing with the layout of business process graphs as well
(Fleischer and Hirsch, 2001; Kikusts and Rucevskis,
1995; Six and Tollis, 2002; Wittenburg and Weitz-
man, 1996a; Wittenburg and Weitzman, 1996b; Yang
et al., 2004). However, to our best knowledge, most
of them do not exploit the semantics of business pro-
cess graphs and only deal with graphs consisting of
untyped nodes and edges, i.e., graph nodes (edges)
cannot be distinguished. Fig. 1 depicts an example

Diagrams, and Statecharts.

204

Figure 1: Change Management Process with Untyped Nodes and Edges.

for this case.

However, untyped nodes and edges do not reflect
the “nature” of business process graphs. Usually, re-
spective process graphs comprise nodes with (par-
tially) different semantics. This includes, for exam-
ple, nodes representing activities (i.e., process steps)
and nodes representing process data elements. Very
similar, edges of different type and semantics (e.g.,
control flow and data flow edges) have to be distin-
guished. Consider the process depicted in Fig. 2:
Activity nodes are represented as rectangles whereas
data element nodes are depicted as trapezoids. This
graphical distinction reflects the different roles these
elements possess with respect to the overall business
process. The challenge is to exploit such semantic in-
formation in order to build up an adequate layout for
business process graphs.

However, drawing business process graphs is not a
one-time task. In fact, the layout of business process
graphs is highly dynamic. As an example consider
the dynamic generation of business process views.
Such views on process graphs may vary from user
to user (Bobrik et al., 2005). Furthermore, especially
long-running business processes frequently have to be
changed due to several reasons (e.g., to adapt to new
laws or process optimizations) (Rinderle et al., 2004;
Reichert and Dadam, 1998). As a consequence the
process graph layouts have to be adapted accordingly.
In this context we need adequate approaches for re-
layouting business process graphs after changes. This
imposes several challenges including the provision of
automatic and efficient algorithms for maintaining the
user’s “mental map” when a process change is per-
formed.

In this paper we summarize and describe several
use cases. We start with the layouting of business
processes graphs. Then we focus on relayouting busi-
ness process graphs after dynamic changes. Thereby
one goal is to maintain the user’s mental map of the
process. After this, we consider the visualization and
layouting of process instances (i.e., concrete business
cases created from a business process model). Fi-
nally, we shortly discuss how to display organiza-
tional structures of enterprises and end up with the
definition of certain views on business processes (e.g.,

only displaying the steps worked on by people of a
certain group).

Our approach exploits knowledge about the seman-
tics of graph nodes and edges in order to find an ad-
equate process layout. We proceed in different steps
and allow users to specify which process constructs
shall be prioritized most when layouting a process
graph. As we know from our case studies, in most
cases, users want to start with layouting the control
flow (i.e., the work tasks and the order in which they
are carried out). Therefore, we illustrate our approach
for layouting control flow skeletons. In general, how-
ever, starting with the layouting of other process per-
spectives (e.g., data flow) is conceivable as well. For
the control flow layouts we impose several esthetic
criteria (e.g., mimizing the number of edge cross-
ings (Purchase, 2002)) which we meet by applying
a method based on preprocessing and permutation. In
order to complete the process graph layout additional
steps are discussed which show how to enhance the
control flow skeleton layout with the other process el-
ements (e.g., process data elements or actors nodes).

In Section 2 we present use cases for visualizing
business process graphs. Related work is discussed in
Section 3. Section 4 presents our approach for lay-
outing business process graphs. We close with a sum-
mary and an outlook.

2 USE CASES

In order to come to a sophisticated approach for busi-
ness process graph visualization we first have to con-
sider several use cases.

2.1 Business Process Graphs

The basis for business process visualization is to find
an adequate approach for layouting process graphs.
As mentioned we may be confronted with process
fragments scattered over different information sys-
tems and being based on different process meta mod-
els. Actually an integrated and understandable visual-
ization of the whole business process is desired. In or-
der to achieve this we have to extract process knowl-

BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS

205

Activity Actor Data Element Control flow
edge

Synchronization
edge

Data flow
edge

Initiate change request Determine CR manager Instruct Expertise generate expertise (CAD)

generate expertise (car body)

generate expertise (motor)

generate expertise request evaluation

provide evaluation (plan)

provide evaluation (purchase)

provide evaluation (quality)

request comments

provide comments (plan)

provide comments (purchase)

provide comments (quality)

approve CR start realization (c) realize CR (construction) start realization(p)

conclude CR

CR initiator contact person CR manager

motor engineer

electronic engineer

car body engineer development chief CR manager planning expert

purchase expert

quality expert

CR manager

quality expert

planning expert

purchase expert

CR approval board CR manager construction engineer CR manager

realize CR (production)

production engineer CR manager

change request

expertise (car body)

expertise (electronic)

expertise (motor)

expertise

evaluation (planning)

evaluation (purchase)

evaluation (quality)

evaluation

Figure 2: Change Management Process with Typed Nodes and Edges (Simplified).

edge from different logfiles and application systems
and must then transfer the obtained process fragments
into the notion of a canonical process meta model.
Doing so one has to preserve potentially existing pro-
cess meta model properties (e.g., information about
the structuring of related process models) and exist-
ing layout information. This step is then followed by
layouting the whole business process using the graph-
ical notion of the canonical meta model. Thereby the
challenges are to (1) find an algorithm for layouting
business processes graphs, (2) exploit the particular
semantics of the different process elements, and (3)
use available meta model properties and already ex-
isting layout information in order to optimize the pro-
cess layout algorithm

2.2 Dynamic Changes

Business processes change over time (e.g., by
adding/deleting process steps or dependencies be-
tween them) (Rinderle et al., 2004; Reichert and
Dadam, 1998). There are several approaches sup-
porting such changes (Rinderle et al., 2004). When
changing the structure (or logic) of a business process
it is important that this is also reflected by adapting
the layout of the business process graph accordingly.
The challenge is to avoid that users lose their mental
map when changing the process. Note that this could
be the case if we relayout the process “from scratch”
as depicted in Fig. 3.

The problem of maintaining the mental map when
conducting changes of the process logic has been rec-
ognized in the literature and different algorithms have
been presented in this context (e.g., Force-Scan or in-
cremental algorithms (Yang et al., 2004; Diguglielmo
et al., 2002)). However, all these approaches have
been applied to graphs with untyped nodes so far. For
this reason, it is also very interesting to analyze their
applicability on business processes.

2.3 Business Process Instances

Based on a process model, new process instances can
be created and executed during runtime. Since pro-

cess instances represent concrete executions of the
process model, the latter have to be enriched with
state information (e.g., node and edge markings) in
order to reflect the respective instances. The chal-
lenge is to display business process models together
with additional information (e.g., state markings or
instance-specific changes). An orthogonal aspect is
the way of visualizing process instances. They can be
displayed in a static way (displaying the instance and
its current state) or by using a dynamic layout (i.e., by
replaying the previous execution history of respective
instances along a time line).

2.4 Business Process Views

In practice process graphs are often very big and com-
plex (“wallpapers”). Thus users are overwhelmed
with information. Therefore a challenge for the vi-
sualization of business process graphs is to be able to
(dynamically) build up (dynamic) views on business
process graphs, i.e., to choose process objects along
certain criteria and to compose them in an appropri-
ate way. Criteria based on which process views can
be built may be (1) object types (we only display ob-
jects of a certain type, e.g., only nodes of type “activ-
ity” are displayed whereas nodes of types “data ele-
ment” or “actor” are hidden), (2) static attribute val-
ues (e.g., only manual activities are displayed whereas
automatic activities are hidden), and (3) dynamic at-
tribute values (e.g., displaying only those activities
which have not been worked on so far).

This technique is called graph reduction (Sadiq and
Orlowska, 2000). Another approach is graph aggre-
gation (Liu and Shen, 2003). Aggregation means to
nest certain objects (e.g., activities) to a complex ob-
ject (e.g., activity with underlying subprocess) and to
adapt activity attributes accordingly.

In order to provide a suitable framework for busi-
ness process layout it is extremely important to deeply
understand all these use cases and to provide appro-
priate approaches. In this paper we focus on the first
use case (i.e., business process layout) to build up the
basis for the other use cases.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

206

Intended Change:

Graph after Relayout:

Insert new step

Figure 3: Overall Approach for Layouting Business Processes.

3 RELATED WORK

There are a lot of approaches dealing with graph lay-
out. In general, graph classes having certain prop-
erties are identified and layout algorithms based on
these properties are provided. These graph classes
and the respective algorithms comprise trees (Eades
et al., 1993), directed (acyclic) graphs (Sugiyama,
2002), planar graphs (de Fraysseix et al., 1988), and
series-parallel graphs (Hong et al., 1998). In the lit-
erature there are also approaches dealing with gen-
eral graphs, e.g., Heavy Duty Preprocessing, Spring
Embedder (Fruchterman and Reingold, 1991; Frick
et al., 1994), etc., There are also a few approaches
dealing with layouting process graphs (Six and Tol-
lis, 2002; Yang et al., 2004; Diguglielmo et al.,
2002). In (Six and Tollis, 2002) an approach is in-
troduced which determines a layout of the process
in linear time using existing partitioning information
(e.g., swimlanes). Yang et al (Yang et al., 2004) ad-
dress several problems described in connection with
the above use cases. In detail, they propose the so
called force scan algorithm which maintains the men-
tal map after changes. Furthermore the authors sug-
gest to use the fisheye technique in order to overcome
the “wallpaper” problem. (Diguglielmo et al., 2002)
show how their tool jViews contributes to layout pro-
cess graphs. Using the incremental mode the mental
map of process graphs is maintained after changes. It

is also possible to impose a partitioning on the graphs
(e.g., swimlanes). An approach using a 3D represen-
tation of business processes including process analyis
results (e.g., throughput) is introduced in (Schönhage
et al., 2000).

Though all of these approaches are very inspiring
they neglect the different semantics of the nodes and
edges within a business process. Therefore we will
make use of existing ideas and theoretical results but
combine and extend them towards an approach es-
pecially tailored for the layout of business process
graphs. Doing so might open a new interesting ap-
plication area for general graph drawing approaches.

4 BUSINESS PROCESS LAYOUT

In this section we present our approach for layout-
ing business process graphs which has been imple-
mented in the context the Proviado project on busi-
ness process visualization2. First of all, we intro-
duce a (canonical) process meta model describing the
different constructs which can be used for modeling
business processes. In order to provide a complete
formal basis for our further considerations we sim-
plify the meta model to some extend.

2The partners are DaimlerChrysler, University of Ulm,
and University of Twente.

BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS

207

Initiate change request Determine CR manager Instruct Expertise generate expertise (CAD)

generate expertise (car body)

generate expertise (motor)

CR initiator contact person CR manager

motor engineer

electronic engineer

car body engineer

change request

expertise (car body)

expertise (electronic)

expertise (motor)

Activity

Actor
Assignment

Data Element

Control flow
Edge

Synchronization
Edge
Data flow
Edge

StructureNode

Figure 4: Overall Approach for Layouting Business Processes.

4.1 Fundamentals

Within the canonical process meta model CPM we
specify A as the total set of all process activities, D
as the total set of process data elements, and W as
the total set of all actors involved in the execution of
any process model. Based on modeling elements of-
fered by CPM new process models can be defined
(e.g., order procurement process in an enterprise or
treatment processes in a hospital).

Definition 1 (Process Model) A tuple PM = (A, D,
W, AT, CtrlE, CT, DataE, WorkE) is called a process
model with

• A ⊂ A is the set of activities, D ⊂ D is the set of data
elements, and W ⊂ W is the set of actors involved in the
execution of instances based on PM

• AT denotes the function which assigns to each activity
from A a particular type, i.e., AT: A �→ {Activity,
StructureNode, Start, End}; thereby struc-
ture nodes are used for structuring purposes (e.g., as split
or join nodes).

• CtrlE ⊂ A × A denotes the set of control edges in PM. A
control edge
a → b denotes that activity a must be completed before
activity b can start.

• CT denotes the function which maps control edges from
CtrlE onto their particular type, i.e., CT: CtrlE �→
{Control, Sync, Loop}

• DataE ⊂ (A × D) ∪ (D × A) denotes the set of data
edges in PM; thereby D × A (A × D) describes a read
(write) access

• WorkE ⊂ W × A denotes the set of actor edges in PM; a
actor edge w → a denotes that activity a is worked on by
actor w.

An activity a ∈ A denotes a particular work
task within a process model PM, e.g., Instruct
Expertise (cf. Fig. 4). The direct successor of
this activity has activity type StructureNode (i.e.,
it is not associated with a specific work task). Since
this node has several outgoing control edges e1, ..., en

with CT(ei) = Control (i = 1, ..., n) it acts as a
split node of an alternate or parallel branching. Within

an alternate branching one branch is selected for ex-
ecution during runtime (e.g., based on process data)
whereas for parallel branchings all branches are exe-
cuted concurrently. Control edges describe the execu-
tion order between activities. They can be further dis-
tinguished into basic control edges, synchronization
edges, and loop edges. Synchronization edges deter-
mine the order of activities within different branches
of a parallel branching. Cyclic process structures can
be described by using loop backward edges. Besides
these control flow constructs a process model con-
tains additional elements, e.g., data elements (e.g.,
change request in Fig. 4) and data edges. Read
(write) data edges describe which data elements are
read (written) by which activity. In Fig. 4, for ex-
ample, data element change request is written
by activity change request and read by activity
generate expertise (CAD). Finally, we de-
scribe which activity is worked on by which actors
by using actor assignments WorkE (e.g., actor car
body engineer works on activity Instruct
Expertise).

A process model can be (graphically) represented
as a process graph for which we want to find a user-
friendly and process-adequate layout in the following.
The idea is to start with layouting a certain projec-
tion of the process consisting of core nodes and edges.
This layout is then stepwisely enhanced with the re-
maining satellite nodes and edges. In order to keep
the layout configurable we allow the user to specify
the sets of core and satellite objects.

Definition 2 (Core and Satellite Objects) Let PM =
(A, D, W, AT, CtrlE, CT, DataE, WorkE) be a process model.
Let V := (A ∪ D ∪ W) and E := (CtrlE ∪ DataE ∪ WorkE).
Then PG = (V, E) denotes the process graph. Based on PG
the user can specify the set of core nodes CN by choosing
one of the sets A, D, and W. Then the set of core edges CE
and the set of satellite nodes (edges) SN (SE) can be derived
accordingly (i.e., CN = A =⇒ CE = CtrlE, CN = D =⇒ CE
= DataE, CN = W =⇒ CE = WorkE, SN:= V \ CN, SE:=
E \ CE).

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

208

To achieve structurally correct process models the
associated process graph must obey certain correct-
ness constraints. We define projections on process
graphs which are used to introduce correctness con-
straints afterwards.

Definition 3 (Process Graph and Projections) Let
PM = (A, D, W, AT, CtrlE, CT, DataE, WorkE) be a process
model and let PG = (V, E) be the associated process graph
based on which we define different projections:

• PGCF := (VCF , ECF) with VCF = A and ECF = {e
∈ CtrlE | CT(e) = Control} denotes the projection on
activities and control edges of type Control.

• PGSync := (VCF , ESync) with ESync:= ECF ∪ {e ∈
CtrlE | CT(e) = Sync} denotes the projection on PGCF

plus sync edges.
• PGLoop := (VCF , ELoop) with ELoop:= ESync ∪ {e

∈ CtrlE | CT(e) = Loop} denotes the projection on
PGSync plus loop edges. We denote PGLoop as control
flow skeleton.

A process graph must adhere the following con-
straints in order to represent a structurally correct pro-
cess model (e.g., avoiding deadlock causing cycles).

Definition 4 (Correctness of a Process Graph) Let
PG = (V, E) be a process graph and PGCF := (VCF , ECF),
PGSync := (VCF , ESync), PGLoop:= (VCF , ELoop) be
the projections as defined in Def. 3. Then PG is a correct
process graph iff the following constraints hold:

1. Unique Start and End Node:
∃̇ s ∈ VCF : 	 ∃ e = (v’, s) with CT(e) ∈ {Control,
Sync} ∈ E, v’ ∈ VCF ∧
∃̇ e ∈ VCF : 	 ∃ e = (e, v”) ∈ E with CT(e) ∈
{Control,Sync}, v” ∈ VCF ∧ s 	= e

2. Connectivity:
PGCF is connected ∧

∀s ∈ V \ VCF : (∃e = (s, v) ∈ E ∨ ∃e = (v, s) ∈
E), v ∈ VCF

3. Synchronization: Control edges between activities from
different parallel branches are only of type Sync, for-
mally:
∀e = (a1, a2) ∈ E with a1, a2 ∈ VCF ∧ a1 	∈
(succ*(PG, a2) ∪ pred*(PG, a2)): CT(e) = Sync
where
• succ*(PG, n):= succ(PG, n) ∨ succ(PG, succ*(PG, n))
with
succ(PG, n):={n’ ∈ VCF | ∃ e = (n, n’) ∈ E with CT(e)
∈ {Control, Sync}}
• pred*(PG, n):= pred(PG, n) ∨ pred(PG, pred*(PG, n))
with
with pred(PG, n):={n’ ∈ VCF | ∃ e = (n’, n) ∈ E with
CT(e) ∈ {Control, Sync}}

4. Deadlockfree: PGSync is an acyclic graph, i.e., the
use of control and sync edges must not lead to deadlock-
causing cycles.

After introducing the necessary fundamentals we
now describe our approach for layouting business pro-
cess graphs. Generally, users can configure which
nodes and edges are considered as core and which are

considered as satellite objects. This influences the re-
sulting process graph layout. As we know from our
practical studies in most cases users prioritize an ad-
equate layout of the control flow skeleton (i.e., the
work tasks themselves and the order in which they
are to be carried out). For this we select the activi-
ties as the set of core nodes (i.e., CN = A). Thus
the set of core edges contains the control edges (i.e.,
CE = CtrlE). Accordingly, the set of satellite nodes
comprises data and actor nodes (i.e., SN = D ∪ W)
and the set of satellite edges contains data and actor
edges (i.e., SE = DataE ∪WorkE). Due to lack of
space in this paper we present our approach for focus-
ing on the control flow first and enhancing it with data
and actor elements in the following. Nevertheless,
this approach can be transferred to other methodolo-
gies (e.g., starting with the data flow graph) as well.

4.2 On Layouting Process Graphs

As discussed above often an appropriate layout of the
control flow skeleton is fundamental for the process
graph layout. Therefore we start with layouting the
control flow skeleton followed by the placement of
satellite objects. Let PG = (V, E) be a process graph
and CN , CE, SN , SE be the set of core and satel-
lite nodes (edges) as specified by the user (in the fol-
lowing: CN = A, CE = CtrlE, SN = D ∪ A,
SE = DataE ∪ WorkE). We start with finding an
adequate layout of the control flow skeleton PGLoop.
Adequate means (at least) to focus on the control flow
and to minimize edge crossings (Purchase, 2002). Be-
sides these two most important aspects other esthetic
criteria exist (e.g., mimizing the layout size). Due to
lack of space we omit further details here.

First of all, comparable to heavy duty preprocess-
ing approaches, we determine PGCF (cf. Def. 3).
We can show that PGCF (together with correctness
constraints 1 – 4) constitutes a series-parallel graph,
i.e., it can be constructed by serial and parallel con-
struction. This construction is reflected by the struc-
ture tree (Hong et al., 1998). For example, Fig. 5
shows the structure tree for an abstract process. Since
PGCF is series-parallel (and therefore planar) it can
be drawn without any edge crossings (e.g., using
the Sugiyama algorithm with Barycenter crossing re-
duction and coordinate assignment using (Sugiyama,
2002; Brandes and Köpf, 2002)).

However, if we also consider synchronization
edges (graph projection PGSync) edge crossings may
occur (cf. Fig. 5), i.e., crossings between sync edges
or crossings between sync and control edges of type
Control. As it can be seen from Fig. 5 the number
of (sync) edge crossings depends on the aligment of
the associated parallel branches. Therefore our aim
is to find an alignment of the parallel branches for
which the number of (sync) edge crossings becomes

BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS

209

Abstract Process PGSync: Structure Tree:

1

2

3

4

5

6

7

8

9

P

S

1

2

P

S S

S

6

9

2

3

S

2

4

4

5

5

6

3

6

S

S

1

7

7

8

6

8

1

2

3

4

5

6

7

8

9

Abstract Process PG’Sync (After Permutation):

permutation

Figure 5: PGCF with Associated Structure Tree.

minimal. In the following we use the correlation be-
tween the order of branches in the structure tree and
the alignment of the parallel branches in PGCF . By
permuting the order of the branches in the structure
tree we obtain the different possible alignments of the
parallel branches in PGCF . Since we must not change
the original order of working tasks we only allow to
permute the order ot the siblings of parallel composi-
tion nodes (cf. Fig. 5).

Among all permutations the layout with minimal
number of edge crossings can be found. In gen-
eral, routing of loop edges can be handled analo-
gously. However, the evaluation of the resulting lay-
out with respect to the number of edge crossings be-
comes more complex since we are confronted with
different types of edge crossings. Therefore we need
a more sophisticated evaluation metrics minimizing
the number crosssync of sync edge crossings plus
the number crossloop of loop edge crossings where
users can weight the numbers with priorization fac-
tors ds for sync edges and dl for loop edges (i.e.,
min(ds ∗ crosssync + dl ∗ crossloop)).

4.3 Satellite Objects

After determining the layout for PGLoop the control
flow skeleton is enhanced with information about data
flow and actor assignments. This remaining informa-
tion is captured by the sets of satellite nodes and edges
(i.e., SN = D∪W and SE = DataE ∪ WorkE). There
are different possibilities for integrating the satellite
objects into the existing control flow skeleton layout.
We sketch them and describe which factors may in-
fluence the decision for one of these possibilities as

well as their advantages and drawbacks. Basically,
we distinguish between a local alignment and a global
alignment of satellite objects. Local alignment means
that the satellite objects belonging to a work task are
aligned in the “surrounding” of the work task what
may lead to duplication of satellite objects. Choosing
global alignment each object is unique und connected
to one ore more activities by the respective edges.
Local Alignment: If we choose local alignment the
satellite objects associated with a certain activity are
aligned “around” this activity. Then the activity to-
gether with its satellite objects can be seen as one
(complex) activity. Inserting this complex activity
into the control flow skeleton can be achieved by
shifting the other activities in order to obtain the nec-
essary space. This can be done, e.g., with the Force-
Scan algorithm for maintaining the mental map after
changes (Yang et al., 2004). The advantage of local
alignment is that the number of edge crossings is not
increased by the alignment of the satellite objects. A
possible drawback is that users may loose the process
overview or the correlation between the different du-
plicates of satellite objects is not visible.
Global Alignment: The first possibility is that users
manually align satellite objects, i.e., they take the con-
trol flow skeleton layout and place the satellite objects
together with the respective edges manually around
the skeleton, Then satellite objects, e.g., data ele-
ments, are placed “around” the skeleton. Reasons for
this approach may be that there are only few satellite
objects or the user prefers a special alignment. An-
other approach is to treat the alignment of satellite
objects as dynamic changes and to apply one of the
algorithms proposed in the literature, e.g., the Force-

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

210

Scan algorithm (Yang et al., 2004).
One disadvantage of all global approaches is that

the number of edge crossings is potentially increased.
To overcome this limitation the insertion of the satel-
lite edges (i.e., data flow or work assignment edges)
could be already integrated in the permutation step in-
troduced in Section 4.2.

5 SUMMARY AND OUTLOOK

We have discussed several use cases related to
the visualization and layout of business process
graphs which have been identified within the Provi-
ado project (process visualisation in the automotive
domain) in cooperation with DaimlerChrysler Re-
search Ulm. Furthermore, a layout approach which
exploits the different semantics of the nodes and
edges of a process graph has been introduced.

This approach can be improved by using already
existing information (e.g., knowledge about process
meta model properties or existing layout information)
within the algorithm. In our approach the following
meta model properties could be useful for a respec-
tive improvement: We start with layouting the series-
parallel control flow skeleton of a business process.
For certain process meta models like BPEL4WS or
WSM Nets (Rinderle et al., 2004) it can be shown
that they are block-structured, i.e., they are not only
series-parallel but possess a nested structure (i.e., for
each split node a unique join node can be found and
vice versa). If we know that the business process
was modeled in a block-structured way we can use
this information in constructing the series-parallel (or
block-structured) control flow skeleton. If we know
that the process was modeled according to an acyclic
process meta model, e.g., Activity Nets as used in
IBM Websphere products, we can use this informa-
tion to abstain from the last step of inserting the loop
edges into the directed ayclic control flow skeleton.

The current implementation of our approach com-
prises a visualization component for process graphs
based on the scalable vector graphic (svg) format.
Furthermore we plan to integrate this component
within our adaptive process management system
ADEPT2. Based on this we can, for example, eval-
uate approaches for maintaining the mental map after
process changes (Rinderle et al., 2004).

REFERENCES

Bobrik, R., Reichert, M., and Bauer, T. (2005). Require-
ments for the visualization of system-spanning busi-
ness processes. In DEXA’05, pages 948–954.

Brandes, U. and Köpf, B. (2002). Fast and simple horizontal
coordinate assignment. In GD01.

de Fraysseix, H., Pach, J., and Pollack, R. (1988). Small
sets supporting fary embeddings of planar graphs. In
STOC’88, pages 426–433.

Diguglielmo, G., Durocher, E., Kaplan, P., Sander, G., and
Vasiliu, A. (2002). Graph layout for workflow appli-
cations with ILOG jViews. In Proc. GD02.

Eades, P., Lin, T., and Lin, X. (1993). Two tree drawing
conventions. Computional Geometry & Applications,
3(2):133–153.

Fleischer, R. and Hirsch, C. (2001). Graph drawing and
its applications. In Grawing Graphs: Methods and
Models, pages 1–21.

Frick, A., Ludwig, A., and Mehldau, H. (1994). A fast adap-
tive layout algorithm for undirected graphs. In GD94.

Fruchterman, T. and Reingold, E. (1991). Graph drawing
by force-directed placement. Software Practice and
Experience, 21(11):1129–1164.

Hong, S., Eades, P., Quigley, A., and Lee, S. (1998). Draw-
ing algorithms for series-parallel digraphs in two and
three dimensions. In Proc. GD98, pages 198–209.

Kikusts, P. and Rucevskis, P. (1995). Layout algorithms
of graph-like diagrams for GRADE windows graphic
editors. In Proc. GD95, pages 361–364.

Liu, D. and Shen, M. (2003). Workflow modeling for vir-
tual processes: An order–preserving process–view ap-
proach. Information Systems, 28(6):505–532.

Purchase, H. (2002). Metrics for graph drawing aesthetics.
Visual Languages and Computing, 13:501–516.

Reichert, M. and Dadam, P. (1998). ADEPTflex - sup-
porting dynamic changes of workflows without losing
control. JIIS, 10(2):93–129.

Rinderle, S., Reichert, M., and Dadam, P. (2004). Flexi-
ble support of team processes by adaptive workflow
systems. DPD, 16(1):91–116.

Sadiq, W. and Orlowska, M. (2000). Analyzing process
models using graph reduction techniques. Information
Systems, 25(2):117–134.

Schönhage, B., van Ballegooij, A., and Elliens, A. (2000).
3D gadgets for business process visualization - a case
study. In Web3D – VRML 2000, pages 131–138.

Six, J. and Tollis, I. (2002). Automated visualization of
process diagrams. In Proc. GD01, pages 45–59.

Sugiyama, K. (2002). Graph Drawing and Applications
for Software and Knowledge Engineering. Series on
Software Eng. & Knowledge Eng. World Scientific.

Wittenburg, K. and Weitzman, L. (1996a). Process visual-
ization in ShowBiz. In Proc. GD96.

Wittenburg, K. and Weitzman, L. (1996b). Relational gram-
mars: Theory and practice in a visual language inter-
face for process modeling. In In Proc. Workshop on
Theory of Visual Languages, Gubbio, Italy.

Yang, Y., Lai, W., Shen, J., Huang, X., J.Yan, and Setiawa,
L. (2004). Effective visualisation of workflow enact-
ment. In APWeb’04, pages 794–803.

BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS

211

