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Abstract.  The incorporation of multithreading in Java may be considered a
significant part of the Java language, because it provides rudimentary facilities
for concurrent programming. However, we belief that the use of channels is a
fundamental concept for concurrent programming. The channel approach as
described in this paper is a realization of a systematic design method for
concurrent programming in Java based on the CSP paradigm. CSP requires the
availability of a Channel class and the addition of composition constructs for
sequential, parallel and alternative processes. The Channel class and the
constructs have been implemented in Java in compliance with the definitions in
CSP. As a result, implementing communication between processes is facilitated,
enabling the programmer to avoid deadlock more easily, and freeing the
programmer from synchronization and scheduling constructs. The use of the
Channel class and the additional constructs is illustrated in a simple application.

1  Introduction

The programming language Java has multithreading capabilities for concurrent
programming. To provide synchronization between asynchronously running threads, the
Java language and runtime system uses monitors which are described in (Hoare, 1974).
Clearly, within Java the concept of “Communicating Sequential Processes”, CSP (Hoare,
1978) has not implemented. In CSP channels and composition constructs are described to
provide well-behaved communication between processes (i.e. threads). Instead, Java
provides general concepts for implementing communication constructs that are as flexible as
possible. This kind of freedom allows various kinds of communication facilities to be used.
We will discuss these various communication facilities that are available and will show that
the use of channels may result in a robust and structured approach for Communicating Java
Threads (CJT).

We have developed a Channel class and classes for the sequential, parallel and
alternative communication constructs. These classes not only result in better structured



programs, but they are also founded on the theoretical basis of CSP (Hoare, 1985). As we
speak of a channel (in lower-case) we refer to an instance of its Channel class (with a
capital) which describes its definition.

Modern computers use highly integrated microprocessors, which are typically based
on the Von Neumann Model of Computation. This model is characterized by the fact that
instructions are executed successively. The advantage of writing sequential programs is that
the code can be optimized for full speed execution. As a result, many programming
languages inherit this single flow of control that forces sequential programming.

Developments in software architectures, such as Structured Design Methods (Ward
and Mellor, 1985;Yourdon, 1989) and Object-Orientation (Rumbaugh et al., 1991), have
shifted their focus to software architectures that emphasize the way in which human beings
think about software, away from the manner in which the software is executed. Object
oriented designs result in system descriptions in which every object has some task that is
independent of what other objects do. In object oriented implementations it is customary to
isolate the aspects of its task inside an object. One thing in this process is rather unnatural:
when analysis and design models are taken into consideration, the notion of parallelism is
thrown away. What looked like a parallel solution is flattened into a single flow of control.
Object oriented programming languages describe this in terms of sequential dispatching of
messages to objects. On the other hand, the real world is a place where many things happen
concurrently. Following the principle of real world modeling, this should also show up in the
resulting software. Besides, this activity of flattening a concurrent model into a sequential
application is far from trivial and is the major cause of programming errors.

Java is a sequential programming language that features Object-Orientation and
multithreading. However, multiple threads run in parallel processes and are created in a
sequential fashion. This paper addresses the danger of deadlock that is caused by
sequentially ordered communication between threads. In chapter 2 some aspects of
concurrent programming are emphasized as we think are important. Some common
communication facilities provided by Java are briefly described and compared to the channel
facility in chapter 3. In chapter 4 the channel and composition constructs as a formal concept
are discussed. In chapter 5 the channel implementation and composition constructs
according to the object-oriented paradigm are described. A simple benchmark program that
illustrates the use of channels is discussed in chapter 6.

2  Concurrent programming

A concurrent program is a single program that consists of several processes running in
parallel. A process is a sequential program in execution. A concurrent program has control
over its processes.

The human cognitive aspect of composing processes is very natural in developing
programs. Processes are highly independent, because they are bounded to their task, and
they provide fundaments of the structure of the program. In the field of object-orientation,
processes can be considered as active objects that have their own life.



process or active object

communication channel

Represents:
- geometric parallelism
- communication
- process interfaces
- logical partition of processes
- generalization and specialization by nesting

Figure 2.1: Data-flow diagram (directed graph)

The analysis phase of the software development determines – among other things – the
tasks to be carried out by the program. In the design phase these tasks are mapped onto
graphical models such as data flow diagrams, activity diagrams, state transition diagrams,
flow charts etc. The data flow diagram is an important graphical model in the design phase.
A data flow diagram is a directed graph, see for example figure 2.1, which defines the
processes – the degree of parallelism – and the structure of the program. Each circle
represents a process or a flow of control, whereas the arrows denote the data flow or
communication between the processes. The graphical representation of a data flow diagram
is a powerful model in the design phase, which represents processes at different levels of
nesting, i.e. specialization and generalization.

It is the data flow model that is hard to flatten into a sequential implementation and as
a result these types of models are often omitted in design tools. Modern developments, such
as support of multithreading by programming languages, make concurrent programming
more easy. The concept of multithreading makes the data flow model useful again – provides
parallelism down to the code – and makes flattening superfluous.

2.1  Multithreading versus processes

The concept of multithreading within a sequential programming language, such as Java,
allows us to create processes running in parallel. Processes and threads are conceptually
related. A process is the actual program executed by one or more threads. The process
maintains its program structure and state, i.e. objects and variables. A thread is a single flow
of control that can execute its instructions independently. A thread gets scheduled on a CPU
and comprises the contents of registers – the program counter, the general registers, the
stack pointer, and the stack.

In (Lewis and Berg, 1996) the following example illustrates an essential point of
threads:

“Let's consider a human analogy: a bank. A bank with one person working in it
(traditional process) has lots of "bank stuff" such as desks and chairs, a vault,
and teller stations (process tables and variables). There are lots of services that a
bank provides: checking accounts, loans, savings accounts, etc. (the functions).
With one person to do all the work, that person would have to know how to do
everything, and could do so, but it might take a bit of extra time to switch
among the various tasks. With two or more people (threads), they would share
all the same "bank stuff," but they could specialize on their different functions.
And if they all came in and worked on the same day, lots of customers could get
serviced quickly”.

This application is a traditional program or a single process run by multiple threads.
Every “bank stuff” object is shared among several employees and must be synchronized to
prevent simultaneous use, i.e. the “bank stuff” must be thread-safe. This synchronization is
provided by a protocol that decreases the efficiency, which is reason of complexity, and



causes intertwined code that is hard to maintain. This bottleneck can be reduced by
supplying separate “bank stuff” for each employee, that is, creating more processes. Only
one employee then uses each "bank stuff", i.e. the objects are not shared and there is no
synchronization needed for every item. Only communication between the employees should
be synchronized which will be less frequent.

In (Lewis and Berg, 1996) threads can make traditional programs concurrent by
adding multithreading whereas we think programs should be constructed in terms of
processes. Processes are active objects having their own life and may have multiple threads
that run underlying and encapsulated passive objects. Traditional programs that are made
multithreaded are still flattened into sequential programs. Real concurrent programs,
consisting of processes, are scaleable and portable on multiprocessor systems with or
without shared memory.

2.2  Communicating processes

Many authors assume that multithreading lead to higher performance and better-structured
programs (Lewis and Berg, 1996). However, we have learned that multithreading doe not
always guarantee well-behaved and/or better-structured programs. On the contrary,
communication between threads (or processes) may often lead to complicated code, which
makes programs more complex, more error-prone and less structured than necessary. We
think that the use of channels and composition constructs, which are based on channels,
contribute to well-behaved and ‘easy’ structured programs (i.e. to comprehend, verify, and
formalize) that keeps the data flow model upright. Conspicuously, this approach does not
conflict with other strategies or object-orientation in general. On the contrary, channels are
objects that pass objects between objects. The latter are often active objects. With this
channel concept the programmer can reason about the structure and the behavior of the
program as if observing a data flow diagram.

3  Possible means of communication

Communication between processes can be established by means of shared memory or by
interprocess-communication (IPC) facilities as elaborately described in (Silberschatz and
Galvin, 1994). Java provides communication through shared-memory, message passing,
input/output streams, and remote links. Channels are unknown in Java and are not discussed
in (Silberschatz and Galvin, 1994), however, they are almost of the same age as those
mentioned above. The main reasons that channels were omitted are that channels do not
work in sequential environments (i.e. sequential languages and non-multitasking operating
systems) and that the costs of context switching (i.e. CPU-switching between threads) were
considered too expensive. However, the channel concept carried on in the field of parallel
computing.

This section discusses the communication facilities provided by Java and discusses the
channel facility, for as we think this is the best means for communication between processes.
There are other communication facilities for distributed programs (e.g. Parallel Virtual
Machine (PVM), Remote Method Invocation (RMI), and Common Object Request Broker
(CORBA) which are out of the scope of this paper, but these facilities fit well in the channel
paradigm.

3.1  Shared memory

In single-threaded programs data can efficiently be passed by shared memory. Globally
declared variables or structures – shared objects – function as an asynchronous buffer pool



between communicating threads. This asynchronous behavior may lead to incorrect results
when multiple threads are trying to update the same data in an uncontrolled manner, e.g.
data may not be overwritten by the writer until it is read by the reader. This data
inconsistency can be avoided when the data updates are synchronized by means of
semaphores, such as an atomic test-and-set of a shared boolean variable, which provides a
protocol between the writers and readers (Dijkstra, 1968). The programmer should create a
critical region around the shared object, which ensures that it can only be accessed by one
thread of control at a time. Such a critical region can be created by using a monitor
construct (Hoare, 1974) that is a high-level synchronization construct with powerful wait
and signal operations (Silberschatz and Galvin, 1994). In Java the synchronized-wait-
notify construct provides such a high-level monitor construct (Arnold and Gosling, 1996).

3.2  Message passing

In message-based programming languages there is no need to resort to shared variables.
Messages are dispatched by a sender process to a receiver process which processes the
message. In the object-orientation paradigm a message consists of a destination, a method
name, and arguments (i.e. the data). Objects only communicate via message passing, that is,
by invoking accessible methods on other objects. Shared methods that update variables
should be thread-safe in that only one thread can invoke the method at one time. Java
methods can be made thread-safe by using the synchronized-wait-notify construct
for methods as for shared memory (Arnold and Gosling, 1996).

3.3  Input/output streams

Multithreading operating systems provide input/output (I/O) streams for communication
between programs or to system resources, such as the file-system, standard input, standard
output, and standard error. There are different I/O streams, such as data streams, file-
streams, piped streams, etc. Streams are ordered sequences of data that have a source (input
stream), or destination (output streams) and contain a cyclic buffer of memory. Streams are
asynchronous, but are synchronized when a full or empty condition is reached; a sender
process is blocked when the buffer is full and a receiver process is blocked when the buffer is
empty. Streams are system resources – standardized by the ANSI normalization –  and are
often implemented for universal use. Streams are often restricted to an array of bytes and
polling is needed to catch conditions such as end-of-file or errors. Java also provides I/O
streams.

3.4  Remote links

Remote links are methods provided by the operating system, which can set-up a
communication link between distributed objects. In contrast to I/O streams, remote links can
send messages to other programs and can be seen as an extension of message passing over a
longer distance between computer systems. Remote links -- also called remote procedure
calls (RPC) -- provide an abstract procedure-call mechanism for use between systems with
network connections. In contrast with the IPC facilities, the RPC communication facility
provides a layer build on top of the operating system. There are already many solutions in
the form of Local (or Wide) Area Networks or by object linking and embedding which we
will not discuss here. Java provides network supports and Remote Method Invocation
(RMI).



3.5  Channels

The channel connects processes and takes care of the data transfer. The channel is one-way
and self-synchronized. Communication in both ways needs two channels. Initially, the
channel is unbuffered and provides a rendezvous synchronization mechanism; in other
words, a message can only be sent if both the writer and reader are ready. If one of the
processes is ready and the other is not, then the first gets blocked until the second is ready.
In other words, processes get scheduled on communication. In the object-oriented paradigm
the channel is an intermediate object that encapsulates synchronization, scheduling and the
data transfer. As a result the programmer is freed from synchronization, scheduling, and the
physical data transfer. Our implementation of the channel allows for sharing among multiple
readers and writers, and can also pass different data types as objects. Furthermore, the
channel can be used in three different composition constructs, i.e. the sequential
composition, the parallel composition, and the alternative composition (section 4.2).

3.6  Review

There are a few reasons why channels are not included in sequential programming
languages. In the early years, operating systems where designed and build to schedule
sequential programs or processes. The operating system was often the only shared resource.
Scheduling was in those days very time consuming and as a result buffering communication
is chosen over rendezvous communication (buffering reduces the number of context
switching). For these reasons, we find I/O streams instead of channels. Nowadays, I/O
streams are flexible, standardized and are typical operating system resources for many
purposes, such as standard input, standard output, disk access, pipes, filters, etc. Another
important reason is that the rendezvous behavior does not work in sequential programs.
Channel input and output on the same channel by the same process and in a sequential
composition, results immediately in deadlock whereas I/O streams may work. The
performances of modern processors are high and the cost of scheduling is almost negligible.
The technology of Object-Orientation and multithreading brings concurrency within the
program itself. These factors make the use of channels within sequential programming
languages very well possible.

The shared-memory and message passing concepts need explicit synchronization
implemented by the programmer. The I/O streams and remote links are system resources
that are restricted to sending and receiving bytes in a quasi-synchronous manner; I/O streams
and remote links can only be used in the presence of an operating system that is supporting
them. The channel is not a system resource and operates close to the scheduler.

For real-time systems one likes to avoid the operating system, because of space and
performance. The channel can be optimized which makes scheduling very fast in a non-
preemptive fashion that provides an optimal CPU utilization (Liu and Layland, 1973). By
using channels, the scheduler could be build within the program itself and by which the
program schedules itself in an non-preemptive fashion. The non-preemptive paradigm can
also be mixed with preemptive scheduling for dealing with fair scheduling (e.g. priority
scheduling).

Because the channel initially is unbuffered, the program will schedule more frequently
than, for instance, a buffered I/O stream. In our channel we have created a plug-in feature in
which the channel can be buffered for optimization purposes (e.g. reducing the number of
context switching). The same feature can also be used for communication between processes
on other microprocessors or systems by plugging in external links (section 5.1).

The use of channels and the composition constructs that are based on channels are
further discussed in chapter 4 and the Java implementation will be discussed in chapter 5.



4  Channels and composition constructs

4.1  Channel formalism

The semantics of the rendezvous channel are straightforwardly defined and have their
theoretical foundation in CSP. This theoretical foundation makes it possible to use
automated tools for validating designs. Aside from being mathematically pleasing, the
channel construct is easy to reason about, and therefore it will also be a beneficial construct
to think of when designing software, making it a good object to identify during the object
oriented design phase.

The channel has an input and an output method that are respectively written as c?v and
c!v in the CSP language, where c is the channel name and v is the value of the message. In
appendix A.1 some basic notations of the CSP language are described. If one process
engages in c?v and another process engages in c!v then communication will be performed
and value v will be passed by channel c.

Thread 1 Thread 2

channel1

channel2Sender Receiver
channel

Figure 4.1: (a) one-way communication and (b) two-way communication

The channel provides one-way communication and two-way communication needs
two channels. The only responsibility left with the programmer is to avoid deadlock by
ensuring that the second thread becomes ready sometimes. Deadlock is the state in which
two or more concurrent threads can no longer proceed due to communication
interdependency. In appendix A.2, communicating processes are discussed in more detail.

Figure 4.1b shows a two-way or cyclic communication. Such a scheme can be prone
to deadlock when performing input and output on channels in a sequential fashion.

4.2  Composition construct formalism

Appendix A.3 describes three compositions i.e. the (i) sequential, (ii) parallel, and (iii)
alternative composition. A thread is a sequential composition, which executes statements in
successive order. The if-then-else statement provides alternative compositions in which
choices are made according to expressions.

The programmer should be careful when choosing the order of channel input and
output in a sequential composition. For the convenience we take the CSP notation for
channel input (?) and channel output (!).
A correct sequence of reading and writing for figure 4.1b is given by

Thread 1: do sequential Thread 2: do sequential
{ {

channel1 ! x channel1 ? a
channel2 ? y channel2 ! b

} }

Thread 1 writes the value x and thread 2 reads the value into a through channel1. In
the next step, thread 2 writes the value b and thread 1 reads the value in y through channel2.
If we choose a wrong sequence then deadlock may occur.
Consider for example,



Thread 1: do sequential Thread 2: do sequential
{ {

channel1 ! x ← deadlock channel2 ! b ← deadlock
channel2 ? y channel1 ? a

} }

Both threads are blocked, because both write actions wait for communication, which
will never occur. If the threads could read or write in parallel then we would have no
deadlock and the order of execution is not important:

Thread 1: do sequential Thread 2: do parallel
{ {

channel1 ! x channel2 ! b
channel2 ? y channel1 ? a

} }

A parallel construct at one side in this example is sufficient to prevent deadlock.
However, the order of communication is indefinite and therefore a parallel construct at both
sides is more obvious.

Thread 1: do parallel Thread 2: do parallel
{ {

channel1 ! x channel2 ! b
channel2 ? y channel1 ? a

} }

Here, we have illustrated a simple example of two communicating threads, which can
be scaled for more complex networks of channels and threads. In a network with more than
one cycle, the parallel construct will be indispensable (Welch, 1987). In appendix A.2 we
formally illustrate this example by means of CSP and we proof the appearance of deadlock.
Appendix A.3 describes the behavior of the three composition constructs and will be
illustrated in section 5.2.

5  Java channel and composition constructs

An important strategy of developing software is separation of concerns (Hürch and Lopes,
1994). Separation of concerns follows the well-established principle in software engineering
to hide complexity by abstraction. Programming intertwined code is hard and complex since
all concerns have to be dealt with at the same time and at the same level. Intertwined code is
hard to understand, maintain and modify because the concerns are strongly coupled. The
discipline of separating concerns is used throughout this work. Section 5.1 discusses the
identity of classes on which the Java channel is build. Section 5.2 discusses the use of the
channel in association with its composition constructs.

5.1  The Java channel

The interface of the channel defines a channel input and output operation that are visible to
the user. The Java channel consists of more than one class and to ensure a simple interface
we have build the Java channel as a synchronized adapter (Lea, 1996) according to the
Adapter, Composite, and Proxy design patterns as described in (Gamma et al., 1995).

The Java channel is defined at the conceptual level by four abstractions of concerns:



Channel. The channel encapsulates synchronization, scheduling, and the data transfer into
one object. The channel input and output will be delegated to the link driver that is part of
the channel.

Link driver. The actual data transfer between processes can be performed internally (i.e.
through shared memory) or externally (i.e. through shared communication lines). The
concerns of the link driver are to perform the physical data transfer, to localize and to
encapsulate the hardware dependent code from hardware independent code. In other words,
link drivers are device drivers for communication purpose that are plugged into the channel.

Clonable protocol object. Clonable protocol objects encapsulate the information sent by
channels. These objects have knowledge – a protocol – about which variable may or may not
be cloned; i.e. copies the contents into a specified object.

Composition. Processes can invoke the read (channel input) and write (channel output)
methods on the channel in a sequential, parallel or alternative fashion. The behavior of the
channel input and output depends on the composition construct they use and on the type of
synchronization provided by the link driver.

These concerns are reflected in the class relation diagram of figure 5.1 in OMT
notation. The Channel class is related to zero or many composition members, zero or more
clonable protocol objects, and to a link driver that is part of the channel. The channel can
exist without a composition member or without a clonable protocol object, but contains a
link driver. For reading and writing on the channel a composition member and a clonable
protocol object must be specified at each side.

Rendezvous

Tag

Channel

xxxProtocol

Composition ClonableProtocol

SEQ PAR ALT

Object

Custom

Port CustomBuffer

LinkDriver

Timer

Figure 5.1: Class relation diagram

The SEQ, PAR and ALT classes, respectively the sequential, parallel, and alternative
classes, inherit the Composition class. The ClonableProtocol class extends some standard
protocol classes, such as the xxxProtocols (intProtocol, byteProtocol, charProtocol,
shortProtocol, longProtocol, floatProtocol, doubleProtocol, and booleanProtocol) and the
Tag. The ClonableProtocol class makes sure that the channel can clone the object otherwise
the object will not be accepted. The Rendezvous, Buffer, Timer, and Port classes are
standard link driver subclasses of the LinkDriver class. The LinkDriver class adds a state
variable that must be updated by the link driver of which the channel behavior depends on.
The super-classes ClonableProtocol and LinkDriver provide generic functionality that can
extend the functionality of the channel easily. The Composition class is reserved for future



features and it completes the diagram. The programmer can build his own clonable protocol
object or link drivers without having knowledge of the implementation of the channel or the
composition constructs.

5.1.1  Channel basics

The Java channel is a multiple readers/writers object, which will clone the protocol object
according to the behavior defined by the link driver. If no link driver is specified then the
rendezvous link driver will be the default link driver.

multiple writersmultiple readers

single reader ring single writer ring

single thread ring constraint ring

link
driver

channel object

Figure 5.2: Channel monitor

Figure 5.2 shows a channel object of which the inner critical region, that is the link
driver, is guarded by three rings of synchronization (monitors). The single reader and writer
rings allow passing a single reader and a single writer. The single thread ring allows passing
a single reader or a single writer. The constraint ring provides the behavior or the
(de)scheduling of threads according to the state of the state variable updated by the link
driver. The state variable can hold one of the three constants FULL, EMPTY, or
NOTEMPTYFULL (read not empty and not full) which represents the actual state of the buffer
inside the link driver; physically the link driver is buffered by a temporary variable or by an
array of variables.

Here is a simple version of the Channel class defining a read() and a write()
method. The Channel class provides the rings of synchronization and delegates the actual
data transfer to the read() and write() methods of the link driver. The
linkdriver.state variable is part of the constraint ring which provides the desired
behavior specified by the link driver (rendezvous by default).

class Channel
{
  LinkDriver linkdriver = new Rendezvous(); // default link driver

  public boolean read(ClonableProtocol object)
  throws Exception
  {
    boolean result = false;
    synchronized (reader_monitor) // single reader’s ring
    {
      synchronized (this) // single thread ring
      {
        if (linkdriver.state == LinkDriver.EMPTY) wait(); // constraint ring
        result = linkdriver.read(object); // delegate read to link driver
        notify(); // notify a waiting writer
      }
      return result;
    }
  }

  public boolean write(ClonableProtocol object)
  throws Exception
  {
    boolean result = false;
    synchronized (writer_monitor) // single writer’s ring



    {
      synchronized (this) // single thread ring
      {
        result = linkdriver.write(object); // delegate write to link driver
        notify(); // notify a waiting reader
        if (linkdriver.state == LinkDriver.FULL) wait(); // constraint ring
      }
      return result;
    }
  }
  …
}

Besides the variety of link drivers we can distinguish between four channel types. That
is, the channel can be implemented with no single reader and writer ring, one reader ring,
one writer ring, or both reader and writer rings which depend on the number of readers and
writers sharing the channel. A design pattern such as a factory method could be applied
which creates one of the four channels in conformance with the number of readers and
writers (Gamma et al., 1995).

The link driver is a simple class without synchronization constructs. In the next listing,
we show the rendezvous link driver that provides internal communication between
processes.

public class Rendezvous extends LinkDriver
{
  private ClonableProtocol object;

  public boolean read(ClonableProtocol object)
  {
    this.object.clone(object);
    this.state = EMPTY;
    return true;
  }

  public boolean write(ClonableProtocol object)
  {
    this.object  = object;
    this.state   = FULL;
    return true;
  }
}

The variable object is the temporary buffer variable. The state variable is inherited
by the LinkDriver class and is updated conform the buffer condition. The clone(..)
method is a method invoked on the clonable protocol object. An example of the
intProtocol class is,

public class intProtocol extends ClonableProtocol
{
  public int value;

  public void clone(ClonableProtocol object)
  {
    ((intProtocol)object).value = this.value;
  }
}

The complexity of the link driver depends on the media on which data must be passed.
The link driver acts as a device driver for communication purpose. With this approach it is
more easy to adjust the channel for external communication links such as RS-232, USB,
PCI, VME, CORBA, RMI, and many more. In other words, other technologies concerning
communication can be used through link drivers. The channel functions as a structural
approach in concurrent programming.

5.2  The Java Communication constructs



In the previous section, the read() and write() methods of the channel are discussed. As
mentioned, the behavior of these methods depends on the state of the link driver. This
section discusses an extension of this behavior in which these methods can be used in
different compositions of execution as discussed in section 4.2. Implementations of these
compositions are respectively the SEQ, PAR, and ALT constructs. These abbreviations are
borrowed from occam (INMOS, 1988). The SEQ, PAR, and ALT classes, shown in figure
5.1, provide methods for constructing the SEQ, PAR, and ALT compositions constructs in
Java.
The Channel class also provides three other pairs of read() and write() methods for
each composition construct. These methods invoke the read() and write() as described
in the previous section but under different circumstances. Without discussing the entire
implementation of these read() and write() methods, we will illustrate the use of these
methods in the next sections of this chapter.

The methods provided by the Channel class are:

boolean channel.read(<construct member>, <clonable object>);

boolean channel.write(<construct member>, <clonable object>);

where channel is the name of a channel object, <construct member> is a composition
object of SEQ, PAR, or ALT, and <clonable object> is a clonable protocol object. The
boolean is the return type of the methods.

P R

a

S

Q

b

c

Figure 5.3: Example

The following examples of this section illustrate the three composition constructs for
process P in figure 5.3. Process P has three shared channels a, b, and c that are declared as:

Channel channel_a = new Channel();
Channel channel_b = new Channel();
Channel channel_c = new Channel();

when channel_a, channel_b, and channel_c are channel objects.
The clonable protocol objects used to receive or to send are,

intProtocol object_a = new intProtocol();
intProtocol object_b = new intProtocol();
intProtocol object_c = new intProtocol();

5.2.1  The sequential communication construct

The sequential construct (SEQ) provides sequential channel input and output; the read and
write actions will behave sequentially within the method.

SEQ seq = new SEQ();

channel_a.read(seq, object_a);
channel_b.write(seq, object_b);



channel_c.read(seq, object_c);

The seq object provides knowledge of doing sequential reading and writing.

5.2.2  The parallel communication construct

The parallel construct (PAR) provides parallel channel input and output. This construct is
based on Dijkstra’s parbegin (Dijkstra, 1968) which specifies concurrent execution of its
constituent sequential commands (processes).

PAR par = new PAR(3);

channel_a.read(par, object_a);
channel_b.write(par, object_b);
channel_c.read(par, object_c);
par.join();

The par object provides knowledge of doing reading and writing in parallel. The
read() and write() methods in a PAR construct start-up a hidden processes and
immediately continue. The par object provides a join() method that will block until the
parallel read() and write() methods are done. The number 3 in the PAR constructor
specifies three hidden processes that carry out the read() and write() methods in
parallel.

5.2.3  The alternative communication construct

The alternative construct (ALT) makes choices, which are based on the state of channel
input or output. The read() and write() methods in the ALT-construct return true if
communication is succeeded, else they return false. The read operation is called the input
guard and the write operation is called the output guard of the ALT-construct.

ALT alt = new ALT();

if (a.read(alt, object_a))
{
  ... THEN program part
}
else
  if (b.write(alt, object_b))
  {
    ... THEN program part
  }
  else
    if (c.read(alt, object_c))
    {
      ... THEN program part
    }

This example is a typical priority ALT-construct. There are other alternative
constructs, such as the fair-ALT and select-method, but basically they are based on the if-
then-else principle. One should be careful using output guards, because an input guard
that meets an output guard is likely to lead to disagreement (Jones, 1987). Although at any
time it may appear that a distant peer is prepared to communicate, it may already have
committed itself to not doing so. For any channel, there only may be one process ALTing on
it, although there may be many processes sharing the other end.

6  Application: simple Communication Timer benchmark

In this section we describe a simple concurrent program in Java to illustrate the use of
channels and constructs as described before. The program, shown as a data flow diagram in



figure 6.1, is a simple Communication Timer test program, named ComsTime, which is an
up-counter that starts from zero. This Java program is a benchmark for measuring process
(i.e. thread) context-switch times.

Prefix
n=0

Delta

channel b

TimeAnalyser

Successor

channel c

channel dchannel a

Figure 6.1: Simple concurrent program named “ComsTime”

This benchmark consists of four processes (Prefix(0), Delta, Successor, and
TimeAnalyser) connected by channels. Each process or building block is an active object
processed by a single thread of control whereas a channel is a passive object with no life of
its own – its methods being called as part of threads from active objects. A building block is
a thoroughly tested object which is influenced by its direct neighbors and is automatically
scheduled when its inputs are available or its outputs are processed (Welch, 1988).

The Prefix(0) process kicks off by outputting 0 on its output channel and then going
into a infinite input-and-forward cycle. The Delta process just cycles by waiting for input
and then forwarding two copies (in parallel) to each of its output channels. The Successor
process cycles through waiting for input, incrementing the number that arrives and
forwarding the result to its output channel. Finally, the TimeAnalyser process simply
consumes the arriving numbers (which will be the sequence of natural numbers) and times
how fast they arrive.

The Prefix(0) and Successor processes synchronize with other threads twice per cycle,
the Delta process three times and the TimeAnalyser process once per cycle. This makes 8
synchronizations (or context switches) per number that are consumed by the TimeAnalyser
process. Dividing the cycle time reported by TimeAnalyser by 8 gives us the basic overhead
for thread synchronization. The time spent by the processes themselves doing other things
being negligible.

6.1  ComsTime implementation

Benchmark ComsTime, shown in listing 6.1, is a sequential program that declares channels,
variables, and the building block objects. The building blocks are defined as threads and they
are started automatically by its constructor. The try-catch body will intercept possible
exceptions.

/**
 * ComsTime.java
 * Communication Timer Test Program
 **/

public class ComsTime
{
  public static void main(String args[])
  throws java.io.IOException
  {
    try
    {
      /* Test command line         */

      if (args.length != 2)
      {
         System.out.println("\nUsage: java ComsTime inner_loop_count outer_loop_count\n");
         System.exit(0);
      }



      /* Declarations: channels    */

      Channel channel_a = new Channel("channel a");
      Channel channel_b = new Channel("channel b");
      Channel channel_c = new Channel("channel c");
      Channel channel_d = new Channel("channel d");

      /* Declarations: variables   */

      int innerloop = Integer.parseInt(args[0]);
      int outerloop = Integer.parseInt(args[1]);

      /* Declarations: processes (the threads start automatically) */

      Prefix       prefix     = new Prefix(0, channel_b, channel_a);
      Delta        delta      = new Delta(channel_a, channel_c, channel_d);
      Successor    successor  = new Successor(channel_c, channel_b);
      TimeAnalyser timeAnalys = new TimeAnalyser(channel_d, innerloop, outerloop);

    } catch (Exception e)
      { System.out.println("Exception (main): "+e); }
  }
}

Listing 6.1: ComsTime

Programming in terms of processes (or building blocks) has some major advantages,
which we will illustrate by means of listing 6.1.

There is a straightforward transition between the data flow model (figure 6.1) and the
implementation (listing 6.1). The structure defined by the model specifies the structure of the
implementation of the program and visa versa. One can easily draw a data flow diagram
from the declarations of channel and building block objects. The transition could be
automated by means of a generator that generates Java code from the data flow model.

The main program is a kind of network configurer, which builds a network of building
blocks and channels. A network configurer is characterized in that it does not contain non-
terminating loops, but starts-up the actual program. Afterwards the network configurer
terminates successively. The Prefix building block also functions as a network configurer,
which starts the Identity building block and connects it to the network. The idea of a
network configurer has two advantages: (1) the programmer can browse easily through the
program starting with the main program, and (2) the program can be partitioned for
multiprocessor platforms.

The implementations of the network configurer as well as the building blocks are
described in an orthogonal manner. A modification of the structure of the data flow model
means adding or removing building block and channel declarations to or from the network
configurer without influencing other parts of the program. The structure of the program can
be very well maintained and extended by concatenation of other network configures. The
network configurer and the building blocks are also very well reusable.

6.2  Building blocks implementation

The building block classes are subclasses of the Thread class. Statement this.start() in
its constructor body automatically starts the object as a process (or active object) The
run(){} body will be invoked by a the newly launched thread of control.

The parameters of the constructors are initially variables or shared channels; the shared
channel parameters provide an channel interface for the object. In other words, building
blocks have a method interface and a channel interface. These objects can be used through
its methods or through its channel inputs and outputs.



6.2.1  Identity

The building block identity is a procedure with an input and an output parameter, both in the
form of channels. An (intProtocol) object entering via the input channel is passed unchanged
to the output channel. The procedure identity is identical to an active buffer with length one.

public class Identity extends Thread
{
  private ChannelInput  in;
  private ChannelOutput out;
  private SEQ           seq = new SEQ();
  private intProtocol   object = new intProtocol();

  public Identity(ChannelInput in, ChannelOutput out)
  {
    this.in  = in;
    this.out = out;
    this.start();
  }

  public void run()
  {
    try
    {
      while(true)
      {
        chanin.read(seq, object);
        chanout.write(seq, object);
      }
    } catch (Exception e)
      { System.out.println("Exception (Identity): "+e); }
  }
}

6.2.2  Prefix

We can use building blocks to make new building blocks. For example, the building block,
called prefix, starts-up the building block identity (section 6.2.1). The procedure first sends
out a specified number n (here n = 0) and then prefix behaves as identity. The building block
prefix is an example of an configurer that starts building block identity after it initializes the
output channel by sending a zero first.

public class Prefix extends Thread
{
  private ChannelInput  in;
  private ChannelOutput out;
  private SEQ           seq = new SEQ();
  private intProtocol   object = new intProtocol();

  public Prefix(int n, ChannelInput in, ChannelOutput out)
  {
    this.in  = in;
    this.out = out;
    object.value = n;
    this.start();
  }

  public void run()
  {
    try
    {
      out.write(seq, object);

      Identity id = new Identity(in, out);

    } catch (Exception e)
      { System.out.println("Exception (Prefix): "+e); }
  }
}



6.2.3  Delta

Another useful building block is the delta. Delta has one input and two output channels.
Each incoming (intProtocol) object is passed unchanged to each of the two output channels
in parallel. In this case the input object will be cloned to the two output objects. This
building block is used whenever a process has to send a value to two other (parallel)
processes. Delta or a similar process is required in such cases when two parallel processes
may not read from the same channel and is as such the answer to broadcasting.

public class Delta extends Thread
{
  private ChannelInput  in;
  private ChannelOutput out1, out2;
  private SEQ           seq    = new SEQ();
  private PAR           par    = new PAR(2);
  private intProtocol   object = new intProtocol();

  public Delta(ChannelInput in, ChannelOutput out1, ChannelOutput out2)
  {
    this.in   = in;
    this.out1 = out1;
    this.out2 = out2;
    this.start();
  }

  public void run()
  {
    try
    {
      while(true)
      {
        in.read(seq, object);

        out1.write(par, object);
        out2.write(par, object);
        par.join();
      }
    } catch (Exception e )
      { System.out.println ("Exception (Delta): "+e); }
  }
}

6.2.4  Successor

The building block successor is largely the same as the building block identity. There is only
one difference: the value of an (intProtocol) object that enters through the input channel is
increased by 1 before being passed along to the output channel.

public class Successor extends Thread
{
  private ChannelInput  in;
  private ChannelOutput out;
  private SEQ           seq = new SEQ();
  private intProtocol   object = new intProtocol();

  public Successor(ChannelInput in, ChannelOutput out)
  {
    this.in  = in;
    this.out = out;
    this.start();
  }

  public void run()
  {
    try
    {
      while(true)
      {
        in.read(seq, object);
        ((intProtocol)object).value++;
        out.write(seq, object);
      }



    } catch (Exception e )
      { System.out.println ("Exception (Successor): "+e); }
  }
}

6.2.5  TimeAnalyser

Building block TimeAnalyser reads a burst of objects from the input channel and prints the
delay time on screen. The System.exit(0) statement ends the whole program when
TimeAnalyser is finished.

public class TimeAnalyser extends Thread
{
  private ChannelInput  chanin;
  private int           count1, count2;
  private intProtocol   object = new intProtocol();
  private SEQ           seq = new SEQ();

  public TimeAnalyser(ChannelInput ci, int cnt1, int cnt2)
  {
    chanin = ci;
    count1 = cnt1;
    count2 = cnt2;
    this.start();
  }

  public void run()
  {
    int i, j;
    long tstart, tstop, tdiff, tsum;

    System.out.println("Time Analyser started !\n");
    System.out.println("------------------------------");

    try
    {
      tsum = 0;
      for (j=0;j<count2;j++)
      {
        tstart = System.currentTimeMillis();
        for (i=0;i<count1;i++)
          chanin.read(seq, object);
        tstop = System.currentTimeMillis();
        tdiff = tstop - tstart;
        tsum  = tsum + tdiff;
      }
      System.out.println("Average of one cycle = "+((float)tsum)/(float)(count1*count2)
+" ms");
    } catch (Exception e)
      { System.out.println("Exception (TimeAnalyser): "+e); }
    System.exit(0);
  }
}

7  Conclusions

The csp classes form a complete package that contains the necessary ingredients for
concurrent programming with channels in Java.

The channel and compositions concepts are derived from CSP and are developed
according to the object oriented paradigm. There is a clear pattern of concerns by means of
object oriented techniques using inheritance, delegation, genericity, and polymorphism. The
channel itself is created according to the Adapter, Composite, and Proxy design patterns as
described in Gamma et al. (1995).

The most important property of using channels and composition constructs is that the
programmer is freed from synchronization and scheduling constructs. This facilitates
programming of concurrent programs for the programmer.



Applications based on channels get scheduled on communication on a non-preemptive
fashion. Non-preemptive scheduling is more efficient than preemptive scheduling and the
channel can be optimized for better performances.

The channel and compositions concepts do not interfere or clash with other language
concepts in Java. Furthermore, the channel and composition primitives could be integrated at
byte-code level in Java as we see in occam.

Implementing software with channels eliminates the process of flattening the data flow
model into one sequential program. Important is that there is no large gap, just a
transformation, between the data flow model and the code. As a result, parallelism is
maintained down to the code.
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Appendix A  CSP channels and compositions

The process algebra Communicating Sequential processes (CSP) by (Hoare, 1978) is an algebraic
language in which the behaviour of communicating processes can be described and can be verified by
means of events and operators.

In this appendix we prove by the formal method of CSP the profit of the parallel composition
for communicating sequential processes. Section A.1 describes some important mathematical
notations of the CSP language. A rule is also given which can be used to prove if the process satisfies
the desired behaviour. In section A.2, two processes are described by the notations of section A.1; the
first process is an example of deadlock and the second process eliminates deadlock. The rule is used
to prove the occurrence of deadlock for both examples. Section A.3 describes the behaviour of three
common composition, i.e. (1) the sequential composition, (2) the parallel composition, and (3) the
alternative composition, in CSP.

A.1  Process algebra

In CSP a process describes the behaviour pattern of an object in terms of events, operators, and other
processes. To include events in our process description, we use the prefix operator:

if a is an event and P is a process, then

(a → P)

is a process which may engage in a before behaving as P. An event can also be a communication
event, which  is represented by the pair

c.v

where c is the name of the channel on which the event takes place, and v is the value of the message
that is passed. The input and output are respectively the read action c?v and write action c!v which
are performed when both processes are ready and communication over channel c is performed. We
define an input process

(c?v → P(v))

as a process that behaves as process P(v) after the value v is read by channel c. The value v is of type
T denoted as (c?(v : T) → P(v)). We define an output process

(c!v → P)

as a process that behaves as process P after the value v is sent by channel c. This tightly defined
communication protocol is called rendezvous communication. The set of messages communicable on
channel c is defined as

type(c) = {v | c.v ∈αP}

The alphabet αP is the set of events in process P. The type of value v is specified by the output
process (c!v → P) = (c.v → P) and must be accepted by the input process (c?x → P(x)) = �v:type(c)(c.v
→ P(v)), where symbol � denotes choices. The output process defines one type and the input process
accepts one or more types.



The processes P and Q can be observed in various compositions:

(P ; Q) sequential composition; behaves as P until this component is successfully
terminated and then behaves as Q.

(P || Q) parallel composition; a composition in which P is able to engage in any event from
the set αP, and Q is able to engage in any event from the set αQ. The two processes
must cooperate to perform any event which is common to both alphabets. This
parallel composition can also be described by P |[ A ]| Q with A = αP | αQ being the
shared set of events.

(P ||| Q) parallel composition (interleaving); the two processes P en Q evolve independently
without cooperating upon every occurrence of any event of P and Q. This parallel
composition is equal to P |[ A ]| Q with set A is empty. If one process cannot engage
in the action, then it must be the other one; but if both processes could have engaged
in the same action, the choice between them is non-deterministic.

(P � Q) alternative composition; behaves as P if the first action of P can engage, else
behaves as Q if the first action of Q can engage. If both actions can engage then the
choice between them will be non-deterministic (the environment can control which of
P or Q will be selected).

(P  Q) alternative composition (non-deterministic); the choice between P and Q is based
on the arbitrary selection, without the knowledge or control of the external
environment.

STOP The process which never engages in any event. This describes the behaviour of a
broken object; a deadlocked object.

SKIP A process, which does nothing but terminates successfully.

An important rule in CSP, which we will use later in this section, is

Let P = �x:X x → Px

Q = �y:Y y → Qy

Then P |[ A | B ]| Q = �z:Z z → (Pz’ |[ A | B ]| Qz’)
where Pz’ = Pz if z ∈ X; P otherwise

and Qz’ = Qz if z ∈ Y; Q otherwise
and Z = (X ∩ Y) ∪ (X - B) ∪ (Y - A)

assuming X ⊆ A and Y ⊆ B
¨

Rule 1.1: General choice operator rule

This rule provides an algorithm to evaluate the behavior of two parallel processes (P || Q). The
shorthand notation P = �x:X  x → Px is a series of choices depending on the events x in set X. For
instance, P = �x: {a,b,c}  x → Px is equal to P = (a → Pa) �  (b → Pb) �  (c → Pc). The set Z is defined as
the collection of elements in X and Y and without double elements. The notation (X - B) is the set {x |
x∈ X, x ∉ B).



A.2  Communicating processes

The processes P and Q communicate through shared channels. The read and write actions on a
channel are considered shared events that are performed when they are both ready. A channel
provides one-way communication between two processes. For two-way communication two channels
should be used. A channel that is used only for output by a process will be called an output channel
of that process and one used only for input will be called an input channel.

P Q
c.v

P

c1.v1

c2.v2 Q

P Q
c!x      c?a

P Q

c1!x    c1?a

c2?y    c2!b

a. One-way communicating processes by
channel c passing message v.

c. Two-way communicating processes by
channels c1 and c2 passing messages v1 and v2.

b. Process P writes message v in x to channel c
and process Q reads message in a.

d. Communicating processes by channels c1

and c2 sending message v1 and v2.

Figure A.1: Communicating processes

Figure A.1 shows one-way and two-way communication between processes. Figure A.1a.
shows a parallel composition where P en Q share the same channel c. Communication will occur on
channel c on each occasion that P outputs a message and Q inputs that message, simultaneously. An
outputting process specifies an unique value for the message, whereas the inputting process is
prepared to accept any communicable value. Thus the event that will actually occur is the
communication c.v , where v is the value of the message specified by the outputting process. Process
P executes action c!a and process Q executes action c?a as shown in figure A.1b, in which the
variables x and a hold the message v. Figures A.1c. and A.1d. show this for two-way communication
between P and Q.

In case of two-way communication or in the presence of a cycle, we must avoid deadlock at
any time. The next section will discuss the appearance of deadlock caused by a typical sequential
order of communication between processes.

A.2.1  Sequential composition is deadlock sensitive

A thread is a sequential flow of control. The processes P and Q can be considered threads of control
that invoke read and write actions on both channels each in a sequential orders. If this order is not
correctly chosen by the programmer or by the flow of control then deadlock may be the result. Both
processes will then wait on communication infinitely. The Processes P and Q of figure A.1c are once
again shown in figure A.2. For convenience, the read i.e. ci?v and the write i.e. ci!v events are
abbreviated to one event ci with the same channel name. For instance, if the process engages in c1

then process P engages in c1!v and process Q engages in c1?v, that is, they are both ready to
communicate.

P

c1

c2 Q

Figure A.2: Cyclic communicating processes



This system process of figure A.2 can be described as

P: do sequential
{

c1 ! x
c2 ? y

}

Q: do sequential
{
c2 ! b
c1 ? a

}

or in the CSP language,

SYSTEM = (P || Q) = ( P |[ αP | αQ ]| Q ) with αP = {c1,c2} and αQ = {c1,c2}

in which the processes P and Q are described as

P = (c1 → c2 → P’)
Q = (c2 → c1 → Q’)

The processes P’ and Q’ are suffix processes of respectively P and Q after the composition. We
simply see that c1 → c2 and c2 → c1 only can be performed when c1 = c2. This is never true and
therefore the processes P and Q are mutual exclusive or deadlocked.

In the next derivation we prove, on the basis of the rule 1.1 in section A.1, that this order of
communication immediately leads to deadlock.

Theorem: Sequential communication in an erroneous order will lead to deadlock.

PROOF: We give a system that is equal to STOP.

Let
P = (c1 → c2 → P’) = (c1 → Pc1) with Pc1 = (c2 → P’)
Q = (c2 → c1 → Q’) = (c2 → Qc2) with Qc2 = (c1 → Q’)

then
SYSTEM = ( (c1 → c2 → P’) |[ {c1,c2} | {c1,c2} ]| (c2 → c1 → Q’) )

following rule 1.1
X = {c1}, Y = {c2}, and Z = {}

with
P = �x:{c1} x → Px = c1 → Pc1

Q = �y:{c2} y → Qy = c2 → Qc2

and

P |[ αP | αQ ]| Q = �z:{} z → (Pz’ |[ A | B ]| Qz’) = STOP

or
SYSTEM = STOP

¨

Process SYSTEM will never engage in any event of P and Q and will immediately deadlock. This
proof can be extended to more than two communicating processes.



A.2.2  Parallel compositions eliminate deadlock

The read and write actions of process P and the read and write actions of process Q are mutual
independent. The read and write action can be executed in arbitrary order because the order is
actually undefined. As mentioned before, in a sequential composition, such as in a sequential process,
the order of the read and write actions should be carefully chosen. A more secure approach is using a
parallel composition which eliminates deadlock.

Consider example

P: do sequential
{

c1 ! x
c2 ? y

}

Q: do parallel
{
c2 ! b
c1 ? a

}
In the following proof we show that this system process always performs all actions. Again, this
proof can be extended to more than two communicating processes.

Theorem: A parallel composition will prevent an erroneous order of communication and eliminates
potential deadlock.

PROOF: We will show that a parallel composition always satisfies the behaviour of the system.

Let
P = (c1 → c2 → P’) = (c1 → Pc1) with Pc1 = (c2 → P’)
Q = (c2 → c1 → Q’) � (c1 → c2 → Q’)

= (c2 → Qc2) � (c1 → Qc1) with Qc1 = (c1 → Q’) and Qc2 = (c2 → Q’)
then

SYSTEM = (c1 → c2 → P’) |[ {c1,c2} | {c1,c2} ]| ((c2 → c1 → Q’) � (c1 → c2 → Q’))

following rule 1.1
X = {c1}, Y = {c1,c2}, and Z = {c1}

with
P = �x:{c1} x → Px = c1 → Pc1

Q = �y:{c1,c2} y → Qy = (c1 → Qc1) � (c2 → Qc2)
and

P |[ αP | αQ ]| Q = �z:{c1} z → (Pz’ |[ A | B ]| Qz’) = c1 → (Pc1 |[ A | B ]| Qc1)

The next behavior is
X = {c2}, Y = {c1,c2}, and Z = {c2}

with
Pz’ = �x:{c2} x → Px = c2 → Pc2

Qz’ = �y:{c1,c2} y → Qy = (c1 → Q’) � (c2 → Q’)
and

P |[ αPz | αQz ]| Q = �z:{c2} z → (Pz” |[ A | B ]| Qz”) = c2 → (P’ |[ A | B ]| Q’)

or
SYSTEM = c1 → c2 → (P’ |[ A | B ]| Q’)

¨

Process SYSTEM can engage in both events c1 and c2 of P and Q and therefore this process satisfies
the behavior of the system process.



In case where read and/or write actions are mutual independent, these actions should be enclosed in a
parallel composition. The programmer should not have to worry about the order of execution. The
previous example should be written as,

P: do parallel
{

c1 ! x
c2 ? y

}

Q: do parallel
{
c2 ! b
c1 ? a

}
The system process with parallel compositions at both processes is defined as

SYSTEM = (c1 → c2 → (P’ |[ A | B ]| Q’)) � (c2 → c1 → (P’ |[ A | B ]| Q’))

by applying rule 1.1.

A.3  Communication compositions

In this section three common situations of communicating processes are discussed as shown in figure
A.3. We will shown that these three situations can be described by the same description for three
different compositions towards process P. The arrows a, b, and c, are channels over which the
processes P, Q, R, and S pass information. This information will be passed according to the
rendezvous principle. The channels are one-way which direction is denoted by the arrows.

P R

a

S

Q

b

c

P R

a

S

Q

b

c

a) only output b) only input

P R

a

S

Q

b

c

c) input and output

Figure A.3: Three situations towards process P

Here, we consider process P as primary process and the others as secondary processes. These
situations show the communication network of a program and the degree of parallelism i.e. the
structure and geometric parallelism. However, they tell nothing about the order and time of which
communication takes pace. The order of communication by process P will be discussed for three
different compositions. Time aspects will not be discussed here.

The secondary processes only communicate with process P and there is no mutual
communication between the secondary processes themselves. The system process can be described as

SYSTEM = P |[αP | αQ | αR | αS ]| (Q ||| R ||| S) (*)

with αP = {a,b,c}, αQ = {a}, αR = {b}, αS = {c}.

Here each process behaves according to its own definition, but with the constraint that events which
are in the alphabet of both P and (Q ||| R ||| S), i.e. events a, b, and c, require their simultaneous
participation. However they may process independently on those events solely to their own alphabet
i.e. processes Q, R, and S process independently. We may write the set {αP | αQ | αR | αS } as
{{a,b,c}|{a}|{b}|{c}} or as {a,b,c} to simplify the equations.

The primary process P can communicate with the secondary processes Q, R, and S, in a
sequential order, in parallel, or by choice. Therefor, we can consider respectively three compositions



towards communication; (i) the sequential composition, (ii) the parallel composition, and (iii) the
alternative composition. In this section we will discuss these composition towards figure A.3.

A.3.1  Sequential composition

A sequential composition performs communication in a certain sequential order. In case process P is
a thread of control, i.e. sequential flow of control, this process is sequential by nature. The
programmer could specify a certain order as defined by

P = (a → b → c → P’)
Q = (a → Q’)
R = (b → R’)
S = (c → S’)

where the processes P’, Q’, R’ and S’ are suffix processes after the composition.

After substituting these behaviors into the system equation (*) the sequential composition can be
described as

SEQ = (a → b → c → P’) |[{a,b,c}]| ( (a → Q’) ||| (b → R’) ||| (c → S’) )

This definition is the same for all three situations of figure A.3. The sequence is in its entirely
determined by process P. The direction of communication is not relevant.

A.3.2  Parallel composition

A parallel composition performs communication in parallel. If the order of communication by process
P is undefined then a parallel composition should be used to avoid deadlock at any time. The behavior
of the process P in which it wants to communicate simultaneously can be defined as

P = (a → b → c → P’) � (a → c → b → P’) � (b → a → c → P’)
� (b → c → a → P’) � (c → a → b → P’) � (c → b → a → P’)

Q = (a → Q’)
R = (b → R’)
S = (c → S’)

The entire equation is

PAR = ( (a → b → c → P’) � (a → c → b → P’) � (b → a → c → P’)
� (b → c → a → P’) � (c → a → b → P’) � (c → b → a → P’) )
|[{a,b,c}]| ( (a → Q’) ||| (b → R’) ||| (c → S’) )

The complexity of the PAR equation is of magnitude O(n!), in which n is the number of parallel
channels out of P.

In practice, simulating this approach by if-then-else statements will be enormous complex.
However, this process can be simplified by using sub-processes Pi, for each channel input or output.
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Figure A.4: Parallel composition of situation c.

The sub-processes P1, P2, and P3 provide communication in parallel. Process P can execute the read
and write actions in a arbitrary sequential order which will actually be processed in parallel by the
sub-processes. The suffix process P’ may only continue when all the sub-processes are finished.

Process P can be defined similar as the SEQ process of section A.3. The events a’, b’, and c’ are
shared events that indicate, when engaged in, that process P has started its sub-processes Pi. Some
additional joinP1, joinP2, and joinP3 events indicate, when engaged in, that the respectively process P1,
P2, and P3 have finished processing its task.

Let

P = (a’ → b’ → c’ → joinP1 → joinP2 → joinP3 → P’) |[{a’,b’,c’}]| ( P1 ||| P2 ||| P3)
P1 = (a’ → a → joinP1 → P1)
P2 = (b’ → b → joinP2 → P2)
P3 = (c’ → c → joinP3 → P3)
Q = (a → Q’)
R = (b → R’)
S = (c → S’)

P1 |[{a’,a,joinp1}]| Q = (a’ → a → joinP1 → (P1|| Q’))
P2 |[{b’,b,joinp2}]| R = (b’ → b → joinP2 → (P2|| R’))
P3 |[{c’,c,joinp3}]|  S = (c’ → c → joinP3 → (P3|| S’))

Process P triggers the sub-processes P1, P2, and P3 through the events a’, b’ and c’ and subsequently
these sub-processes trigger a common join through the events joinP1, joinP2, and joinP3.

PAR = (a’ → b’ → c’ → joinP1 → joinP2 → joinP3 → P’) |[{a’,b’,c’}|{a’}|{b’}|{c’}]|
((P1 |[{a’,a}|{a}]| Q) ||| (P2 |[{b’,b}|{b}]| R) ||| (P3 |[{c’,c}|{c}]| S))

= (a’ → b’ → c’ → joinP1 → joinP2 → joinP3 → P’) |[{a’,b’,c’}|{a’}|{b’}|{c’}]|
((a’ → a → joinP1 → (P1|| Q’)) ||| (b’ → b → joinP2 → (P2|| R’))
||| (c’ → c → joinP3 → (P3|| S’)))

The complexity of the PAR equation is of magnitude O(n+n), by which n is the number of parallel
channels out of P. By a handy trick in the implementation (not in CSP) we can reduce the complexity
to O(n+1) by using one join.



A.3.3  Alternative composition

A simple alternative composition based on one event can be described by the process

ALT = (a → P) � (¬a → Q)

The ALT will behave as P if it can engage in a else it will behave as Q. This behavior continues
immediately and is analogous to a simple if-then-else statement. The process for the if-then
statement – without the else – can be described as

ALT = (a → P) � (¬a → SKIP)

The next expression describes an alternative composition of figure A.3. Process P makes choices
based on the events a, b, and c as described as

P = (a → Pa’) � (b → Pb’) � (c → Pc’)
Q = (a → Q’)
R = (b → R’)
S = (c → S’)

The entire equation is

ALT = ((a → Pa’) � (b → Pb’) � (c → Pc’)) |[{a,b,c}|{a}|{b}|{c}]|
((a → Q’) ||| (b → R’) ||| (c → S’))

If more than one event is true then the choice will be non-deterministic. The choice can be made by a
fair or by a priority mechanism. The events a, b, and c are called guards of the alternative
composition. A guard can be input or output guarded.

The complexity of the ALT equation is of magnitude O(n), by which n is the number of parallel
channels out of P.


