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Abstract—the market of microelectronic fluidic arrays for 
biomedical applications, like DNA determination, is rapidly 
increasing. In order to evaluate these systems in terms of 
required Design-for-Test structures, fault simulations in both 
fluidic and electronic domains are necessary. VHDL-AMS can 
be used successfully in this case. This paper shows a highly 
testable architecture of a DNA Bio-Sensing array, its basic 
sensing concept, fluidic modeling and sensitivity analysis. The 
overall VHDL-AMS fault simulation of the system is 
presented. 

I. INTRODUCTION  
 In the framework of the European FP6 Network of 
Excellence “PATENT”, the (fault) modeling of fluidic 
components and the testing of fluidic bio-MEMS arrays by 
introducing Design-for-Test (DfT) structures is being 
investigated. To avoid the difficult testing of passive fluidic 
MEMS parts, e.g. the valves in a thermal-mechanical pump, 
the FlowFET [1] has been introduced as new fluidic 
transport device. It uses insulated gate electrodes on top of a 
fluidic channel, which causes a (bi-directional) fluidic flow, 
depending on the polarity of a high voltage being applied.  
 Testing of bio-sensing (disposable) arrays will be of 
crucial importance in terms of costs, quality and reliability. 
The capability of efficient structural test generation for 
detecting actual defects requires knowledge on anticipated 
defects, fault modeling and fault simulation, as well as 
insight where to insert Design-for-Test structures to enable 
controllability and observability. This means that the fault 
simulation of the entire multi-domain system is required 
under realistic defects to be expected in the fluidics as well 
as electrical domain. VHDL-AMS provides the possibilities 
to perform multi-domain fault simulations. Fluidic 
simulations [2] have formed the basis to derive the pressure 
distribution versus gate electrode under many conditions of 
the FlowFET. This data has been used to perform VHDL-
AMS array simulations, based on the FlowFET and fluidic 
crossovers. Beside fluidic behaviour, also the electronic 
behavior of all control and signal processing electronics has 

to be modeled and integrated in the overall electronic 
system behaviour. Co-simulation of electronic and fluidic 
domain VHDL-AMS fault simulations provide the designer 
useful information on how to detect/test anticipated defects 
in the multi-domain system, and also guidance with respect 
to the proper location of DfT structures.  

This paper is organized as follows: first the overall 
oscillator-based architecture of the DNA micro-electronic 
fluidic (MEF) bio-array is treated. Next, the DNA sensing 
principle is explained, and sensor and fluidic modeling 
elucidated. Subsequently the sensitivity of our oscillator 
approach is evaluated. Finally, the overall VHDL-AMS 
simulation is presented of the DNA MEF array and the 
effects of faults shown. 

 

II. ARCHITECTURE  OF   DNA  BIO-SENSING MEF ARRAY 
In recent years, much research has started up in 

electronically-based arrays for DNA detection, like e.g. [3]. 
One of the interesting approaches in that area makes use of 
DNA hybridization principles [4, 5]. Basically, a capacitor 
will change its value under the influence of DNA 
hybridization in a fluid if one side is covered with a label 
DNA. Fig. 1 shows the set-up of our capacitive DNA MEF 
array [6] based on the DNA hybridization principle. The 
fluidic flow is electronically controlled using FlowFETs [1]. 
The FlowFETs and hence fluidic flow is controlled by a 
microcontroller. The different capacitors with different label 
DNA on one side of the electrode are subsequently scanned 
by means of a multiplexer circuit. Each capacitor is then 
shortly connected to a single oscillator, which will start 
oscillating at a frequency determined by the capacitor. The 
number of transitions is counted during a time Tobs, and the 
resulting digital word is stored in a register. Obviously, this 
word is a measure for the degree of DNA hybridization of 
this particular capacitor. Each capacitor in the array will 
hence provide a unique word in this register. The actual 
construction has been discussed in [6]. 
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Figure 1.  Basic scheme of the DNA capacitive sensor array including 
signal-processing part. 

The combination of digital words provides data for 
recognition of the DNA sample. Special care has been paid 
with regard to testing this architecture, via the IEEE 1149.1 
standard (JTAG) port. The controller, digital counter and 
registers are tested using standard digital scan techniques. 
The oscillator can be tested using reference oscillations. 
Fluidic flow in the array can be monitored electronically by 
means (control-voltage level and addressing time) which 
have been previously described [7]. In the next sections, the 
DNA hybridization (FlowFET driven capacitor fluidic array, 
Fig. 1) and fluidic modeling are subsequently treated. 

III. SENSING ELEMENT MODEL 
In this section, an equivalent electrical RC circuit model 

for a sensing element is developed, which could be used to 
assess the impact of fault and degradation mechanisms. The 
sensing element is composed of two bare planar rare-mental 
electrodes in an electrolyte solution. The properties on the 
electrode/electrolyte interface are of importance because the 
sensing mechanism is to detect the variations of the interface 
capacitance and some degradation concerned with the 
interface properties, as such as bio-fouling or holes. An 
electrical double layer (EDL), which is composed of the 
compact layer and the diffusion layer, forms spontaneously 
near the electrode surface in the electrolyte. The total 
impedance ZT including the EDL and bulk solution is 
represented as a parallel RC circuit. R and C are dependent 
upon the applied potential frequency and electrolyte 
conductivity. At high frequencies, ZT is dominated by bulk 
solution and the EDL impedance is negligible. C tends to be 
a constant value of a parallel plate capacitor with the 
permittivity of bulk electrolyte; R is also a constant value 
that is inversely proportional to the conductivity. At low 
frequencies, the EDL effect is included in ZT. Therefore, the 
signal frequencies in the sensing element must be in low 
range to extract the EDL properties, normally lower than 
100Hz. A RC circuit model is shown in Fig. 2. CH and CD 
are the capacitance of the compact-layer and the diffusion-
layer respectively; RD and Rb are the diffusion-layer 
resistance and the bulk resistance. 
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Electrode

Electrolyte  

Figure 2.  Equivalent electrical model for the electrode/electrolyte. 

There is no resistance effect in the compact-layer because 
the ions in this layer are to a first approximation 
immobilized. The effect of DNA hybridization and surface 
degradation could be easily expressed in this model and 
detected by for example oscillation-based testing (OBT). But 
in using OBT, a problem arises, that the variations of the 
oscillation frequency would feedback to the system and 
affect the RC values in the equivalent model in a real sensing 
system; hence sufficient attention is required to solve this 
properly. The effectiveness of this model for DNA 
hybridization process is explained by referring to Fig. 3. In 
the case of a bare electrode, the overall EDL capacitance is 
dominated by the diffusion-layer. However, after 
functionalization and immobilization of probe DNA onto the 
electrode, a bio-layer is formed on the electrode surface 
which mainly affects the dielectric constant and the length of 
the compact layer, while the dielectric constant and the 
length of the diffusion-layer are preserved.  

 

Figure 3.  DNA Hybridization Process in EDL range. 

Thus, the overall EDL capacitance is dominated by the 
compact-layer capacitance. Finally in the case of a 
hybridized electrode, an increase in both the layer thickness 
and the dielectric constant is observed in the compact-layer. 
The decrease of the capacitance of the compact-layer 
resulting from DNA hybridization is very close to the 
decrease of the overall capacitance for every single sensing 
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element and could be detected. The previous model and 
experimental data was used for modeling the sensing part in 
VHDL-AMS. The equivalent values in permeability and 
oxide thickness are shown below in Fig. 4 for four regions 
subsequently: bare electrode, functionalization (label DNA), 
sample DNA hybridization and a failure. 

 

Figure 4.  VHDL-AMS simulation input (εr and tox) in the case of a bare 
Au electrode, functionalization, DNA hybridization and failure. 

IV. FLOWFET FLUIDIC MODELING 
 In an implementation using fluidic channels, and the 
sensing part located in a “reactor” well, a controlled fluidic 
flow is preferred. This implementation takes into account the 
isolated electrodes of FlowFETs, and the direct contact 
electrodes of the sensing part.  The latter can be put to the 
“drain” voltage of the FlowFETs.  
 Extensive fluidic (3D) FlowFET simulations have been 
carried out under fault-free as well as realistic faulty (e.g. 
oxide pin-hole) conditions [1, 2], after which VHDL-AMS 
(fault) models have been developed. This has not been done 
before in fluidics. 

 >            <               -- gate electrode --                >        < 

 

Figure 5.  CFD-ACE 3-D velocity simulation of the FlowFET in 
longitudinal direction. 

 A fluidic velocity simulation in a section of a fluidic 
channel with on top an insulated electrode (FlowFET) is 
shown in Fig. 5. Based on the previous simulation data, a 
VHDL-AMS model was derived via fitting techniques for a 
FlowFET of rather pressure versus gate voltage. It has been 
further extended to VHDL-AMS simulations of a Micro-
Electronic-Fluidic (MEF) array based on FlowFETs and 
cross-channels, in order to assist the designer in the proper 
choice of test signals and additional observation points to 
guarantee the quality. The simulation result is shown in Fig. 

6, of a four by four array of FlowFETs. Two inputs are 
subsequently activated, and jointly dumped in a reaction 
well, resulting in the addition of fluids. Any problem in the 
FlowFETs (e.g. oxide breakdown) or fluidic channels (e.g. 
jamming, leakage) will immediately show up. The 
combination of straight-forward electronic VHDL-AMS 
descriptions (oscillator, registers etc.) and the sensing and 
fluidic VHDL-AMS descriptions, will enable the designer 
full (fault) simulation of this multi-domain system. 

 

Figure 6.  VHDL-AMS simulation result of a fluidic transport array (4 x 
4), including pressures involved and flow. The last graph shows the 
accumulation of fluid in a reactor well. 

In the next section, we will elucidate on the sensitivity of 
the oscillator with regard to the expected capacitive 
variations due to hybridization. 

 

V. OSCILLATOR DESIGN 
A sensitive and reliable oscillator is a key component for 

the bio-sensing array system. There exist many types of 
oscillators such as crystal oscillators, LC oscillators, RC 
oscillators etc. However, one important feature for our 
system is the possibility to realize the oscillator in a CMOS 
technology. Consequently, we have chosen to look for 
simple RC oscillators. In particular, two potential 
architectures have been investigated depending whether only 
one or both the electrodes of the capacitive sensor can be 
accessed. It turns out that both (RC relaxation and Schmitt-
trigger based) result in similar behavior. 

The first architecture is a very simple CMOS relaxation 
oscillator that uses both the electrodes of the sensor. As 
illustrated in Fig. 7, it makes use of two inverters together 
with an RC network. This architecture has been chosen 
because it is extremely simple to integrate. It provides a 
digital signal at a frequency equal to: 

RC2.2
1fosc =          (1) 

For a given value of the sensor capacitance, the nominal 
oscillation frequency can then be easily adjusted in the 
desired range by choosing an appropriate value for the 
resistance of the RC network. Fig. 8 gives a transient 
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simulation result for an oscillator using the following design 
parameters: R=10kΩ, C=1nF (nominal value). 
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Figure 7.  CMOS relaxation oscillator. 

Both inverters are standard cells taken from a foundry 
design library: L=0.8µm, WP=36µm and WN= 20µm.  
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Figure 8.  Transient simulation of the CMOS relaxation oscillator 

This oscillator provides a digital signal at a frequency of 
about 45 kHz. In Fig. 9, a parametric analysis is given to 
study the response of the oscillator frequency as a function of 
the sensor capacitance variation. It is observed that an 
increase in the oscillator frequency results if the sensor 
capacitance decreases. Considering a nominal value of 1nF 
for the sensor capacitance in case of bare gold electrodes and 
a deviation of about 50% after DNA hybridization, the 
oscillation frequency is increased from 45 kHz up to 85 kHz. 
This frequency variation is sufficient to be processed by 
standard electronics. In case of a faulty device, we expect to 
have a much lower value for the sensor capacitance, which 
will result in a much higher oscillation frequency. Note that 
due to the 1/C dependency of the oscillation frequency, one 
can expect a very good sensitivity with respect to failure 
mechanisms producing a decrease of the sensor capacitance. 
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Figure 9.  Oscillator frequency as a function of the sensor capacitance. 

VI. VHDL-AMS SIMULATION OF MEF DNA ARRAY 
 Also the electronic part of the capacitive DNA MEF array 
was completely modeled and fault simulated using VHDL-
AMS providing full insight in the entire fluidic-electronic 

system to the designer. The control signals and results, based 
on previous data and modeling are given in Fig. 10. Co-
simulation of electronic and fluidic domain VHDL-AMS 
fault simulations provide the designer information on how 
to detect/test anticipated defects in the multi-domain system. 
The last signal shows the oscillator response under the four 
conditions of bare electrode, functionalization, hybridization 
and a defect.  

 

Figure 10.  VHDL-AMS simulation result of the oscillation-based DNA 
sensor array. The last signal shows the oscillation frequency in the previous 
situations (Fig. 4). 

VII. CONCLUSIONS 
An architecture of a DNA bio-sensing MEF array has 

been presented. The front-end capacitive sensing and 
FlowFET modeling has been discussed.. The detection 
sensitivity using an oscillation–based technique has been 
treated. Overall VHDL-AMS fault simulation has been used 
to evaluate the architecture with respect to its sensitivity to 
detect faults. 
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