
Platform-independent dynamic reconfiguration of distributed applications

João Paulo A. Almeidaa, Marten van Sinderena, Luís Ferreira Piresa and Maarten Wegdama, b

aCentre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE, Enschede, The Netherlands

bLucent Technologies, Bell Labs Advanced Technologies EMEA Twente
Capitool 5, 7521 PL, Enschede, The Netherlands

{alme,sinderen,pires}@cs.utwente.nl, wegdam@lucent.com

Abstract

The aim of dynamic reconfiguration is to allow a
system to evolve incrementally from one configuration to
another at run-time, without restarting it or taking it off-
line. In recent years, support for transparent dynamic
reconfiguration has been added to middleware platforms,
shifting the complexity required to enable dynamic
reconfiguration to the supporting infrastructure. These
approaches to dynamic reconfiguration are mostly
platform-specific and depend on particular
implementation approaches suitable for particular
platforms. In this paper, we propose an approach to
dynamic reconfiguration of distributed applications that
is suitable for application implemented on top of different
platforms. This approach supports a platform-
independent view of an application that profits from
reconfiguration transparency. In this view, requirements
on the ability to reconfigure components are expressed in
an abstract manner. These requirements are then satisfied
by platform-specific realizations.

1. Introduction

The reliance on distributed systems constrains the
possibility of restarting them or taking them off-line. It is
usually not acceptable, e.g., for economical or safety
reasons, to cause major disruptions in the service provided
by these systems [9]. The aim of dynamic reconfiguration
[5, 6, 9, 17] is to allow a system to evolve incrementally
from one configuration to another at run-time.
Reconfiguration can be needed, e.g., because the
resources the system is using will no longer be available,
or the behaviour of the system needs to be adapted by
replacing some of its components.

Developing systems that can be dynamically
reconfigured is a complex task, since a developer must
ensure that dynamic reconfiguration results in a correct
and useful system. In recent years, support for different
QoS (quality-of-service) mechanisms, including dynamic
reconfiguration, load-balancing and replication
mechanisms, has been added to middleware

infrastructures [4, 16, 17]. This results in a shift in the
complexity required to satisfy QoS constraints from the
application to the supporting infrastructure. QoS
mechanisms implemented in middleware are application-
independent (i.e., generic to different applications) and to
a large extent transparent to application developers (i.e.,
they hide from application developers the complexity
required to achieve dynamic reconfiguration).

Ideally, it should be possible to leverage the benefits of
transparent dynamic reconfiguration (and other
transparent QoS mechanisms) to distributed applications
regardless of the particular middleware platform on top of
which these applications are implemented. However, most
approaches to dynamic reconfiguration are platform-
specific, in that they depend on mechanisms available on a
particular middleware platform, or even on details of a
specific implementation of a platform.

In this paper, we propose an approach to dynamic
reconfiguration that enables the reuse of generic dynamic
reconfiguration functionality in different middleware
platforms, while maintaining the separation of application
logic and dynamic reconfiguration concerns. When
applicable, our approach profits from the availability of
middleware extension mechanisms, but it does not depend
on these mechanisms.

Our approach is based on the Model-Driven
Architecture (MDA) [10, 11]. In MDA development,
particular attention is paid to separately modelling and
explicitly relating platform-independent and platform-
specific aspects of a distributed application. A common
pattern in MDA development is to define a platform-
independent model (PIM) of a distributed application, and
to apply (parameterised) transformations to this PIM to
obtain one or more platform-specific models (PSMs). The
main benefit of this approach stems from the possibility to
derive different alternative PSMs from the same PIM
depending on the target platform, and to partially
automate the model transformation process and the
realization of the distributed application on specific target
platforms. Models can be described in languages such as
UML or specializations of UML [14] or other suitable
design languages.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

In our approach, we prescribe the use of platform-
independent models when developing distributed
applications. In these models, requirements on the ability
to reconfigure components are expressed in an abstract
manner. These requirements are then satisfied by
platform-specific realizations, in platforms that offer
different levels of support to dynamic reconfiguration and
different opportunities for extension. We also provide
some criteria for choosing between different realization
strategies.

This paper is further structured as follows: section 2
provides some background on platform-independence;
section 3 presents how dynamic reconfiguration is
supported in platform-independent modelling; and, section
4 discusses realizations of platform-independent models in
different platforms. Finally, section 5 presents some
conclusions and outlines some future work.

2. Platform-independent design

Platform-independence is a quality of a model that
relates to the extent to which the model abstracts from the
characteristics of particular technology platforms. In order
to refer to platform-independent or platform-specific
models, one must define what a platform is. For the
purpose of this paper, we assume that distributed
applications are ultimately realized in some specific
object- or component-middleware technology that
supports operation invocation and asynchronous message
exchange, such as CORBA [12], .NET [8], and Web
Services [18, 19]. Hence, a platform corresponds
ultimately to some specific middleware technology. The
goal of platform-independence is to facilitate the
realization of a distributed application on top of different
middleware platforms.

During platform-independent modelling, the
application developer identifies some concerns that are
postponed to platform-specific realization. These concerns
determine the characteristics of what we call an abstract
platform (as we have proposed in [2]). Capabilities of a
concrete platform are then used during platform-specific
realization to support the characteristics of the abstract
platform. For example, if a platform-independent design
contains application parts that interact through operation
invocations, then support for operation invocation is a
characteristic of the abstract platform. If CORBA is
selected as a target platform, this characteristic can be
mapped to CORBA operation invocations.

Characteristics of an abstract platform may be implied
by the set of design concepts used for describing the
platform-independent model of a distributed application.
These concepts are often inherited from the adopted
modelling language. For example, the exchange of
“signals” between “agents” in SDL [7] may be considered

to define an abstract platform that supports reliable
asynchronous message exchange. These concepts may
also be specializations of concepts from the adopted
modelling language. For example, in UML 2.0 [14], the
reliability characteristics of “signals” exchanged between
“objects” is a semantic variation point. A UML Profile
may specialize UML 2.0 and state that “signals” are
exchanged reliably, thereby defining an abstract platform
that supports reliable asynchronous message exchange.

Instead of implying an abstract platform definition
from the adopted set of design concepts for platform-
independent modelling, it may be useful or even necessary
to define the characteristics of an abstract platform
explicitly, resulting in one or more separate and reusable
design artefacts. During platform-independent modelling,
parts of a pre-defined abstract platform model may be
composed with the model of the distributed application.
For example, while UML 2.0 does not support group
communication as a primitive design concept, it is
possible to specify the behaviour of a group
communication sub-system in UML. This sub-system is
then re-used in the design of the distributed application.
The abstract platform we present in section 3 is another
example of this approach.

The different approaches to define an abstract platform
are depicted schematically in Figure 1.

Explicitly identifying an abstract platform brings
attention to balancing between two conflicting goals: (i)
platform-independent modelling, and (ii) platform-specific
realization. On the one hand, an abstract platform
indicates directly the support available for designers
during platform-independent modelling, and therefore,
reflects the needs of application designers, including
portability requirements. On the other hand, an abstract
platform is established by considering the set of potential
target platforms and their (common and diverging)
characteristics; this bottom-up knowledge is useful to
reduce the design space to be explored for platform-
specific realization.

Our problem at hand is then reformulated into: (i)
defining an appropriate abstract platform that supports
dynamic reconfiguration transparently, and, (ii) defining
transformations from a PIM of a distributed application
that relies on this abstract platform to different target
middleware platforms.

3. Support for dynamic reconfiguration in an
abstract platform

Reconfiguration is specified in terms of entities and
operations on these entities. The definition of entity
depends on the level of granularity of reconfiguration.
Examples of entities are objects, groups of objects,
components, groups of components, sub-systems,

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

modules, bindings and groups of bindings. Typical
operations on entities are replacement, migration, creation
and removal. In this paper, we focus our attention on
component replacement and migration:
1. Component replacement allows one version of a

component to be replaced by another version, while
preserving component identity. We use the term
version of a component to denote a set of
implementation constructs that realizes the component.
The new version of a component may have functional
and QoS properties that differ from the old version.
Nevertheless, the new version of the component should
satisfy both the functional and QoS requirements of the
environment in which the component is inserted; and,

2. Component migration means that a component is
moved from its current node to a destination node.
Component migration can be necessary, e.g., when a
certain node has to be taken offline.
A system evolves incrementally from its current

configuration to a resulting configuration in a
reconfiguration step. A reconfiguration step is perceived
as an atomic action from the perspective of the
application. We distinguish between simple and
composite reconfiguration steps. A simple reconfiguration
step consists of the execution of a reconfiguration
operation that involves a single affected component. A
composite reconfiguration step consists of the execution
of reconfiguration operations involving several affected

components. Composite steps are often required for
reconfiguration of sets of related components. In a set of
related components, a change to a component A may
require changes to other components that depend on A’s
characteristics.

We introduce dynamic reconfiguration concepts in a
platform-independent design by specializing the notion of
a component, distinguishing between reconfigurable and
non-reconfigurable components. Reconfigurable
components can be migrateable, replaceable or both
migrateable and replaceable. This allows a designer to
establish these distinctions at a platform-independent
level, specifying which components may be manipulated
by reconfiguration operations in reconfiguration steps. We
represent these specializations of the component concept
in UML 2.0 [14] by introducing the stereotype
«reconfigurablecomponent», which can be applied to a UML
component. This stereotype has tagged values
isReplaceable and isMigrateable. UML statecharts can be
used to specify the behaviour of (reconfigurable)
components.

A (composite) reconfiguration step is specified by a set
of simple reconfiguration steps. The definition of a
replacement reconfiguration step identifies a component
to be replaced and establishes its new version. The
definition of a migration reconfiguration step identifies the
component to be migrated and establishes its new
location. The location should be specified in terms of

set of design
concepts +
constraints

…

set of
pre-defined

design artefacts

incorporation of
pre-defined design

artefacts

composition of
specific design

pre-defined
artefacts from

abstract platform

set of design
concepts +
constraints

composition of
specific design

distributed
application

model

abstract
platform
definition

implied
abstract
platform

distributed
application

model

(a) (b)

Figure 1. Abstract platforms defined by (a) choice of design concepts and
(b) pre-defined design artifacts

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

abstract (QoS) properties of the new location. A
reconfiguration manager component represents the
capabilities of the abstract platform of handing
reconfiguration steps. Reconfiguration steps are
committed to and handled by the reconfiguration manager.
The interface of the reconfiguration manager is an
abstraction of the IDL interfaces presented in [17].

Figure 2 depicts the definition of our abstract platform
in terms of a UML profile and the reconfiguration
manager component.

4. Platform-specific realization

Platform-specific realization may be straightforward
when the capabilities of the selected concrete platform
correspond (directly) to the characteristics of the abstract
platform. When this is not the case, we distinguish two
contrasting extreme approaches to proceeding with
platform-specific realization:
1. Adjust the concrete platform, so that it corresponds to

the abstract platform. In this approach, the boundary
between abstract platform and platform-independent
distributed application model is preserved during
platform-specific realization. This implies the
introduction of some platform-specific abstract

platform logic to be composed with the concrete target
platform, and;

2. Adjust the platform-specific model of the application,
while preserving the requirements specified at
platform-independent level, so that the application
model can be composed with the target platform
model. This may imply the introduction of (e.g., QoS)
mechanisms in the platform-specific design of the
application.
In this paper, we focus on approach 1 to realization,

since it enables a clear separation of application and
infrastructure functionality, as defined by the abstract
platform.

Approach 1 implies the introduction of some platform-
specific abstract platform logic to be composed with the
concrete target platform. The nature of this composition
depends on the particular requirements for the abstract
platform. It may be possible to implement the abstract
platform logic on top of the concrete platform (as depicted
in Figure 3 alternative 1a). Nevertheless, this composition
may also imply the introduction of platform-specific
(QoS) mechanisms in the middleware layer (as depicted in
Figure 3, alternatives 1b and 1c). In this case,
implementation restrictions imposed by the concrete
platform play an important role.

Figure 2. Support for dynamic reconfiguration in an abstract platform

ReconfigurationManager
«component»

ReconfigurationManager
«component»

Client
«component»

«reconfigurablecomponent»
Server BackEndServer

«reconfigurablecomponent»

UML profile extending
UML meta-model

<<stereotype>>

Reconfigurablecomponent

isReplaceable : boolean

isMigrateable : boolean

<<metaclass>>

Component
(from Basic Components)

<<metaclass>>

Class
(from Structured Classes) <<interface>>

ReconfigurationManager

create_reconfiguration_step

commit_reconfiguration_stepabstract platform
definition

pre-defined artefacts

specific
application

using abstract
platform

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Figure 3 illustrates possible implementations of the
different approaches to platform-specific realization.

Different middleware platforms offer different
possibilities for the embedding of QoS mechanisms in the
platform. In some platforms, modification or extension of
internal components of the platform may be required
(Figure 3, 1c). This may be undesirable or impossible for
proprietary platforms (for which there is often no access
to the platform’s source code), or it may require
agreement through long standardization cycles for
platforms based on open standards. In addition, internal
components of a platform are typically vendor-specific.

Extension of the concrete platform in a non-intrusive
manner is often the preferable way to adjust the concrete
platform (Figure 3, 1b). Techniques that can be used for
non-intrusive extension include interceptors with message
reflection [12], aspect-oriented programming and
composition filters [3]. Using these extension
mechanisms, it may be possible to separate dynamic
reconfiguration extensions from core standardized
middleware functionality. This approach, however,
depends on the availability and capabilities of
standardized extension mechanisms in middleware
platforms.

We have built a Dynamic Reconfiguration Service
(DRS) for CORBA that follows approach 1b. This service
provides reconfiguration transparency for CORBA
application objects, supporting both simple and composite
reconfiguration steps. The DRS has been implemented by
extending CORBA implementations through the use of
portable interceptors, which are standardized extension
mechanisms for CORBA ORB implementations [12]. For
details on the dynamic reconfiguration algorithm and the

DRS implementation please refer to [1, 17]. The DRS
freezes on-demand interactions with objects that are being
reconfigured, driving the application to what is called a
reconfiguration safe state. In this state, the DRS applies
the reconfiguration steps, and, after that, unfreezes the
interactions. Reconfigurable objects should be classified
into active and non-active objects, which should be done
by developers during PIM marking (parameterisation of
transformation). The service requires that state-access
operations be included for reconfigurable objects.
Placeholder for these operations should be included in the
PIM-PSM transformation. Depending on the availability
of behavioural models in the PIM, state derivation and
active/non-active classification could be automated during
transformation.

In the absence of possibilities for platform extension,
approach 1a may still prove to be useful. This is the case
for the realization on Web Services hosting platforms.
Web Services hosting platforms entail a number of
platforms that support the hosting of endpoints described
in WSDL [18] and that interact through SOAP [19].
Examples of these platforms are J2EE [15] and .NET [8].
Since Web Services do not imply a particular hosting
infrastructure, these platforms provide their own
containers and (server-side and client-side) stubs. The
suitability of approaches 1b and 1c depends on the level
of extension or adjustment that is possible with these
containers and stubs. Since we would like to consider an
approach for Web Services that does not depend on the
hosting platform choice, approach 1a is preferred. The
transformation from PIM to PSM can introduce proxy
web services that realize the same functionality as
portable interceptors in the CORBA DRS.

(1b) (2)

Platform-Independent
Application Model

Abstract-Platform

Application (PSM)

Abstract-Platform Logic

Concrete -Platform

Application (PSM)

Concrete -
Platform

Abstract-
Platform

Logic

(1a) (1c)

Application (PSM)

Concrete -Platform

Modified
Concrete -Platform

Application (PSM)

Figure 3. Alternative approaches to platform-specific realization

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

5. Concluding remarks

By separating infrastructure and application concerns
the development of distributed applications can be
facilitated. We have shown an approach to the separation
of dynamic reconfiguration and application functionality
that is suitable for applications being realized on top of
different middleware platforms. In this approach, the
application developer does not have to be concerned with
mechanisms for dynamic reconfiguration. Support for
dynamic reconfiguration is provided as extensions to
middleware platforms or as reusable components that are
composed (or “woven”) with the application during
platform-specific realization.

Platform-independent models are decoupled from their
corresponding platform-specific counterparts by
transformations, thereby adding a new dimension to the
discussion on the separation of application and
distribution infrastructure functionality. There is some
degree of freedom between capabilities offered by an
abstract platform and capabilities offered by concrete
platforms. Identifying an abstract platform brings attention
to balancing between two conflicting goals: (i) platform-
independent modelling, and (ii) platform-specific
realization. It makes no sense specifying platform-
independent models of applications that cannot be
realized in available target platforms. Bottom-up
knowledge of the available platforms and their
extension/adaptability capabilities is therefore
fundamental to define appropriate abstract platforms.

We expect that other QoS mechanisms can be
supported with the approach we have described, including
load balancing, caching and replication, and other
mechanisms that profit from distribution to satisfy QoS
constraints. Ideally, it should be possible to select and
combine different mechanisms when designing a
distributed application. We intend to investigate
modularisation criteria for abstract platform definitions to
enable this combination. A developer should then be able
to compose an abstract platform from abstract platform
definition “modules”. This modularisation would ideally
be reflected in transformation specifications and
ultimately at platform-specific level.

Acknowledgements

This work is partly supported by the European
Commission, in context of the IST project MODA-TEL
(http://www.modatel.org), and by the Dutch Ministry of
Economic Affairs, in the context of the Equanet project
(http://equanet.cs.utwente.nl).

References

[1] J. P. A. Almeida, M. Wegdam, M. van Sinderen, L.
Nieuwenhuis. Transparent dynamic reconfiguration for
CORBA, Proc. 3rd Intl. Symposium on Distributed Objects
& Applications (DOA 2001), Rome, Italy, Sept. 2001, pp.
197-207.

[2] J. P. A. Almeida, M. van Sinderen, L. Ferreira Pires, D.
Quartel. A systematic approach to platform-independent
design based on the service concept, Proc. 7th Intl. Conf. on
Enterprise Distributed Object Computing (EDOC 2003),
Brisbane, Australia, Sept. 2003, pp. 112-123.

[3] L. Bergmans and M. Aksit, Composing crosscutting
concerns using composition filters, Communications of the
ACM, Vol. 44, No.10, Oct. 2001, 51-57.

[4] C. Bidan, V. Issarny, T. Saridakis, A. Zarras. A dynamic
reconfiguration service for CORBA, Proc. IEEE Intl. Conf.
on Configurable Distributed Systems, May 1998.

[5] J. Kramer, J. Magee. Dynamic configuration for distributed
systems. IEEE Trans. on Software Engineering 11(4), April
1985, pp. 424-436.

[6] J. Kramer, J. Magee. The evolving philosophers’ problem:
dynamic change management. IEEE Trans. on Software
Engineering 16(11), Nov. 1990, pp. 1293-1306.

[7] ITU-T, Recommendation Z.100 – CCITT Specification and
Description Language, International Telecommunications
Union (ITU), 2002.

[8] Microsoft Corporation, Microsoft .NET remoting: A
technical overview, July 2001, available at
http://msdn.microsoft.com/library/

[9] K. Moazami-Goudarzi. Consistency preserving dynamic
reconfiguration of distributed systems. Ph.D. thesis, Imperial
College, London, UK, March 1999.

[10] Object Management Group, Model driven architecture
(MDA), OMG document ormsc/01-07-01, July 2001.

[11] Object Management Group, MDA-Guide, V1.0.1, omg/03-
06-01, June 2003.

[12] Object Management Group, Common Object Request
Broker Architecture: Core Specification, Version 3.0, OMG
document formal/02-12-06, Dec. 2002.

[13] Object Management Group, Online Upgrades Draft
Adopted Specification, OMG document ptc/02-07-01, July
2002.

[14] Object Management Group, UML 2.0 Superstructure,
ptc/03-08-02, Aug. 2003.

[15] Sun Microsystems, Java Web Services Developer Pack,
available at http://java.sun.com/webservices/downloads/

[16] L. A. Tewksbury, L. E. Moser, P. M. Melliar-Smith,
Coordinating the simultaneous upgrade of multiple CORBA
objects, Proc. 3rd Intl. Symp. on Distributed Objects and
Applications (DOA 2001), Rome, Italy, Sept., 2001.

[17] M. Wegdam, Dynamic reconfiguration and load
distribution in component middleware, Ph.D. Thesis,
University of Twente, the Netherlands, 2003.

[18] World Wide Web Consortium, Web Services Description
Language (WSDL) 1.1, W3C Note, March 2001, available at
http://www.w3.org/TR/wsdl

[19] World Wide Web Consortium, SOAP Version 1.2 Part 1:
Messaging Framework, W3C Proposed Recommendation,
May 2003, available at http://www.w3.org/TR/soap12-part1/

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

	footer1:

