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Abstract

Bluetooth polling, also referred to as Bluetooth MAC
scheduling or intra-piconet scheduling, is the mechanism
that schedules the traffic between the participants in a Blue-
tooth network. Hence, this mechanism is highly determining
with respect to the delay packets experience in a Bluetooth
network. In this paper, we present a polling mechanism that
provides delay guarantees in an efficient manner, and we
evaluate this polling mechanism by means of simulation. It
is shown that this polling mechanism is able to provide de-
lay guarantees while saving as much as possible resources,
which can be used for transmission of best effort traffic or
for retransmissions.

1. Introduction

Bluetooth [4] is a wireless access technology, which was
initially developed as a replacement for cables. However,
Bluetooth has evolved to an access technology that can be
used in new areas not comprised before. We believe that
voice and video will be involved in these new areas, and
that applications dealing with voice and video will become
available. Applications that deal with voice and video re-
quire a network that causes small packet delays or at least
bounded packet delays. In order for Bluetooth to be useful
to such applications, it must ensure that packet delays are
low or at least bounded.
Bluetooth uses a polling mechanism to divide bandwidth
among the participants. Together with error recovery, pag-
ing, and inquiry this polling scheme is highly determin-
ing with respect to the packet delay. Polling mechanism
in Bluetooth are studied in [7, 3, 8, 12, 6, 5], and [1] (see
also Section 3). However, none of the studied pollers is able
to guarantee packet delay bounds in its current state. This

paper presents a polling mechanism that is able to guaran-
tee delay bounds in an efficient manner. Section 2 summa-
rizes the Guaranteed Service approach of providing packet
delay guarantees. Section 3 shows how the Guaranteed Ser-
vice approach can be implemented in Bluetooth. Further,
section 4 evaluates the proposed implementation. Finally,
section 5 concludes this paper and mentions future work.

2. The Guaranteed Service approach

The Guaranteed Service approach [13] (GS) makes use
of the concept that packet delay in a network is a function of
the arrival pattern of packets, the packet sizes, and the way
these packets are served throughout the network. It states
that if a flow is described using a token bucket [11] flow
specification, and if each network element in the GS path
computes and exports parameters that describe the way it
provides a requested fluid model bandwidth�, then a delay
bound ���� can be computed given a requested fluid model
bandwidth � by
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(1)

The parameters that each network element exports represent
the maximum additional queueing delay a packet will expe-
rience compared with the case which a dedicated wire of
bandwidth � (fluid model) would have been used in. More
precisely, each network element exports the rate-dependent
deviation�, and the rate-independent deviation � from the
fluid model, while ���� and ���� are the sum of the de-
viations taken over all network elements in the GS path.
Furthermore, the token bucket specification consists of peak
rate �, token rate �, bucket size 	, minimum policed unit 

and maximum transfer unit� . Summarizing, if an applica-
tion specifies its traffic using a token bucket traffic specifi-
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cation, and if the network elements in the GS path export
their deviation from the fluid model, then, provided that
���� � ����, a fluid model service rate � can be requested
such that a desired delay bound ���� is achieved.

3. Implementation of the Guaranteed Service
approach in Bluetooth

Bluetooth is a wireless access technology that operates
in the 2.4 GHz ISM (Industrial Scientific Medical) band.
Bluetooth nodes are either a master or a slave, and commu-
nication only takes place between the master and a slave,
and never directly between two slaves or two masters. One
master and up to seven slaves can be affiliated with each
other and form a so-called piconet. A slave can be affiliated
with multiple masters, making it possible to interconnect
piconets forming a so-called scatternet. Bluetooth is a time-
slotted access technology where each second is divided into
1600 time slots. Time slots are either downlink slots, i.e.
from the master to a slave, or uplink slots, i.e. from the ad-
dressed slave to the master. Data is exchanged between the
master and a slave using baseband packets that cover one,
three or five time slots, while other protocols might be used
on top of Bluetooth (e.g. IP over Bluetooth). The traffic
within a piconet is controlled by the master of that piconet
such that a slave is only allowed to transmit if it was ad-
dressed (by the master) in the previous time slot. In other
words, the master polls the slaves to allow them to trans-
mit data if available. Bluetooth supports two types of links
between a master and a slave: a Synchronous Connection-
Oriented (SCO) link and an Asynchronous Connection-Less
(ACL) link. Baseband packets sent over an SCO link (SCO
packets) cover one time slot while baseband packets sent
over an ACL link can cover one, three, or five time slots.
In case of an SCO link between the master and a slave, the
master polls that slave at regular intervals. The addressed
slave can then respond with an SCO packet. In case of
an ACL link, polling can be done in many different ways.
The difference between the polling mechanisms is related
to the order which slaves are polled in and the service dis-
cipline used to serve a slave. For instance, the Fair Ex-
haustive Poller (FEP) [7] and the Efficient Double Cycle
(EDC) poller [3] maintain a polling table in order to avoid
polling inactive slaves. The Head-Of-Line priority (HOL
priority) poller [8] and the Demand-Based poller [12] deal
with polling ACL slaves in the presence of SCO channels.
The flow bit based pollers [6] and the sniff based poller [5]
make use of existing Bluetooth capabilities to respectively
track the activity of a slave and to regulate the poll rate. Fi-
nally, the Predictive Fair Poller (PFP) [1] predicts for each
slave whether data is available or not, and it keeps track of
the fairness. Based on these two aspects it decides which
slave to poll next. A distinguishing feature of the Predictive

Fair Poller is that it explicitly takes fairness into account.
By proper definition of fairness with respect to providing a
particular type of QoS, this poller can be extended to pro-
vide that type of QoS.
Higher layer packets cover one or more baseband packets.
The way in which higher layer packets are segmented into
baseband packets depends on the segmentation policy and
the allowed baseband packet types. For instance, a segmen-
tation policy may require that the largest available baseband
packet is used, unless there is a smaller baseband packet
available in which the remainder of the higher layer packet
fits. Note that the ratio of baseband header size and guard
space to baseband packet size decreases for larger baseband
packets. Hence, the larger the used baseband packet the
higher the net number of bytes per slot. Consequently, a
slot rate cannot directly be translated to a bit rate. Further-
more, with respect to the upstream traffic (slave to master),
the master lacks knowledge about the availability of data at
a slave. As a result, the master sometimes needs to poll a
slave more often than needed.
The provisioning of Guaranteed Service in a network re-
quires the source to provide a traffic specification and a
desired delay bound, and it requires the receiver to calcu-
late the proper bandwidth request. Furthermore, it requires
the network elements to compute and export their devia-
tion from the fluid model, and it requires a mechanism (not
necessarily RSVP) that transports all specifications and re-
quests as well as the exported values, between the source,
the destination, and the intermediate network elements. Fi-
nally, it requires the network elements to perform admis-
sion control, and to schedule the Guaranteed Service traffic
as promised. In this paper, we focus on the determination
of the � and � error terms, on the admission control, and
on the scheduling of the Guaranteed Service traffic. As the
� and � error terms and the admission control are directly
related to the polling mechanism (i.e. scheduling mecha-
nism), they are studied in the context of a polling mecha-
nism. First, we introduce a polling mechanism that plans
polls with a fixed interval. Next, we show the shortcom-
ings of this fixed interval poller and introduce a variable
interval poller, which is an improved version of the fixed
interval poller. Finally, we evaluate the proposed polling
mechanisms by means of simulation. Note that we study
the implementation of the Guaranteed Service in a single
piconet. In this paper, we restrict ourselves to an ideal radio
environment where no transmission errors occur and where
retransmissions are not needed. We assume that no inquiry
or paging procedures take place and thus that all the time
slots are available for data transmission. Furthermore, we
assume the availability of logical channels where a poll for
a QoS (e.g. Guaranteed Service) flow cannot result in BE
data to be transmitted, and where BE traffic and QoS traffic
are queued separately to prevent BE traffic from interfering
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Figure 1. Planning polls with a fixed time in-
terval.

with QoS traffic within a node.

3.1. Planning polls with a fixed time interval

Given the requested bandwidth (��) and the token bucket
specification (��,��,��,��,��) of a flow �, the poll rate that
must be supported can be computed. An obvious way to
poll at a given poll rate is to calculate the average inter-poll
time �� that results in the given poll rate, and to plan polls
with a time spacing equal to the calculated average inter-
poll time. This is shown in Fig. 1.

Let ����������� � be the transmission time (duration of both
upstream and downstream baseband packet) of the 	-th seg-
ment out of 
��� segments of the �-th packet that belongs to
flow �. Furthermore, let �� be the transmission time follow-
ing an unsuccessful poll, where an unsuccessful poll is a
poll that did not result in data belonging to flow �. The time
which a poll takes place at corresponds to the time which a
master to slave transmission starts at. In Bluetooth, the slave
starts its transmission at least one time slot (�
��� ms) after
the master started its transmission, dependent on whether
the master transmitted one, three or five slots to the slave.
Consequently, for that poll to results in data to be transmit-
ted from the slave to the master, that slave does not neces-
sarily has to have its data available for transmission at the
time the master starts its transmission to that slave. How-
ever, we require in our study the data to be available at the
time the master start its transmission. For instance, in Fig. 1,
data that becomes available at ��� (� �� � Æ, where Æ � �)
will not be served as a result of the poll at ��, but has to
wait for the next poll. Once the planned time for a poll ar-
rives, the poller can be busy polling another slave and also
multiple polls can be planned for the same time. Conse-
quently, a planned poll can be delayed by a period of at
most ��. We will discuss the determination of �� in Sec-
tion 3.1.2. It can be seen from Fig. 1 that a packet can ex-
perience an initial delay of �� � �� before the transmission
of its first segment begins. The poller may clear away this
initial delay by reserving a poll rate that is higher than the

poll rate that corresponds to the requested fluid model band-
width (��). However, the Guaranteed Service provides the
means to communicate this deviation to the requester (re-
ceiver). Hence, we accept this initial delay and propagate
it to the exported error terms, which may result in a higher
fluid model bandwidth (��) request.

3.1.1. Determining the value of ��

For the determination of �� we use Fig. 1, which shows a
worst case with respect to the delay a packet experiences.
Consider packet � of flow � with a size ���� (in bytes) that
will be broken up into 
��� segments. If this packet becomes
available at ��� , then it will not be served during the poll
at ��, but it will be served during the next poll, which is
planned for ��. The poll planned for �� can be delayed for
at most a time period ��, resulting in an initial delay of ���
��. As mentioned before, we decided to accept this initial
delay and to ensure that all the segments are served within
a time period ����

��
after the first actual poll (at ������ ��).

By means of proper determination of �� (see Section 3.1.2)
and by means of admission control (see Section 3.1.4), we
will ensure that the transmission of a packet � of flow � will
be completed at most a time period �� � �� � 
����� after
the moment it becomes available for transmission. In other
words, after experiencing an initial delay of �����, a packet
� of flow � will be served within a time period 
�����. Hence,
to ensure that, after an initial delay of �� � ��, all segments
of a packet � of flow � are served within a time period ����

��
,

the following must hold


����� �
����

��

� �� � ���� ���� (2)

and thus

�� �

����

����

��

� �� � ���� ���
 (3)

Let us introduce the poll efficiency ����� , which is the aver-
age number of bytes per poll that is associated with packet �
of flow �. The poll efficiency ����� is also a result of the seg-
mentation policy that is followed as well as the set of base-
band packet types that is allowed to be used. The minimum
poll efficiency of a flow � taken over all possible packet sizes
(i.e. for �� � ���� ���) is

����
��

� ���
��������	�

����


���

 (4)

Consequently, the maximum poll interval that always satis-
fies (3) is

�� �
����
��

��


 (5)
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a. Let ���� � ���
�����

������������ be the maximum transmis-

sion time of a segment in the Bluetooth piconet

b. Let �� � �
���

c. Let the accumulative service time be
���� � �

��� �
����

���
ceil� ��

	�
������ ,

where ����� � ���
���

������������ is the maximum transmis-

sion time of a segment belonging to flow �

d. If ���� � ��, then goto step h

e. Let �� � ����

f. If �� � �� (avoid infinite loop), then goto step h

g. Goto step c

h. End

Figure 2. Determination of ��.

3.1.2. Determining the value of ��

Each planned poll has to wait for an ongoing poll to finish,
which can also be a poll for the same flow. Furthermore,
polls for different flows can be planned for the same mo-
ment. If at random one of the planned polls is chosen and
executed, all the flows should take into account the fact that
they may have to wait for all the other flows, and hence
each flow � will experience the same large value of ��. On
the other hand, if each flow is assigned a priority and if polls
for a particular flow only have to wait for polls for flows that
are assigned a higher priority, the maximum time that the
planned polls have to wait for is minimized. Consequently,
we decided to assign each flow a priority, and to execute the
planned polls for flows with the highest priority first.
Consider the flow number being the priority value of a flow,
where a lower flow number corresponds to a higher prior-
ity. In order to determine the value of �� for flow �, the
algorithm from Fig. 2 can be followed. In that algorithm,
the value of �� is given an initial value of ����, which cor-
responds to the maximum transmission time of a segment
in the Bluetooth piconet. The reason for this is that ongoing
transmissions cannot be interrupted. If higher priority flows
are present, the value of �� is increased until ���� together
with the transmission time of the segments that should be
drained from these higher priority flows during a period ��
fit into the same period ��.

Flows can be given a flow number in the order in which
they have been accepted. However, maintaining another or-
der may lead to another �� for a flow �. In Section 3.1.4 we
will show how the Admission Control can take advantage

of this fact.

3.1.3. Exporting C and D terms

The � error term is the rate-dependent deviation from the
fluid model, while the � error term is the rate-independent
deviation from the fluid model. It is shown in [2] that the
the deviation Æ�� of the polling mechanism from the fluid
model with respect to serving flow � obeys

Æ�� � �� � ����

� � (6)

Substituting �� from (5) in (6) gives

Æ�� �
	���
��


�

� ����

� � (7)

The first term of (7) is rate-dependent and thus �� � 	���
��

.
The last term of (7) is rate-independent and thus �� �

����

� .

3.1.4. Admission Control

In section 3.1.2, we mentioned that a planned poll can be
delayed by an already ongoing poll, while this ongoing poll
may be serving the same flow. Furthermore, a planned poll
will always be delayed by waiting polls for flows with a
higher priority, where a waiting poll is a poll of which the
planned time has arrived, but which is waiting for execution.
However, a planned poll should never be delayed by waiting
polls for slaves with a lower priority, neither should it be
delayed by waiting polls for the same flow. The latter can
be achieved by ensuring that �� � ��. Substituting �� from
(5) results in

�� �
	���
��


�

� (8)

and thus


� �
	���
��

��
� (9)

From (9) we see that the allowed fluid model bandwidth
(
�) is inversely proportional to ��, and thus the lower ��
the higher the maximum fluid model bandwidth that can be
accepted. Furthermore, the higher the priority of a flow �

the lower the value of its ��. If we were to assign a new
GS flow a lower priority than the GS flows that are already
accepted, that new flow will have the highest � value, which
will possibly make it impossible to accept the new flow.
Furthermore, some already accepted GS flows may accept
an � value higher than the one they currently experience.
Hence, the Admission Control should reassign the priorities
such that all the GS flows, including the new one, comply
with (9). We assume the availability of logical channels dis-
tinguishing between QoS traffic and Best Effort (BE) traf-
fic, and that QoS traffic always has priority over BE traffic.
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Consequently, a poll for a GS flow in one direction also
gives the opportunity to transmit GS traffic in the opposite
direction. In other words, each GS poll of a slave implies an
opportunity to transmit GS data in either direction. Taking
this fact into account, we improve the Admission Control
routine in order to be able to accept more flows.
Consider a GS flow � in one direction and a GS flow � in
the opposite direction, which are set up between the mas-
ter and a slave S�, where �� � ��. Whenever slave S� is
polled, the next poll is planned no earlier than �� after the
planned time of the last poll, i.e. the minimum poll interval
is �� and, by definition, both flows have the same maximum
segment size. Knowing that flow � will piggyback on flow
�, the admission control should take into account only the
request from flow �.
Consider � � � accepted GS flows and a new request for a
GS flow. We propose the method pointed out in Fig. 3 of
reassigning the priorities and applying admission control.
Note that the number of GS request for which the value of
� will be changed can be minimized. For this, if a GS flow
in the opposite direction of the new GS flow for which a re-
quest has just been made exists, we assign the new GS flow
an initial priority value that equals the priority value that
is already assigned to its counterpart (GS flow in opposite
direction). Otherwise, we assign the new GS flow an ini-
tial priority value that equals the highest priority value until
then increased by one. Furthermore, let the search action in
step e of Fig. 3 be performed in descending order of initial
priority value.

3.2. Polling mechanism improvement

The fixed interval poller of Section 3.1 plans polls for a
flow � with a fixed interval ��. The poll interval �� is de-
termined taking into account the packet size ��� that is as-
sociated with the least number of bytes per poll (minimum
poll efficiency). This leads to three drawbacks. First, the
range of packet sizes may comprise more packet sizes (i.e if
�� � 	�). In that case, interval �� is too small when other
packet sizes than ��� are used, and flow � is then polled
more often than necessary. Second, if a planned poll for
flow � is delayed, the next poll will be planned for �� af-
ter the last time a poll for flow � was planned for, even if
that poll did not result in a GS segment of flow �. Finally,
planned polls are executed even if it is known that no GS
data is available (GS flow from master to slave).
These drawbacks do not adversely affect the performance of
the GS flows. On the contrary, polling a GS flow more often
than necessary will decrease the average delay of its pack-
ets. However, polling the GS flows more often than needed
consumes the resources that could otherwise be used for
retransmissions (in a non-ideal radio environment) and/or
for transmission of BE traffic. We propose three improve-

a. Store the current priorities

b. Let � be a set consisting of both the already accepted GS
flows and the new GS flow for which a request has just been
made, where card��� � �

c. Let � be a set consisting of GS flows, for which it is as-
sumed that no request has been made. Initially, we set
� � �

d. In�, for each two oppositely directed GS flows in which the
same slave is involved, the GS flow with the largest value of
� is moved from � to�

e. If in � there is a GS flow that if assigned priority card���,
still complies with (9) then assign priority card��� to that
flow and to its counterpart in � (if any) and remove the GS
flow from�. Otherwise, reject the new flow and goto step g

f. If card��� � � goto step c. Otherwise, accept the new flow
and goto step h

g. Restore the old priorities

h. End

Figure 3. Admission Control routine taking
piggybacking into account.

ments to eliminate these drawbacks. First, if a poll for flow
� resulted in a last segment of a packet with size ���� , then
plan the next poll a time ����

��
after the time the first poll for

packet 
 of flow � was planned for. Hence, postpone the
next poll a time ���� , where (see also (2))

���� �
����

��

� ������ � �
 (10)

Second, if a poll for flow � did not result in a GS segment of
flow �, then obviously no GS segment of flow � was avail-
able before that actual poll time. As a result, plan the next
poll a time period �� after the actual time of the last poll
for flow �. Finally, if at a planned poll time the poller finds
out that there is no GS traffic to serve by that poll, then that
poll is skipped. The poller has only knowledge of traffic
from the master to the slave, hence this improvement only
applies to GS flows that are directed from the master to the
slave.

If the source of flow � offers its data using the packet size
that leads to the minimum poll efficiency (������

), then the
next poll after each last segment is planned for exactly ��
after the last time a poll was planned for (i.e. ���� � �). The
determination of �� and ��, the exportation of the � and �
error terms and the admission control should take this worst
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Figure 4. Simulation setup.

case into account, hence they are the same as for the poller
presented in Section 3.1.

4. Evaluation

We introduced a poller named Predictive Fair Poller
(PFP) in [1]. This poller predicts the availability of data for
each slave, and it keeps track of fairness. Based on these
two aspects, it decides which slave to poll next. In the BE
case, a fair share of resources is determined for each slave,
and the fairness is based on the fractions of these fair share
of resources. In the QoS case, the QoS requirements are
translated to fair QoS treatments, and fairness is based on
the fractions of these fair QoS treatments. PFP can be used
to poll QoS traffic such that QoS requirements are met by
proper translation of the QoS requirements into fair QoS
treatments and by keeping track of the fairness based on the
fractions of these fair QoS treatments.
We evaluate the PFP implementation of the variable interval
poller (see Section 3.2) by means of simulations in a Guar-
anteed Service scenario. The simulation tool we used is
Network Simulator (ns2) [10] with Bluetooth extensions [9]
from Ericsson Switchlab, together with our ns2 implemen-
tation of PFP. We show that PFP is saving bandwidth, which
can be used for transmission of BE traffic and/or for retrans-
missions. Furthermore, we show that taking piggybacking
of GS flows into account makes it possible to accept more
GS flows. Finally, we show that PFP fairly divides the re-
maining bandwidth among the slaves that need it.

4.1. Description of the simulation scenario

We consider the simulation setup of Fig. 4, which seven
slaves and a master form a piconet in. Flows 1 to 4 are GS
flows, which the same delay bound is requested for. Fur-
thermore, flows 5 to 12 are BE flows. For the GS flows,
the packet sizes are uniformly distributed with a minimum
size of 144 bytes, and a maximum size of 176 bytes, i.e.

�� � ��� bytes and �� � ��� bytes for each GS flow �.
For the BE flows the packet sizes are of a fixed size of 176
bytes. The sources of the GS flows generate packets with
fixed intervals of 20 ms resulting each in a data rate of 64
kbps. The sources of the BE flow generate packets with
fixed intervals that depend on the BE load. The sources of
flows 5/6, 7/8, 9/10 and 11/12 generate BE traffic at a data
rate of 41.6 kbps, 47.2 kbps, 52.8 kbps and 58.4 kbps re-
spectively. The allowed baseband packet types are DH1 and
DH3, with a maximum payload of 27 bytes and 183 bytes
respectively. Furthermore, the segmentation policy requires
that the DH3 baseband packet is used, unless the remainder
of the packet fits in the DH1 baseband packet.
Because of the fixed intervals between packet generations,
and because of the packet size distribution, the remaining
parameters of the token bucket specification are

�� � �� �
��

�� ms
� ��� kbytes/s� � � ��� �� �� ��� (11)

and

�� ���� � � ��� �� �� ��� (12)

Because of the packet sizes the source of each GS flow �

can use, and because of the allowed baseband packet types,
the minimum poll efficiency ����

��
is achieved by a packet

size of 144 bytes, which is sent using one DH3 baseband
packet. Hence, the 	 error term for these flows is given by
	� � ����

��
� ��� bytes. As all the nodes are allowed to use

DH3 baseband packets, the possibility must be taken into
account that both the master and the addressed slave trans-
mit a DH3 packet. Consequently, the 
 error term is given
by 
� � �

�

����
� ���	 ms for each GS flow �.

The algorithm used to determine �� (see Fig. 2) gives �� �
���	 ms, �� � ��	 ms and �� � �� � ����	 ms. According
to (9), a requested service rate � can be supported for each

of the GS flows as long as � 

�
���

��

��
� ���� kbytes/s. Sub-

stitution in (1) shows that a requested delay bound ��	


can be supported for each of the GS flows as long as
��	
 � ����	 ms. As the requested service rate �� should
always be greater than or equal to the token rate ��, the de-
lay bound 
��	
�

that will never be exceeded can be found
by substituting �� � �� in (1), i.e. 
��	
�

� ����� ms for
each GS flow �.

4.2. Simulation results

We showed that requested delay bounds can be achieved
if the master polls slaves according to the methods de-
scribed in Section 3.1 and Section 3.2. Simulation runs,
each of a simulation time of 530 seconds (�25000 samples
of each GS flow), showed that the requested delay bound
is not exceeded. Depending on the delay requirement, the
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Figure 5. Throughput vs. delay requirement.

poller saves an amount of bandwidth that can be used for
retransmissions in a non-ideal radio environment and/or for
transmission of BE traffic. Fig. 5 shows the throughput of
each slave as a function of the GS delay requirement. It can
be seen that, independent of the delay requirement, each GS
flow achieves a throughput of 64 kbps. Furthermore, it can
be seen that the BE flows achieve their maximum through-
put when large delay bounds are requested. For decreas-
ing delay bounds, the remaining bandwidth is fairly divided
among the BE flows, which explains why some BE flows
achieve their maximum throughput as opposed to other BE
flows. Note that in this simulation scenario, a total max-
imum throughput of 656 kbps (including 256 kbps of GS
traffic) is achieved.

5. Conclusions

Bluetooth is an access technology where a master uses a
polling mechanism to divide bandwidth among the slaves.
This polling mechanism is highly determining with respect
to the delay that packets experience in a piconet. The PFP
implementation of the variable interval poller divides band-
width among the slaves such that the delay which packets
experience is bounded. Furthermore, PFP polls such that a
minimum amount of slots is consumed while polling the GS
flows, saving bandwidth that can be used for transmission
of BE traffic or for retransmission of the QoS traffic. More
simulation results can be found in [2]. A comparison with
an SCO channel showed that PFP is able to achieve delay
bounds that approach the delay bounds that can be achieved
using an SCO channel. As opposed to an SCO channel, PFP
can use the saved bandwidth for retransmissions. This prop-
erty can be exploited to avoid the link quality problems of
SCO channels in difficult radio environments, while keep-
ing up QoS. Note that the introduced polling mechanisms
can also be used outside the context of the Guaranteed Ser-
vice approach, such that no error terms are exported. A ser-

vice rate can be requested without the need for a guaranteed
delay bound.
Future work includes the evaluation of the proposed polling
mechanisms in a non-ideal radio environment, where trans-
mission errors may occur and where retransmissions are
needed. Furthermore, the introduced polling mechanisms
must be extended with policies that decide which retrans-
missions to use the saved bandwidth for.
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