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Abstract

The architectural design of distributed enterprise 

applications from the viewpoints of different stakeholders 

has been proposed for some time, for example, as part of 

RM-ODP and IEEE 1471, and seems now-a-days to gain 

acceptance in practice. However, much work remains to 

be done on the relationships between different viewpoints. 

Failing to relate viewpoints may lead to a collection of 

viewpoint models that is inconsistent and may, therefore, 

lead to an incorrect implementation. This paper defines 

an approach that helps designers to relate different 

viewpoints to each other. Thereby, it helps to enforce the 

consistency of the overall design. The results of this paper 

are expected to be particularly interesting for Model 

Driven Architecture (MDA) projects, since the proposed 

approach can be used for the explicit definition of the 

models and relationships between models in an MDA 

trajectory.

1. Introduction 

Now-a-days many researchers and designers tend to 

agree that the design of sophisticated and software-

intensive distributed applications has to be performed 

according to different viewpoints. This allows the 

designers to manage the complexity of the development 

process [7,5]. In particular in the scope of the Model-

Driven Architecture (MDA) development approach, 

designers are required to produce collections of models 

from different viewpoints, such as business domain, 

business process, platform-independent and platform-

specific models [14]. 

Viewpoints give some guidance on the models to be 

produced during a design process and the objectives of 

these models. One can also prescribe the languages to be 

used in order to represent each particular model. 

However, this plethora of models all refer to the same 

system, and as such they should be kept aligned and 

consistent with respect to each other.

This paper introduces and motivates an approach to 

keep models from different viewpoints aligned and 

consistent. This approach aims at facilitating the 

development process in a number of ways. It helps to 

improve the communication between different 

stakeholders by relating the terminology and concepts 

they use. It allows designers to use the same or different 

modeling languages to represent models from different or 

the same viewpoint, by clearly defining mappings 

between the concepts that underlie these languages and 

viewpoints. Based upon these mappings, techniques can 

be defined to analyze and enforce various types of 

relations between different views and models of the same 

system (e.g., equivalence and refinement relations). And 

finally, it facilitates the creation of tool support to 

(partially) automate the application of these techniques. 

The results of this paper are expected to be particularly 

interesting for MDA projects, since the success of these 

projects very much depends on the designers’ ability to 

document the viewpoints and models to be produced, and 

the relationships between models. 

This paper is further structured as follows. Section 2 

discusses architectural design and explains that a system-

under-design has a triple existence: in the real world, in 

the conceptual world and in the symbolic world. Though 

there is obviously only one real world system, there can 

be many conceptual world views on the system and many 

symbolic world models. The architectural design activity 

must ensure that these views and models can be related to 

each other, either directly or indirectly, and to the real 

world system. Section 3 discusses viewpoints and 

modeling languages as important elements of 

architectural design that facilitate the conception of views 

and the definition of models, respectively.  These 

elements are also instrumental to relate different views 

and their corresponding models in an architectural design 

process. Viewpoints, modeling languages and their 

relationships are defined using meta-models. Section 4 

discusses several approaches to relating views and 

models, and elaborates on one approach. Section 5 

illustrates this approach by relating different models of an 

example application. Section 6 summarizes the main 

contributions of this paper and gives an outlook on future 

work.

2. Architectural design 
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Architectural design is the process of defining the 

desired properties of a (prospective) software system, 

such as its structure and behavior, while considering the 

role of this system in its environment. Many different 

stakeholders may be involved in the architectural design 

of a software system. Each of these stakeholders focuses 

on certain concerns and considers these concerns at a 

certain level of detail.

To assess whether his concerns are addressed in a 

satisfactory way, each stakeholder forms a mental image 

of what properties the system should have and how it 

should interact with its environment. We call a mental 

image of a stakeholder that addresses certain concerns of 

the system at a certain level of detail a view on the system 

(and the environment). Figure 1 illustrates the use of three 

views on some system, by showing three stakeholders 

that focus on different concerns. Each of these 

stakeholders forms his own mental image of the system. 

system

$

Stakeholder 3

Stakeholder 2

Stakeholder 1

Figure 1. Stakeholders have different views on a 
system

Since it is hard to discuss and share designs in terms of 

mental images that only exist in the minds of the 

stakeholders, these mental images are made concrete in 

the form of models. For example, models may be 

expressed  as linear text or as a composition of graphical 

symbols. Hence, architectural design takes place in three 

related 'worlds': the real world, where the real system and 

its environment exist, the conceptual world, which is the 

conception of the real world in our mind, and the 

symbolic world, which is the concrete representation of 

the conceptual world on some medium (e.g., paper or a 

computer screen).  

ViewSy stem Model
1 1..* 1 1..*

Real World
Conceptual

World

Sy mbolic

World

Figure 2. The triplet of architectural design 

Figure 2 shows the three related worlds of 

architectural design. An architectural design process may 

produce many different views, being different 

conceptions of the same system that consider different 

design concerns. In addition, each view may be 

represented by different models that use different 

symbolisms. 

Since different views and their associated models refer 

to the same system, views as well as models are related in 

one way or another. This is illustrated in figure 3. We 

distinguish between two basic types of view relations1.

design concerns

level

of

detail

View

View

refines

View

complements

Figure 3. Basic view relations 

Refinement relation. Two views may be related 

because they consider the same design concerns at 

different levels of detail. For example, an external system 

view may consider the externally observable behavior 

that is provided by the system as a whole to its 

environment, while another view considers the behavior 

of internal system components. These views are related 

because the internal view refines the external view, i.e., 

adds design detail, by providing an internal 

decomposition of the system that defines how the external 

view can be implemented. 

Complement relation. Two views may complement 

each other by considering complementary concerns. For 

example, one view may consider the structuring of a 

system in terms of parts and how they are interconnected, 

while another view considers the behavior of each part. 

These views are complementary in the sense that the 

structure view merely identifies the parts, whereas the 

behavior view considers their behavior. 

In general, it may be difficult, if not impossible, to 

separate concerns such that they are fully complementary, 

in the sense that they have no system properties in 

common. Therefore, views are likely to consider partly 

overlapping concerns. For example, the structure and 

behavior view are not fully complementary. Because the 

behavior view should conceive the individual behavior of 

each part identified in the structural view, both views 

should consider the same system decomposition. 

Section 4 elaborates on how the correctness and 

consistency of both view relation types can be enforced.  

3. Viewpoints and modeling languages 

To use views and models in the design process, we 

must be able to construct them. To do this, we use 

viewpoints and modeling languages respectively. Figure 4 

1
For brevity, we will use the term 'view relations' to denote both 

relations between views and between their associated models.  
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illustrates the role of viewpoints and modeling languages 

in architectural design.

Viewpoint
Modeling

Language1 1..*

Real World
Conceptual

World

Sy mbolic

World

ViewSy stem Model
1 1..* 1 1..*

used to

conceiv e

used to

def ine

Figure 4. Elements of architectural design 

This section explains how the viewpoints and 

modeling languages themselves can be defined. It also 

explains how modeling languages can be used to 

represent viewpoints.  

3.1. Viewpoints 

A viewpoint defines the means to conceive views at a 

certain level of detail and regarding certain design 

concerns. To this end, a viewpoint consists of a set of so-

called design concepts, and rules for composing these 

design concepts. A design concept models some common 

and essential properties of a system. The design concepts 

are the means to construct a view. 

For example, consider a business process viewpoint. 

Relevant properties of a business process are the tasks to 

be performed, and how these tasks are related. Therefore, 

examples of candidate design concepts are 'task', 

'sequence', and 'or-split' (choice). In addition, an example 

of a rule for composing these concepts would be that an 

instance of the 'sequence' concept is related to two 

instances of the 'task' concept, defining that one task 

happens before the other. 

And split

Join

Behaviour

Or split

Split

And join

Or join

GoalProcess

Task relationTask

*
2..*

+involved in

*

+effects

2..*

Sequence

1

*

+successor
1

*

1

*+predecessor

1

*

Figure 5. Business process design meta-model 

To define a viewpoint, we should agree on the meta-

concepts used to construct a viewpoint. Typically, we use 

the meta-concepts 'concept', 'attribute of a concept', and 

'relation between concepts'. In order to represent 

viewpoint definitions, we use UML class diagrams 

(compliant to the OMG standard for meta-concepts, the 

Meta Object Facility (MOF) [13]). A concept, concept 

attribute and concept relation is represented as a UML 

class, a UML class attribute, and a UML class 

association, respectively. We call the class diagram 

representing a viewpoint definition, a design meta-model.

Figure 5 illustrates the design meta-model of the 

business process viewpoint discussed before. The 'and-

split' and 'or-split' task relations represent that all involved 

tasks are executed 'in parallel', or a 'choice' is made 

between one of them, respectively. The 'and-join' and 'or-

join' task relations represent that 'all' or 'at least one' of the 

involved tasks must have been executed. 

A design meta-model defines the abstract syntax for 

constructing a view. The meta-model itself, however, 

does not define the semantics of the represented 

viewpoint concepts. The semantics of a design meta-

model should define what real-world system properties 

are modeled by each viewpoint concept and by each 

relationship between viewpoint concepts. In other words, 

the semantics defines the interpretation of a meta-model, 

and the views constructed from it, in terms of real-world 

system properties. We call this the architectural 

semantics of a design meta-model. For example, the 

architectural semantics of the concept ‘task’ is: the 

smallest unit of work that is meaningful to an actor. 

Typically, architectural semantics is described informally, 

as an annotation to the design meta-model. 

Design

concepts

Mathematical
concepts

Sy stem f ormal

semantics

architectural

semantics

architectural

semantics implied by
design meta-model

Figure 6. Architectural and formal semantics 

In addition, one may define a formal semantics, which 

defines a mapping from the system properties represented 

by the design concepts in the design meta-model onto the 

mathematical properties represented by the mathematical 

concepts in a mathematical model. This is often used to 

add precision and facilitate the development of analysis 

techniques and supporting tools. Figure 6 illustrates the 

notions of architectural and formal semantics. 

3.2. Modeling languages 

A modeling language defines the means to construct 

models. These means consist of language concepts, which 

define what can be modeled, and notational elements to 

represent (express) the language concepts. For example, 

UML statecharts define the language concept 'action', 

which is represented by the notational element  'rounded 

rectangle'.  

A language concept models some system properties, 

similar to a design concept. For example, the language 

concept 'action' represents some unit of activity that can 

be executed by a system. Therefore, language concepts 

are to modeling languages what design concepts are to 
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viewpoints. This also means a modeling language 

implicitly defines its own viewpoint. 

Language

meta-model

Notation

meta-model

representation

relation

Figure 7. Elements of a modeling language 

Because of the separation between language concepts 

and their notation, a modeling language can be defined by 

two related meta-models: a language meta-model, which 

defines the language concepts and their relationships 

(similar to a design meta-model), and a notation meta-

model, which defines the notational elements and their 

relationships. A notation meta-model is composed from 

meta-concepts like 'notational element', 'attribute of 

notational element', and 'relation between notational 

elements'. Figure 7 depicts both meta-models. 

Connector

<<Contained>>

Connection 

point
22

+connects to

Shape

orientation

1..*1..*

Oval

Rectangle Behaviour block symbol

<<Contained>>

Join operator

<<Contained>>

a

o

Action symbol

<<Contained>>

Graphical 

element

position

Container

1..*1..*

Line

Arrow

Interaction contribution 

relation symbol

Enabling relation

Figure 8. Example of (part of) a notation meta-
model

The representation relation between the language and 

notation meta-model defines how each language concept 

is represented by one or a composition of  notational 

elements. In this way, the modeling language provides a 

concrete syntax for the abstract syntax defined by the 

language meta-model. An abstract syntax may be 

associated with more than one concrete syntax. For 

example, it is common for languages to define both a 

graphical and a textual concrete syntax for the same 

abstract syntax. 

The benefit of a distinct notation meta-model is to 

clearly separate between conceptual aspects and 

notational aspects of a modeling language. However, 

quite often the notation meta-model is left implicit, 

because a one-to-one mapping exists between language 

concepts and notational elements. Figure 8 depicts part of 

the notation meta-model of the ISDL modeling language 

introduced in section 4. 

3.3. Representing viewpoints 

In order to use a modeling language to represent (the 

views according to) some viewpoint, the relationship 

between the language meta-model of the modeling 

language and the design meta-model of the viewpoint has 

to be defined. This relationship should clearly define how 

(compositions of) design concepts from the viewpoint are 

represented by (compositions of) the language concepts 

underlying the modeling language. 

As an example, we consider how the example business 

process viewpoint of figure 5 can be represented by UML 

activity diagrams. For this purpose, we first present the 

language meta-model that defines the abstract syntax of 

UML activity diagrams. For the current discussion, the 

meta-model has been simplified. Figure 9 depicts the 

UML activity diagram language meta-model. 

Behaviour

Executable 

node

Control node

Decision Fork Join

Edge

Action Node

1

*

+target 1

+incoming *

1

*

+source1

+outgoing*

Activity

{ordered}

Figure 9. UML activity diagram language meta-
model

Subsequently, we define the relation between the 

design meta-model of figure 5 and the language meta-

model of figure 9. This relation can be defined by means 

of associations between the elements of both meta-models 

(possibly extended with OCL constraints). Figure 10 

illustrates this for the representation of the business 

process concepts 'task' and 'or-split' in terms of the 

activity diagram concepts 'action', 'edge' and 'decision'. 
Action

(from Activi ty diagrams)

Task
(from Business process viewpoint)

1
1

1
1

Edge
(from Activi ty diagrams)

11

Decision
(from Activi ty diagrams)

2..*

1

2..*

1
Or split

(from Business process viewpoint)

2..*2..*

1

1

1

1

+represented by

+represented by

represented by

Figure 10. Representing the  business process 
viewpoint with UML activity diagrams 

The distinction between viewpoint definition and 

modeling language definition is not common practice. For 

example, design projects often choose a set of popular 

modeling languages, like UML diagrams, and leave the 

definition of viewpoints implicit. Alternatively, designers 

and researchers may define Domain Specific Languages 

(DSL). A DSL is a concrete syntax developed for a 

particular application domain (that can be seen as a 

viewpoint or a set of viewpoints). Hence, a DSL does not 

define its own concepts, but instead uses the concepts 

from the domain that it represents. 
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The benefit of making a distinction between viewpoint 

definition and modeling language definition is the clear 

separation of concerns. Using the distinction, viewpoint 

and modeling language can be defined separately (by 

different expertise groups). Also, the same modeling 

language and its tool-support can be re-used to represent 

many different viewpoints. 

An example of a standard that does make a distinction 

between viewpoint definition and modeling language 

definition is the Reference Model for Open Distributed 

Processing (RM-ODP) [9]. The RM-ODP standard itself 

only defines viewpoints, while other standards and papers 

(e.g. [12,1,2]) define modeling languages that can be used 

to represent the RM-ODP viewpoints, or define how 

existing modeling languages can be used to represent the 

RM-ODP viewpoints. 

Viewpoint

View

View

v iew
relation

Viewpoint

pre-def ined
relation

used to

conceiv e

used to

conceiv e

conf orms to

View

View
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I. ad-hoc II. pre-def ined v iewpoint relation
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conceiv e

Basic

Viewpoint

III. pre-def ined basic v iewpoint relations

mapped
onto

mapped
onto

pre-def ined

relation
conf orms to

Figure 11. Approaches to relate views 

4. Relating views and relating models 

The selection and documentation of viewpoints and 

modeling languages helps to manage the views and 

models that are produced in a design process, but is not 

sufficient. Also the relationships between views as well as 

models should be clearly defined. We present three 

approaches to define and enforce view relations2, and 

elaborate on one of them. Finally, we present the basic 

modeling language ISDL, which is used to illustrate the 

latter approach in section 5.  

4.1. Approaches 

Figure 11 illustrates three distinct approaches to relate 

views. 

Approach I relates views directly in an ad-hoc manner. 

This means that the correspondences and differences 

between the system properties of these views are 

2
by view relations we also denote the corresponding relations between 

the associated models. In fact, in a design process a view relation is 

often considered by its corresponding model relation.

described specifically for a single architectural design 

process. For example, consider a functional view, which 

conceives the system functions and their relations, and a 

performance view, which conceives the performance 

properties of the system functions that effect system 

performance. In this case one may want to relate both 

views directly in order to assess whether the conceived 

functions correspond, and whether the performance view 

considers all system functions identified in the functional 

view that may impact system performance significantly.  

Approach II relates views indirectly via pre-defined 

relations between the corresponding viewpoints. This 

means that when some view is conceived, this view must 

conform to the pre-defined relations in which the 

corresponding viewpoint is involved. For example, 

consider a structure viewpoint, which conceives system 

parts and how they are interconnected, and a behavior 

viewpoint, which conceives the behavior of system parts. 

A pre-defined relation between these viewpoints could be 

that for each system part conceived in a structure view an 

associated behavior is conceived in a behavior view, and 

that interactions in the behavior view can only take place 

between system parts that are interconnected in the 

structure view. Other examples are RM-ODP, which pre-

defines the relations between its viewpoints in [9, part 3 

clause 10], and the MDA development approach, which 

proposes the definition of mappings between design 

meta-models. Such a mapping can be seen as an example 

of a pre-defined viewpoint relation. 

Approach III assumes that a basic viewpoint exists that 

defines re-usable basic relations. These basic relations 

may be used to pre-define relations between viewpoints. 

This approach requires us to define mappings from the 

viewpoints to the basic viewpoint and to define the 

relations between the viewpoints in terms of the basic 

relations. For example, [3] defines a conformance relation 

between a business process and the composition of 

component behaviors that implements it. It does this by 

defining a mapping from the business process viewpoint 

and the component viewpoint onto a basic viewpoint and 

by defining the conformance relation between the 

business process and the component viewpoint as the 

conformance relation of the basic viewpoint. To prevent 

that the designer has to create a basic view for each view 

that exists in a design, the mappings from the viewpoints 

to the basic viewpoint should be supported by automated 

transformations. 

To be able to apply the third approach, a basic 

viewpoint must be found that matches the concepts used 

in the viewpoints one wants to relate. Preferably, such a 

basic viewpoint should define generic and elementary 

concepts, such that the concepts of other viewpoints can 

be mapped onto specializations or compositions of the 

basic viewpoint concepts. Examples of approaches that 

define a basic viewpoint, but only for modeling 
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languages, are: UML, which defines a set of core 

concepts, and the 3C proposal for UML 2.0 [11], which 

defines an even more basic set of core concepts. An 

example of an approach that defines a basic viewpoint, 

and applies it to both UML and RM-ODP, is the Systemic 

Enterprise Architecture Methodology (SEAM) [21]. Its 

basic viewpoint is defined in [10]. 

Advantages of the third approach over the second 

approach are that a smaller number of basic relations have 

to be pre-defined (that can be re-used) and that one can 

reason about these relations within a small, consistently 

defined set of concepts. 

4.2. Enforcing view relations 

Two basic types of view relations have been identified 

in section 2: refinement and complement. Here we will 

discuss some techniques to enforce these relations in a 

design process. In principle, these techniques can be 

applied in combination with any of the approaches 

discussed in section 4.1.  However, since these techniques 

are most often applied within the scope of a single 

modeling language, they are most likely to be used in 

combination with the third approach. 

4.2.1. Refinement relation. In an architectural design 

process, we want to be able to assess the correctness of a 

refinement relation, by checking whether the more 

detailed (concrete) view implements the less detailed 

(abstract) view. Since the concrete view implements the 

abstract view, and should conform to all properties 

conceived in the abstract view, a refinement relation is 

also called implementation relation or conformance 

relation. 

Figure 12 illustrates two basic techniques to obtain 

correct refinements (implementations).  

Abstract

v iew

Concrete

v iew

correctness
preserv ing

transf ormation

Abstract
v iew

Concrete

v iew

Abstract

v iew’

3. check

equiv alence

relation

2. apply  rules to

abstract f rom

added design

details

1. ref inement by
adding design

details

I. II.

Figure 12. Refinement techniques 

Technique I applies so-called correctness preserving 

transformations, which are built from pre-defined 

mappings from abstract concepts applied in the abstract 

view onto concrete concepts applied in the concrete view. 

Because the mappings are defined at conceptual level 

their correctness have to be proven only once, and can 

subsequently be instantiated in any view. This technique 

is proposed by the MDA development approach. For 

further readings and examples of this technique we refer 

to [6,8,17]. 

Technique II distinguishes three steps to assess the 

correctness of a refinement relation. Step 1 is the 

refinement step, in which certain design details are added 

to the abstract view. The technique does not prescribe 

how this step must be performed. This is left to the 

creativity of the designer. Step 2 applies pre-defined rules 

to abstract again from these design details. And step 3 

checks whether the resulting abstract view is equivalent 

to the original abstract view.  An example of the 

application of this technique can be found in section 5. 

For further readings and examples we refer to [16,20]. 

The first technique is generally easier and faster to 

apply, since implementation decisions have been pre-

defined and proven to be correct. However, they are often 

limited by these implementation decisions. The second 

technique is more generic in the sense that it allows any 

design decision to be made in the refinement step, while 

the abstraction rules can be applied to any concrete view.  

This technique is motivated by the observation that 

during a refinement step many alternative 

implementations of an abstract view are possible, but 

when one abstracts from the alternative design details that 

have been added to the abstract view,  the abstraction of 

all these implementations is unique. 

4.2.2. Complement relation. In an architectural design 

process, we want to be able to assess the consistency of a 

complement relation by checking whether the overlap of 

both views is equivalent. This means that one first has to 

delimit both views to the part that they have in common, 

and subsequently assess whether the system properties 

conceived for this part in both views are equivalent. 

For example, consider the example discussed under 

approach II of section 4.1. Both the structure viewpoint 

and the component view should consider equivalent 

system decompositions. This equivalence could be 

defined in terms of rules like 'each behavior is assigned to 

a system part' and 'an interaction between behaviors must 

happen at an interconnection point connecting the system 

parts to which the behaviors are assigned'. For more 

examples we refer to section 5. 

Much theory has been developed about equivalence 

relations in the scope of particular modeling languages 

[19]. Approach III of section 4.1 allows one to re-use this 

theory for assessing the consistency between  overlapping 

views, by defining a mapping from (the part that is 

common for) their corresponding viewpoints onto these 

modeling languages. 

4.2.3. Combination of relations. In general, two views 

may consider partly complementary design concerns at 

different levels of detail. In this case, we want to be able 

to assess the correctness of the refinement relation only 

between the overlap of the abstract view and the concrete 

view. This means that one first has to delimit both views 
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to the part they have in common, and subsequently apply 

one of the refinement techniques discussed above. 

For example, consider the RM-ODP enterprise and 

computational viewpoints. A computational view may 

conceive the implementation of some application, while 

the enterprise view conceives the externally observable 

application behavior and its embedding in the enterprise. 

In this case, the observable application behavior has to be 

isolated from the enterprise view in order to assess the 

refinement relation between the observable application 

behavior and its implementation as conceived by the 

computational view [4].  

4.2.4. Concluding remarks. We deliberately do not 

define the precise design criteria to determine when a 

concrete view is a correct refinement of an abstract view 

or when the overlapping concerns conceived by two 

views are equivalent. These criteria depend on the 

specific design objectives and the architectural semantics 

of the views. Here, we show how existing work on the 

validation of conformance and equivalence relations can 

be used to relate views. 

4.3. ISDL: a basic modeling language 

We introduce the Interaction System Design Language 

(ISDL) as a basic modeling language. We use the ISDL 

as a basic viewpoint as well. In this role it is used in 

section 5 to illustrate the third approach discussed in 

section 4.1 to relate different views and models in a 

design process. In order to show that ISDL can be used as 

a basic modeling language, and as preparation to section 

5, we show how UML activity diagrams and UML 

statechart diagrams can be mapped onto ISDL. 
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Figure 13. ISDL language meta-model 

Figure 13 depicts part of the language meta-model 

underlying ISDL. We do not explain the notation meta-

model (see figure 8) here due to space limitations, instead 

we introduce the ISDL notation in an ad-hoc manner. 

An ISDL behavior is either monolithic or structured, 

where a structured behavior consists of sub-behaviors. A 

monolithic behavior consists of causality relations that 

each define for a single causality target the condition 

under which this target may occur. A causality target may 

be an action, which represents the completion of a unit of 

activity performed by a single monolithic behavior, or an 

interaction contribution, which represents the 

participation of a monolithic behavior in some joint 

activity involving multiple monolithic behaviors. 

We distinguish between three basic causality 

conditions for the occurrence of some causality target a:

enabling condition b a: b must occur (happen) 

before a. Graphically represented as b a ;

disabling condition b a: b must not occur 

before, nor simultaneously with a. Graphically 

represented as b a ;

start condition a: a is always enabled. 

Graphically  represented as a  . 

Basic causality conditions are composed into 

alternative causality conditions. Each of the basic 

conditions must be satisfied for an alternative condition to 

be satisfied (logical and). In turn, alternative causality 

conditions are composed into causality conditions. At 

least one alternative condition must be satisfied for the 

causality condition to be satisfied (logical or).

Figure 15 (ii) and (iii) depict an example of a 

monolithic behavior consisting of four actions. The 

causality condition of each action consists of a single 

alternative causality condition. Action a depends on the 

start condition and hence is always enabled. Action b is 

enabled by the occurrence of a and disabled by the 

occurrence of c or d, meaning that b may occur after a has 

occurred and c and d have not occurred yet. An analogous 

explanation applies to actions c and d. Consequently, the 

example defines that after the occurrence of a a choice is 

made between b, c or d, such that only one them occurs. 

Causality target
(from ISDL)

Alternative causality condition
(from ISDL)

1..*1..*

Decision
(from Activity diagrams)

*

+represented by

*

Action
(from Activity diagrams)

11

+represented by

11

Disabling condition
(from ISDL)

1..*1..*

Edge
(from Activity diagrams)

2..*

1

2..*

+source 1

1+target 1

{one disabling 

condition for 

each other 

action (edge) in 

the relation}

Figure 14. Mapping: UML activity diagrams - 
ISDL

Proceedings of the Seventh IEEE International Enterprise Distributed Object Computing Conference (EDOC’03) 
0-7695-1994-6/03 $17.00 © 2003 IEEE 



a

b

c

(i)

d

a

b

c

d

(ii)

a,

a c d b,

a b d c,

a b c d,

(iii) 

Figure 15. Example: choice relation 

4.3.1. Mapping UML activity diagrams onto ISDL. 

Having explained briefly how a monolithic behavior is 

defined in ISDL, we describe how a mapping from UML 

activity diagrams to ISDL can be defined. Figure 14  

shows part of such a mapping: the mapping of a decision 

between actions in Activity diagrams onto disabling 

conditions of causality targets in ISDL. Figure 15 (i) 

depicts an example application of the decision operator. 

Each action involved in the decision is mapped onto a 

causality target in ISDL. The decision operator implies a 

certain alternative causality condition for each causality 

target. This condition consists of the conjunction of 

disabling conditions, one for each edge from the decision 

node to an action, except for the edge to the action 

represented by the causality target itself. These disabling 

conditions define that the actions that are the targets of a 

decision mutually disable each other, such that only one 

of them can happen. 

Figure 15 (iii) depicts the ISDL linear text 

representation of the activity diagram in (i). Figure 15 (ii) 

depicts the ISDL graphical representation of (iii). Mutual 

disabling conditions are represented by a short-hand: a 

disabling condition without the arrow head. Normally, the 

and- and or-operator are explicitly represented by a filled 

and an open square, respectively (e.g., see Figure 32). 

However, in case a causality condition consists of a single 

alternative condition, the and-operator can be omitted.  

Behaviour

State action Output event

State 

machine

State

1..*1..*

Action

Transition*1

+outgoing

*

+source
1

1 *

+target
1

+incoming
*

Activity
0..10..1

** {ordered}

Trigger 

event

11

+follows

Input event
Spontaneo

us event

Figure 16. UML statechart language meta-model 

4.3.2. Mapping UML statechart diagrams onto ISDL. 

Figure 16 depicts a simplification of the language meta-

model underlying UML Statecharts. A state machine is 

defined as a collection of states that are related through 

transitions. Associated with a transition is an activity that 

is initiated by some trigger, e.g., an input event, which 

may be followed by multiple state actions and output 

events.

Structured behaviour
(from ISDL)

State machine
(from Statechart diagrams)

11

+represented by

11

Input event
(from Statechart diagrams)

Interaction contribution
(from ISDL)

1
+represented by

1

Output event
(from Statechart diagrams)

1
+represented by

1

Action
(from ISDL)

State action
(from Statechart diagrams)

1 +represented by1

Transition
(from Statechart diagrams)

Behaviour
(from ISDL)

1

{behaviour represents all 

transitions with the same 

source}

+represented by

1

State
(from Statechart diagrams)

*

1

+incoming*

+target1

*

1

+outgoing *

+source 1

Causal dependency
(from ISDL)

1 +represented by1

{behaviour dependency represents that 

target state depends  on the occurrence of 

some incoming transition}

Figure 17. Mapping: UML statecharts - ISDL 

Figure 17 depicts part of a mapping from statecharts 

onto ISDL. A state machine is represented by a structured 

behavior, which consists of one sub-behavior for each 

state representing the (activities associated with the) 

transitions that can be triggered in this (source) state. A 

causal dependency represents for each sub-behavior the 

possible transitions that may enable this behavior (as 

target state). In addition, the diagram shows that input and 

output events are mapped onto interaction contributions,  

since state machines interact with their environment via 

these events, and state actions onto actions in ISDL. 

S1 S2

S3

in1 / a1 ^out1

in2
in4 ôut4

 ôut3

(i)

a1
S2

S1 S1
S2

S3 S1
S3

(ii)

out1in1

in4 out4

in2 out4

a1

S1-2-3

S1-2-3

(iii)

in1 in2out1

out4in4

out3

Figure 18. Example statechart simplification 

Figures 18 (i) and (ii) depict a simple statechart and its 

mapping onto ISDL, respectively. A rounded rectangle 

represents a (sub-)behavior, and a circle segment 

represents an interaction contribution. Each sub-behavior 

corresponds to one (source) state. Sub-behavior S1

represents the only possible transition in state S1, which 

consists of the sequential occurrence of in1, a1 and out2,
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followed by a new instance of S2. Sub-behavior S2

represents the choice between two alternative transitions. 

A triangle represents a behavior dependency, which can 

be considered as a place holder for the causality condition 

that must be satisfied to enable a sub-behavior (target 

state). For example, the causality condition of the new 

instance of S2 is that the transition "in1, a1 and out1" has 

occurred. Figure 18 (iii) depicts the integration of the sub-

behaviors into a single monolithic behavior.  

5. Example: on-line shopping 

The application of a basic viewpoint to relate different 

system views is illustrated by the design of a simple on-

line shopping application. This design is considered from 

four different viewpoints: 

a business process viewpoint, which concerns the 

design of the business processes that implement 

the goals of some business (enterprise), and the 

embedding of application support within these 

processes;

a component structure viewpoint, which concerns 

the decomposition of applications in (software) 

components and their dependencies; 

a component behavior viewpoint, which concerns 

the design of the behavior of the identified 

(software) components; 

a component interaction viewpoint, which 

concerns the design of the interactions between 

components, and their relationships. 

design
concerns

level of
detail

Component

structure

v iew

Structure Behav iour

Indiv idual

parts

Between

parts

Component

interaction

v iew

Component

behav iour

v iew

Enterprise

Component

Business process

v iew

Figure 19. Application views 

These viewpoints basically represent two design 

concerns: structure and behavior, and two levels of detail: 

enterprise and component. At component level, the 

behavior concern is divided into two sub-concerns: 

individual component behavior and component 

interactions. Figure 19 depicts the concerns and levels of 

detail being considered, and the associated views on the 

example application. In this example, the structure 

concern is not considered at enterprise level, since we 

consider only a single business process, abstracting from 

its distribution over enterprise parts. 

Viewpoint - UML 
mapping 

Component interaction

Component behaviour

Business process

UML Sequence

UML Statechart

UML Activity

ISDL

Viewpoint - ISDL 
mapping 

UML - ISDL 
mapping 

Figure 20. Viewpoint and language mappings 

Figure 20 depicts the UML modeling techniques being 

used to represent the application behavior views. We aim 

at demonstrating how these behavior views can be related 

via the basic modeling language ISDL (introduced in 

section 4.3). For this purpose, we have to define the 

mappings depicted in Figure 20, and verify their 

consistency. Due to space limitations, this paper only 

explains the mappings illustrated by the solid arrows in 

Figure 20.  

5.1. Business process view 

Figure 21 depicts an activity diagram that defines the 

business process view of the on-line shopping 

application. 

Select 
items

Pay

Package Deliver

Confirmation

Abort

Figure 21. Representing the business view with 
an activity diagram

As explained in section 3.2, activity diagrams can be 

used to represent business process concepts, by defining a 

mapping between the design meta-model of the business 

process viewpoint and the language meta-model of 

activity diagrams (see Figure 9). 

In this example, the activity diagram defines a 

business process consisting of a number of business tasks 

and their ordering. The process starts with the selection of 

a number of items. Subsequently, either the process is 

aborted or the items are paid and packaged in parallel. 

After payment a confirmation is given. After payment and 

packaging are finished, the items are delivered.  

Mapping onto ISDL. The mapping from the business 

process view onto ISDL can either be performed directly 

by the business process viewpoint to ISDL mapping, or 

indirectly by the composition of the business process 

viewpoint to activity diagrams mapping and the activity 

diagrams to ISDL mapping. The first mapping is depicted 

in figure 22, and is consistent with the composition of the 
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latter two mappings, which have been described in 

section 4.3. 

Task
(from Business process viewpoint)

Causality target
(from ISDL)

11

+represented by

11

Or split
(from Business process viewpoint)

2..*2..*

Disabling condition
(from ISDL)

Alternative causality condition
(from ISDL)

1..*1..*

11

+represented by

11

1..*1..*

One for each other 

task in the relation

Figure 22. Mapping: Business process viewpoint 
- ISDL 

Figure 23 depicts the ISDL diagram that defines the 

business process view. 

For the purpose of this example, we do not consider 

the embedding of the shopping application in a larger 

business process, or its relation to other business 

processes, but delimit the business process to describe 

only the interactions between the customer and the 

shopping application. This forms a proper starting point 

for the implementation of this application in terms of 

software components. 

select items

package

pay

deliver

abort

confirm

Figure 23. ISDL diagram of the business process 
view

5.2. Component structure view 

Figure 24 depicts the decomposition of the shopping 

application into four components, and their dependencies: 

Front end (FE): interacts with the customer and 

coordinates the shopping process; 

Transaction Processor (TP): performs the payment 

transaction;

Warehouse (WH): packages the items and 

forwards them to Parcel Delivery; 

Parcel Delivery (PD): delivers the items to the 

customer. 

Front end 

(FE)

FE

Warehouse 

(WH)

WH

Transaction 

processor (TP)

TP

Parcel delivery 

(PD)

PD

Figure 24. Application decomposition

The component structure view merely identifies the 

components and how they are interconnected. In the 

remainder of this example we will focus on the behavior 

of the individual components and their interactions. The 

(behavior of the) customer is not explicitly considered. 

We simply assume he participates in the interactions 

supported by the application (in particular FE ad PD).  

5.3. Component behavior view 

Figure 25 depicts the  design meta-model of the 

component behavior viewpoint. In this viewpoint the 

behavior of a component is considered as an ordered set 

of two types of actions: external and internal actions. An 

external action is a contribution of the component to an 

operation involving another component. This contribution 

is either a client-side contribution or a server-side 

contribution, depending on whether the component 

performs the client or server role in the operation, 

respectively.  The latter contributions can be further 

decomposed into the sending and receiving of operation 

request and response messages ('Req', 'Ind', 'Rsp' and 'Cnf', 

respectively. This will be explained further in section 

5.4). An internal action is a complete operation of the 

component itself, or between internal components. 
Behaviour

Assume 

synchronous 

operation

External action

Internal action

Component behaviour

ActionAction relation

2..**

+effects

2..*

+involved in

*

Operation contribution

Could be elaborated, 

similar to business 

viewpoint meta model

Operation

Server-side operation 

contribution

Operation return
11

Send response 

(Rsp)

11

11

Operation invocation

11

+follows

Receive 

request (Ind)

11

11

Receive 

response (Cnf)

11

+follows

Send request 

(Req)

11

+follows

Client-side operation 

contribution

1111

Figure 25. Component behavior viewpoint

In order to define component behaviors using UML 

statecharts we have to map the concepts of the component 

behavior viewpoint onto the concepts underlying UML 

statechart diagrams, which have been explained in section 

4.3. Figure 26 depicts part of this mapping. External 

actions are mapped indirectly onto output and input 

events, by mapping the receiving of request/response 

messages onto input events and the sending of these 

messages onto output events. An internal action is 

mapped onto a state action, which is an abstraction of the 

represented internal operation by  considering the activity 

of sending and receiving the involved request and 

response messages as a single action. 
Send request (Req)

(from Component behaviour viewpoint)

Send response (Rsp)
(from Component behaviour viewpoint)

Output event
(from Statechart diagrams)

1
+represented by

1

1
+represented by

1
Receive request (Ind)

(from Component behaviour viewpoint)

Receive response (Cnf)
(from Component behaviour viewpoint)

Input event
(from Statechart diagrams)

1

+represented by

1

1
+represented by
1

Internal action
(from Component behaviour viewpoint)

State action
(from Statechart diagrams)

1

+represented by

1

Figure 26. Representing the Component 
behavior viewpoint with UML statecharts
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The behavior of the application Front end component 

is depicted in figure 27. Based on the representation 

relation in figure 26, the following interpretation can be 

given.  The first operation that can be invoked is Browse,

which returns information about the items that are for 

sale. After selection of some items (Select), the customer 

may Checkout to indicate he wants to buy them, thereby 

providing credit card information. Subsequently, 

operation Pack is invoked (on WH) to package the items 

followed by a request (on TP) to take care of the payment 

(Transaction). If the transaction is accepted, the delivery of 

the items is Approved (to WH), and the success of the sale 

is notified (Notify). Alternatively, the sale process may be 

aborted due to different reasons (canceled by customer or 

a rejected transaction), which is notified by invoking 

operation Notify(nosale) (on the customer). 

Idle Selected

Checked out

CheckoutInd( creditCardId, items, bill ) 

^CheckoutRsp(id)

Paid

Aborted

Await 

payment

PackCnf( outOfStock )

TransactionCnf( accept ) 

^ApproveReq(id)

TransactionCnf( reject )

Packing 

requested
PackCnf( inStock ) 

^TransactionReq(creditCardId, bill)

 ^PackReq(id, items)

Notifying

ApproveCnf( id ) 

^SaleNotifyReq

 ^NoSaleNotifyReq

SelectingBrowseInd 

^BrowseRsp

CancelInd 

^CancelRsp

SelectInd( items ) 

^SelectRsp

CancelInd 

^CancelRspSaleNotifyCnf NoSaleNotifyCnf

Figure 27. UML statechart: front end behavior 

Without further explanation, figure 28 depicts the 

UML Statechart diagrams of the other components. 

Idle
Transaction requested

do/ Process request T̂ransactionRsp(accept)

 T̂ransactionRsp(reject)

TransactionInd( creditCardId, amount )

Transaction processor 
Idle

Packing and approved for 

delivery
Packed 

and Sent

SendCnf

Packed and waiting for 

approval for delivery

ApproveInd( id ) 

^ApproveRsp(id)

PackInd( id, items ) 

^PackRsp

 ŜendReq(parcel)

Warehouse 
Idle Parcel to be 

delivered

Delivering

 ^ReceiveReq(parcel)ReceiveCnf

SendInd( Dest, 

parcel ) ^SendRsp

Parcel Delivery 

Figure 28. UML statecharts: FE, WH and PD 

Mapping onto ISDL. Using the mapping from 

statecharts to ISDL explained in section 4.3, the 

statecharts presented above can be translated into ISDL 

diagrams. Due to space limitations we will not present 

these diagrams. Instead, section 5.5 will present an ISDL 

diagram that defines the composite behavior of all 

components.  

5.4. Component interaction view 

The component interaction viewpoint relates the 

client-side and server-side operation contributions 

modeled in the component behavior viewpoint. UML 

sequence diagrams can be used for this purpose. We think 

this is intuitively clear, and therefore omit the 

presentation of the associated meta-models and the 

mapping between them. Figure 29 depicts two sequence 

diagrams, each representing a possible interaction 

scenario between the shopping application components. 

For brevity, in most cases only the operation invocations 

are shown. 

User Front end (FE) Warehouse 

(WH)

Transaction 

processor (TP)

Parcel delivery 

service (PD)

Browse

Select

Checkout

Pack

Transaction

Approve
Send

Receive

Notify(sale)

Accept

User Front end (FE) Warehouse 

(WH)

Transaction 

processor (TP)

Parcel delivery 

service (PD)

Browse

Select

Check out

Pack

Notify(no sale)

Transaction

Reject

Figure 29. UML sequence diagrams: component 
interactions

Mapping onto ISDL. Figure 30 (i) illustrates the 

mapping of an operation (as represented by the meta-

model of figure 25) onto ISDL. The sending of an 

operation request, the receiving of this request, the 

sending of the operation response, and the receiving of 

this response, are mapped onto the interaction 

contributions ’Req’, ’Ind’, ’Rsp’ and ’Cnf’. In addition, the 

presence of some medium (e.g., middleware supporting 

remote operations) between the client and server is made 

explicit. 

Figure 30 also shows three possible ISDL abstractions 

of an operation: (ii) abstracts from individual interaction 

contributions, (iii) considers the sending and receiving of 

a request (response) message as a single unit of activity, 

called Invocation (Return), and (iii) considers the entire 

operation as a single unit of activity, called Op.

The ordering of operations in UML sequence diagrams 

can be modeled using the enabling condition of ISDL. 

However, a sequence diagram generally shows only one 

specific ordering. An ISDL diagram can be used to 
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represent all possible orderings of operation invocations 

between components. This is shown in section 5.5. 

client middleware server

(i)

(ii)

Req Ind

RspCnf

Inv Ret

(iii) (iv)

Op

Req

Cnf

Ind

Rsp

Figure 30. ISDL abstractions of an operation

5.5. Relating component views 

The component behavior and component interaction 

view complement each other. The component behavior 

view conceives the operation contributions of individual 

components, and how these contributions are related (for 

brevity, we have not considered internal component 

behavior). The component interaction view conceives the 

relationships between operation contributions from 

different components. 

 In principle, the only overlap to be checked between 

both views is that for each component, the same 

interactions are identified. However, given the component 

structure view of section 5.2, and assuming that 

components interact via some medium as depicted in 

figure 30, the component behavior view implicitly 

conceives also the interactions between components, and 

therefore implicitly conceives the composite behavior of 

all components. ISDL allows one to define this composite 

behavior. This behavior is depicted in figure 31 for a 

single instance of the shopping process, where each 

operation is represented by a single action, except for 
’transaction’ that is represented by two actions The 

disabling relation between actions 'select' and 'cancel'

represents that 'cancel' may either disable 'select' or happen 

after 'select' has happened. 

selectbrowse

cancel

checkout approvepack

transaction(reject)

transaction(accept)

notify(sale)

notify(nosale)

send receive

Figure 31. Integrated component view

The above implies that we have to assess whether both 

views conceive the same possible sequences of 

interactions. We could do this in two ways: 

1. check if the sequence of interactions described by 

each sequence diagram is a possible execution of the 

ISDL behavior in figure 31. For the sequences from 

figure 29, this can easily be established. However, to 

properly verify this according to the third approach 

described in section 4.1, a mapping from UML 

sequence diagrams to ISDL would be necessary. 

Also a basic relation would be necessary that allows 

us to verify if the resulting ISDL models are correct 

sequences of the integrated behavior from figure 31. 

The benefit of using this approach is that the basic 

relation and the tool support that implements it may 

later be re-used for other verifications; 

2. map the sequence diagrams to ISDL, integrate them 

into a single diagram (e.g. using one of the 

techniques from [18]) and check whether this 

diagram is equivalent to the diagram in figure 31. In 

this case a weak equivalence relation may be used, 

since the sequence diagrams may describe only a 

subset of all possible interaction sequences. 

5.6. Relating enterprise and component views 

The component behavior view and component 

interaction view together (here called the component 

view) refine the business process view. This means we 

should assess somehow whether the composition of the 

UML behavior diagrams that represent the component 

view correctly implements the UML activity diagram of 

figure 21.  Alternatively, we could assess whether the 

behavior of figure 31, which represents the composite 

component behavior, is a correct refinement of the 

behavior representing the business process view in figure 

23 (according to the third approach discussed in section 

4.1). The latter option is preferable, because a method for 

conformance assessment has been developed for ISDL 

[16,15]. This method is based on the second refinement 

technique discussed in section 4.2. Because it is beyond 

the scope of this paper to explain the method, we will 

appeal to the intuition of the reader to illustrate the 

conformance between both ISDL diagrams.   

selectbrowse

cancel

checkout approvepack

transaction(reject)

transaction(accept)

notify(sale)

notify(nosale)

select items

package

pay

deliver

abort

confirm

send receive

(i) Business view

(ii) Component view

select’ pack’ receive’

notify(nosale)’

transaction(
accept)’

notify(sale)’

(iii) Implemented business view

Figure 32. Refinement relation

The relation between figure 32 (i) and (ii) depicts for 

each original action in the figure 32 (i) a corresponding 

action, called reference action, in figure 32 (ii), such that 

the occurrence of the reference action corresponds to the 

occurrence of the original action. All other actions in 

figure 32 (ii) are called inserted actions and should be 

removed, since they are introduced in the refinement step. 
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Rules have been defined in [16,15] to remove inserted 

actions in such a way that the relationships between the 

references actions are preserved. 

Figure 32 (iii) depicts figure 32 (ii) after removing the 

inserted actions.  This figure is however not (strictly) 

equivalent to the original abstract ISDL diagram. One can 

deduce the following implementation errors: actions 'pay'

and 'package' have been implemented in a particular 

sequence, a 'no sale' notification can be received before 

items have been selected or after the items have been 

selected and packaged. However, in certain cases one 

may be interested in a weaker variant of equivalence, for 

example, to allow that independent actions are 

implemented in a particular sequence. 

6. Conclusions 

This paper introduces an approach to define 

viewpoints and modeling languages used in an 

architectural design process. Our approach is generic 

enough to cater for the different relations that may exist 

between viewpoints and the modeling languages that are 

used to represent them. The paper discusses several ways 

to keep different views (that are  constructed according to 

viewpoints) aligned and consistent. 

This paper proposes the use of a basic viewpoint as a 

basis for defining and relating viewpoints for distributed 

application design. We claim to have such a basic 

viewpoint definition for structure and behavior concerns 

in [15]. This is motivated by the fact that we applied this 

viewpoint for the design from different viewpoints, such 

as business process design, distributed application design 

and protocol design (as explained in [4]). Our basic 

viewpoint defines some basic relations, such as the 

refinement relation and the behavior equivalence relation 

that we can re-use to define relations between other 

viewpoints. 

In the future, we intend to further elaborate on the 

example introduced in section 5. We intend to build tool 

support for the basic viewpoint that helps us 

automatically verify the consistency between views. We 

will integrate this tool with existing CASE tools for UML 

modeling, according to the meta-model mappings 

discussed in this paper. To do this, we must find a more 

precise way to express these mappings. Finally, we plan 

to carry out case studies to validate the claims made in 

this paper. 
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