
Transparent Dynamic Reconfiguration for CORBA

Jo30 Paulo A. Almeida”*, Maarten Wegdam’,2
Marten van Sinderen’, Lambert Nieuwenhuis’ ’

almeida @cs.utwente.nl, wegdam@ lucent.com,
sinderen @cs.utwente.nl, L. J.M.Nieuwenhuis@cs.utwente.nl

‘Centre for Telematics and Information Technology, *Lucent Technologies,
University of Twente

PO Box 217,7500 AE,
Enschede, The Netherlands

Abstract
Distributed systems with high availability

requirements have to support some form of dynamic
reconfiguration. This means that they must provide the
ability to be maintained or upgraded without being taken
off-line. Building a distributed system that allows dynamic
reconfiguration is very intrusive to the overall design of
the system, and generally requires special skills from both
the client and server side application developers. There is
an opportunity to provide support for dynamic
reconfiguration at the object middleware level of
distributed systems, and create a dynamic reconfiguration
transparency to application developers. In this paper, we
propose a Dynamic Reconfiguration Service for CORBA
that allows the reconfiguration of a running system with
maximum transparency for both client and server side
developers. We describe the architecture, a prototype
implementation, and some preliminary test results.

Keywords: dynamic reconfiguration, distributed systems,
middleware, CORBA, on-line upgrade

1 Introduction

Distributed computing systems are being used for
many years in various large-scale commercial and
industrial environments. Such systems are also deployed
in mission-critical and highly available applications, e.g.,
for telecommunications switches and e-commerce
solutions. Consequently, long downtimes for these
applications are usually unacceptable due to economical
or safety reasons. In many cases, the availability of a
distributed computing system is determined by its
downtime due to various types of maintenance. In
practice, a reconfiguration implies that the system needs
to be taken offline and restarted after installation of new
software components. The downtime due to maintenance

0-7695-1300-X/01/$10.00 0 2001 IEEE 197

-_
Bell Labs Twente

Capitool 5, 7521 PL,
Enschede, The Netherlands

can be avoided by using dynamic reconfiguration [I , 3 ,4 ,
5 , 7, 9, IO, 11, 13, 20, 251, i.e., the system can be
maintained or upgraded without being taken off-line.

The aim of dynamic reconfiguration is to allow a
system to evolve at run-time [9], as opposed to design-
time, while introducing little (or ideally no) impact on the
system’s execution. In this way, the system does not have
to be taken off-line to accommodate changes. We
distinguish two types of changes, related to the moment
they are envisioned [l 11: programmed changes are
foreseen and anticipated by the system designer, while
evolutionary changes are unanticipated and become
necessary over the execution lifetime of an application.

In case of a dynamic reconfiguration, certain entities of
the distributed system are affected, while other entities
remain functioning. Entities can be objects, groups of
objects, components, groups of components, sub-systems,
bindings and groups of bindings. Operations on entities
can be replacement, migration, addition, and removal.
The possible changes applied to a system depend on the
granularity of the reconfigurable entities and the
operations that can manipulate such entities in the
affected part of a system.

New generations of distributed applications often
consist of co-operating objects, and make use of object-
middleware technology, such as COMA [14], Java RMI
and DCOM. Object-middleware facilitates the
development of distributed applications by providing
distribution transparencies to the application designers.
Object-middleware offers a widely accepted approach for
the provisioning of flexible computing environments. As
such, there are many systems that would profit from
dynamic reconfiguration facilities for object-middleware,
such as, e.g., critical andor long-running systems. The
development of such systems would be facilitated through
the inclusion of (transparent) reconfiguration support in
the middleware platform. Although we focus on CORBA

http://lucent.com

in this paper, our approach and architecture is also
suitable for other object middleware technologies.

This paper is further structured as follows. Section 2
presents terminology, definitions and concepts used in our
discussion of dynamic reconfiguration, as well as
requirements for a dynamic reconfiguration service for
object-middleware; Section 3 describes our dynamic
reconfiguration approach; Section 4 presents the
architecture of a Dynamic Reconfiguration Service for
CORBA; Section 5 describes the implementation based
on portable interceptors; Section 0 presents an evaluation
of our work, using the results of the experiments
conducted with the prototype, and compares our approach
to related work found in the literature. Finally, Section 7
presents conclusions and future work.

2 Dynamic reconfiguration

This section further introduces the concept of dynamic
reconfiguration and presents a general dynamic
reconfiguration model, which has been adopted in this
paper. We then briefly discuss the problem of consistency
preservation during reconfiguration. Next, dynamic
reconfiguration is placed in an object middleware context,
followed by a list of requirements that we have considered
in the design of a Dynamic Reconfiguration Service for
CORBA-based applications.

2.1 A model of dynamic reconfiguration

The purpose of dynamic reconfiguration is to allow a
system to evolve incrementally from its current
configuration to another configuration without being
taken off-line. Dynamic reconfiguration should introduce
as little impact as possible (ideally no impact at all) on the
system execution.

In this paper, a system configuration is defined as a
structure of software entities. Dynamic reconfiguration
entails operations for the replacement, migration, addition
and removal of these entities. Replacement means that an
entity is replaced by another entity, where the new entity
may run in another execution environment and have both
functional and quality-of-service (QoS) properties that
may differ from the old entity. Migration means that an
entity is moved from one to another location, which may
also imply a change in execution environment.

Figure I depicts the dynamic reconfiguration model
based on [9, IO], which has been adopted in this paper.

In this model, the reconfiguration design activities
comprise the specification of the changes and the
specification of constraints that need to be preserved
during reconfiguration. Changes are specified in terms of
the above-mentioned entities and operations on these
entities. Reconfiguration constraints are predicates on the
reconfiguration process that restrict its execution, for
example “the reconfiguration process must last less that

r E z 7 n Information

Activities

0 System
Reconfig.
Design

Configuration
Information i

A
!

(Configuration 1) (Configuration i + f)

Figure 1 - Dynamic Reconfiguration model
10s” or “entity A should be available during the whole
process ”.

The change management activities control the
reconfiguration process, i.e., the transfer from the current
configuration (system S I) to a resulting configuration
(system Sf+,), and use and produce configuration
information. The configuration information defines the
relationship between the system’s entities.

Change Management requires functionality [9, 11, 131
providing guarantees that (i) specified changes are
eventually applied to the system, (ii) a (useful) correct
system is obtained, and, (iii) reconfiguration constraints
are satisfied. Performing reconfiguration on a running
system is an intrusive process [111. Reconfiguration may
imply, for example, interference with ongoing interactions
between entities. One of the main issues of dynamic
reconfiguration is consistency preservation.

2.2 Consistency preservation

Change management functionality must assure that
system parts that interact with entities under
reconfiguration do not fail because of reconfiguration, i.e.,
system consistency needs to be preserved. A system must
be left in a “correct” state after reconfiguration. In order
to support the notion of correctness of a distributed
system, three aspects of consistency preservation
requirements are identified [l I]. A system is said to be
correct if
1. The system satisfies its structural integrity

requirements,
2. The entities in the system are in mutually consistent

states, and
3. The application state invariants hold.

A system SI+, is said to be a correct incremental
evolution of a system S,, if Sf+, is correct and the behavior
of the affected entities complies with the behavior
expected by the unaffected system parts in case the
reconfiguration had not taken place. With the term
affected entities we denote the entities that are replaced,

removed or migrated as a result of the reconfiguration
process. Each aspect of the correctness notion is explained
in the sequel (for a more elaborate discussion, see [1,2])

2.2.1 Structural integrity. Structural integrity
requirements constrain the structure of a system in terms
of the relationships between entities and the ways in
which these entities may be put together. Consider for
example a CORBA system with various client objects that
invoke an operation of a server object. If we replace the
server object, then the following two conditions on the
structural integrity of the system apply: (i) the client
objects should be able to interact with the new object, i.e.,
in CORBA terms, the clients or client ORBS should
obtain the object reference of the new object, and (ii) the
new version of the server object must satisfy the interface
definition of the original object.

2.2.2 Mutually consistent states. Entities are said to be
in mutually consistent states, if each interaction between
them, on completion, results in a transition between well
defined and consistent states for the parts involved [111.
We assume here that interactions are the only means by
which entities can affect each other’s state.

For example, consider again a CORBA environment
where an object A invokes an operation on an object B. A
and B are said to be in mutually consistent states if A and
B have the same assumptions on the result of the
interactions between them. To be more specific, either
both of them perceive that an invocation has occurred
successfully, or both of them perceive that the invocation
has failed. Suppose the change manager decides to replace
B by B’ after A initiated an operation invocation on B. For
the resulting system to be in a consistent state, either (i)
the invocation has to be aborted, A is informed and
synchronization is maintained; or (ii) B receives the
request, finishes processing it and sends the response, and

detected safe state,
reconfiguration starts reconfiguration starts
with no interactions

in progress progress

driven safe state,

with interactions in

abort interactions non-abort

on-going interactions on-going interactions
complete before complete after
reconfiguration is reconfiguration is
actually applied completed

then is replaced by B’; or, (iii) B is replaced by B’, and B’
has to honor the invocation, by processing the request and
sending a response to A. In case none of these alternatives
occur, A might be kept waiting for a response forever.

In order to guarantee that mutual consistency is
preserved after reconfiguration, most approaches
prescribe that reconfiguration can only start when the
system is in the reconfiguration-safe state (or shortly safe
state). If a system is in the safe state, each of its affected
entities has a self-contained and stable state, and none of
them is involved in interactions. Figure 2 shows a
classification of reconfiguration approaches according to
their choices on the preservation of mutual consistency.

We have studied mechanisms that drive the system
under reconfiguration to a safe state, while avoiding
interactions to be aborted. These mechanisms are
designed to assure that interactions in progress are
eventually completed, either before reconfiguration has
started or after reconfiguration has finished. We propose a
specific mechanism, which is discussed in Section 3.

2.2.3 Application-state invariants. Application-state
invariants are predicates involving the state of (a subset
of) the entities in a system. The preservation of safety and
liveness properties of a system depends on the satisfaction
of these invariants [l 11.

For example, consider an object that generates unique
identifiers. An application-state invariant could be “all
identifiers generated by the object are unique within the
lifetime of the system”. In order to preserve this invariant,
the new version of the object must be initialized in a state
that prevents it from generating identifiers that have been
already used by the original object.

2.3 Dynamic reconfiguration support from
object middleware

Object middleware is gaining wide acceptance as a
generic software infrastructure for distributed computing
systems. A growing number of applications are designed
and implemented as a set of collaborating objects using
object middleware, e.g., CORBA, as a software
infrastructure that facilitates distribution transparencies.
Most current approaches to dynamic reconfiguration
attempt to consider distributed systems in general, and
therefore do not exploit the particular characteristics of
object middleware.

Object middleware offers interaction support to
application objects, which may be deployed in different
computer nodes. Middleware platforms are designed to
provide several transparencies for the application
designer, facilitating distributed application development.
For example, a clientlserver programmer does not have to
be concerned with network types, transport mechanisms,

implementations, or target operating systems. The object

Figure - Reconfiguration approaches and preservation byte ordering, Server locations, object activation, servant
of mutual consistency

199

middleware makes this all transparent. It provides a
uniform interaction pattern, independent of the underlying
node and network technologies.

Embedding reconfiguration functionality in an object
middleware platform is a promising way to leverage this
functionality with maximum transparency. We are
particularly interested in a COMA-based solution to
dynamic reconfiguration. In a CORBA setting,
application objects have either a client or target object
role in an instance of interaction: a client object can use
the service of a target object by issuing a request on the
interface of the target object (a target object, in turn, may
issue nested requests on other objects in order to process a
pending request, thus playing the role of client in another
instance of interaction). We consider the case where the
entities that are the subject of dynamic reconfiguration,
are target objects. Our objective is to develop a CORBA-
based solution that is totally transparent to the clients of
reconfigured objects.

2.4 Requirements for a Dynamic
Reconfiguration Service

The following requirements have been considered in
the design of the Dynamic Reconfiguration Service (DRS)
for object middleware based systems.

Correctness
The service should provide facilities to allow a
reconfiguration designer to obtain a correct incremental
evolution of a system, as defined in Section 2.2.
General suitability
The DRS should be suitable for a broad set of
applications and reconfigurations on these applications.
It should be possible to reconfigure applications built
from components-off-the-self, applications with multi-
threaded and single-threaded execution models, re-
entrant objects, stateless objects, stateful objects, etc.
The service should not only allow the reconfiguration
of one object, but also the reconfiguration of several
objects atomically from the perspective of the
unaffected system parts.
Minimal impact on execution
Dynamic reconfiguration is based on the idea that parts
of the system remain available during a reconfiguration.
Although disruption is unavoidable, the impact of the
disruption should be minimized, as well as the duration
of the effects of this disruption. The DRS should
introduce minimal overhead during normal operation,
and scale with respect to the number of clients.
Maximum transparency
The DRS should provide a dynamic reconfiguration
transparency, which allows application developers not
to be burdened with, or have expertise about, dynamic
reconfiguration. For the client application developer it
should be totally transparent. For the server side

developer this is not a realistic requirement, but it
should be as transparent as possible.

The design of the DRS should be CORBA compliant by
using existing hooks to extend the functionality of a
CORBA ORB. A design that requires major changes to
existing ORBS is not likely to be very successful.

0 Minimal impact on CORBA

3 Dynamic Reconfiguration Approach

This section describes our proposed approach to the
reconfiguration of systems based on object-middleware
by addressing each of the aspects of correctness identified
in Section 2.

3.1 Structural integrity

In the CORBA object model, referential integrity and
interface compatibility are the main issues to be dealt with
in order to preserve structural integrity.

Referential integrity becomes an issue whenever an
object reference changes. An object reference is defined
as a value that denotes a particular object, and is used by
the middleware infrastructure to locate the object. Object
references acquired by clients prior to reconfiguration
may be invalidated due to reconfiguration. For example,
in COMA platforms, migration invalidates the IP address
and port number contained in the IIOP profile of an IOR.
If a reference points to an object that no longer exists, the
established logical binding between a client and a target
object is broken. In order to re-establish the binding after
reconfiguration, we provide a logically central point of
contact for clients to find the objects with invalidated
object references.

In the CORBA object model, interfaces satisfy the
Liskov substitution principle [14]. This means that if
interface B is derived from interface A, then references to
an object that supports interface A can be used to denote
an object that supports interface E. To avoid that object
replacements violate the object model, a new object must
satisfy the old interface. This can be done either by
implementing the old interface or by implementing an
interface derived from it, e.g., by inheritance. If all clients
of a reconfigurable object are also reconfigurable objects,
it is possible to promote arbitrary changes to the interface
by upgrading both clients and target objects atomically.

3.2 Mutual consistency

We propose an approach to drive the system to the
safe state that uses information obtained from the
middleware plalform at run-time and freezes system
interactions on-demand. This approach follows three
stages:

200

1. Drive the system to the safe state by delaying
interactions that would prevent the system from
reaching the safe state;

2. Detect that the safe state has been reached; and
3. Apply reconfiguration;

In this approach, the system is said to be in the
reconfiguration-safe state when each affected object (i) is
not currently involved in interactions and (ii) will not be
involved in interactions until after reconfiguration. This
means that when the system is in a reconfiguration-safe
state none of the affected objects are serving requests or
waiting for outgoing requests to complete.

We distinguish objects in general as active and
reactive. Reactive objects are objects that only initiate
requests that are causally related to incoming requests.
Active objects may initiate requests that do not depend on
incoming requests, e.g., they may initiate requests as a
result of the elapsing of a time-out.

An active object should have capabilities for going to a
reactive state, in which it refrains from initiating requests
that are not causally related to an incoming request. The
implementation of the operation for forcing reactive
behavior is a responsibility of the object developer. Once
the set of affected system objects is defined, all active
objects in the set are requested to exhibit reactive
behavior.

3.2.1 Reaching the safe state. We guarantee the
reachability of the safe state by interfering with the
activities of the system. In a system under
reconfiguration, we distinguish three sets of requests: (i)
requests that would prevent the affected objects from
reaching the reconfiguration-safe state (blocking set), (ii)
requests necessary fo r the system to reach the
reconfigumtion-safe state (‘laissez-passer’ set) and (iii)
requests that do not involve any affected system object.

In our approach, the middleware platform is
responsible for selectively queuing requests that belong to
the blocking set and for allowing requests in the ‘laissez-
passer’ set to complete. This is done transparently for the
application objects.

In the simple case of replacing a single non re-entrant’
object, all requests issued to this object are queued by the
middleware platform before they reach the object. In this
way, new requests are prevented from being served before
the reconfiguration, and the object gets the change to
finish handling ongoing requests. When all ongoing
requests have been treated, the system is in the safe state.
Since all requests are guaranteed to finish within bounded
time, the safe state is reachable within bounded time.

In the more complex cases of reconfiguring tnultiple
(re-entrant) objects sitnultaneously, selective queuing of
requests directed to affected objects is necessary.

’ an object is denominated reentrant if it plays the role of
server as a consequence of issuing a request to another object

Requests issued by an affected object should get ‘laissez-
passer’ status, since its requests have to be executed for
the safe state to be reached. This implies that requests in
invocation paths that contain at least one affected object
should also be included in the ‘laissez-passer’ set. In
particular, re-entrant requests initiated by affected objects
are also included in the ‘laissez-passer’ set. All objects
that could otherwise issue new ‘laissez-passer’ requests
are set to exhibit reactive behavior, so that no new
‘laissez-passer’ requests are generated. At some point, the
existing requests are treated, all affected objects are idle,
and the system reaches the safe state.

In order to identify requests that belong to the ‘laissez-
passer’ set, we use the propagation of implicit parameters
along invocation paths. Every reconfigurable object in an
invocation path adds its own identification to the request
as an implicit parameter. Given a request and the set of
affected objects, it is possible to determine if the request
belongs to the ‘laissez-passer’ set by inspecting its
implicit parameters. If at least one of the affected objects
has been included in the request’s implicit parameters, the
request belongs to the ‘laissez-passer’ set.

3.2.2 Applying reconfiguration. When all affected
objects inform the reconfiguration manager that they are
idle, the reconfiguration process can proceed. The
affected objects’ state can be inspected and used to derive
the state of the objects being introduced. The change
designer may provide functions for state translation. Once
new objects or new versions of objects have been
installed, their state is properly modified. Queued requests
and further new requests are redirected to the new version
of an object.

3.3 State introspection

In [l 11 a scheme is proposed in which invalidated
application invariants can be identified and re-established
by the change designer with little assistance from the
application developer. This scheme consists of requiring
objects to provide general-purpose state access-methods
that can be invoked by a third party to query or adjust the
state of objects. These methods would be used to inspect
and modify a selected subset of an object’s internal state
at runtime. In this scheme, the application designer
decides on the particular subset of the objects’ state that is
exposed by these access methods. In general, objects
should provide methods to inspect and modify state
variables that control synchronization and computational
behavior of the object.

One might argue that this scheme breaks
encapsulation, since it allows external access to an
object’s internal state. Nevertheless, this form of
introspection is unavoidable in certain cases, depending
on the scope of reconfigurations considered.

201

4 Architectural Overview

This section describes our architecture for a Dynamic
Reconfiguration Service. This architecture extends
CORBA with a new common object service, and uses the
approach described in Section 3.

4.1 Overview

The Dynamic Reconfiguration Service consists of a
Reconfiguration Manager, a Location Agent and
Reconfiguration Agents, see Figure 3.

ReconfigurationManager

LocationAgent

\ -b Location Reconfiguration

+/
Manager Agent

Application Objects Dynamk Reconflguratlon
Service

Figure 3 - Architectural Overview
The Reconfiguration Manager is the central

component of the Dynamic Reconfiguration Service that
interacts with the other components of the service. The
reconfiguration designer accesses the service of the
Dynamic Reconfiguration Service through the
ReconfigurationManager interface, being able to create,
replace, migrate and remove objects.

The Reconfiguration Manager delegates object
creation and removal to Reconfigurable Object Factories,
registers, re-registers and de-registers objects through
interaction with the Location Agent and co-ordinates the
Reconfiguration Agents to drive the system to a
reconfiguration-safe state.

The Location Agent provides a registry for the location
of reconfigurable objects. It translates a location-
independent object reference to an object reference with
the current location of a reconfigurable object. The
Location Agent is typically co-located with an

implementation repository [6] , and uses the standardized
CORBA request forwarding mechanism [141.

A Reconfiguration Agent is present in every capsule
[8] where reconfigurable objects may be located. A
Reconfiguration Agent is responsible for restricting the
behavior of an affected object during reconfiguration
through filtering of requests.

Reconfigurable Object Factories implement the
Factory design pattern, creating Reconjigurable Objects
on behalf of the Reconfiguration Manager. Factories
shield the Dynamic Reconfiguration Service from the
specific support to object deployment offered by different
languages, operating systems or virtual machines, such as
e.g., DLLs, the Java class loader and interpreted
languages. Reconfigurable Object Factories and
Reconfigurable Objects are application specific and are
supplied by the application developer.

4.2 Reconfigurable Object Creation

Figure 4 shows the creation of an object in the
architecture. The Reconfiguration Manager delegates the
creation to a local Reconfigurable Object Factory (2),
which creates the object (3) and registers it with the
Reconfiguration Agent responsible for the capsule where
the object lives (4). In the sequence, the Reconfiguration
Manager registers the recently created object with the
Location Agent (3, and returns the object reference to the
client that requested the object creation (6).

Both the Reconfiguration Manager and the local
factories implement the GenericFactory interface (as of
Fault-Tolerant CORBA [15]).

4.3 Reconfigurable Object Removal

The Reconfiguration Manager delegates object
removal to the Reconfigurable Object Factory responsible
for the object being removed, and de-registers the object
with the Location Agent.

Location Reconfiguration
Manager Agent

reference to
reconflourable 2. create-object0

object

Figure 4 - Object Creation

202

4.4 Reconfigurable Object Replacement

Figure 5 shows the replacement of an object in the
architecture. Firstly, the Reconfiguration Manager
delegates the creation of the new version of the object to a
local Reconfigurable Object Factory (2), as shown in the
example above. In the sequence, the Reconfiguration
Manager notifies the affected reconfigurable object and its
Reconfiguration Agent of the start of the reconfiguration
(5 ,6) . The Reconfiguration Agent restricts the behavior of
the affected object, and notifies the Reconfiguration
Manager when the object is ready for reconfiguration (7).
The state-transfer is conducted (8, 9), the new location of
the object is registered with the Location Agent (IO), and
the previous version of the object removed through
interaction with the local factory (1 1). Please note that in
this figure we abstract from optional state translation.

In the case of replacement of several objects
simultaneously, the safe-state is reached when all
reconfigurable objects affected notify the Reconfiguration
Manager. As a multiple-object replacement is considered
a single atomic action from the perspective of the clients
of the affected objects, the Location Agent updates their
location atomically.

Reconfigurable objects should implement the
ReconfigurableObject interface, which consists of state-
access operations and a ‘passivate’ operation to be
invoked by the reconfiguration manager to notify of the
beginning of the reconfiguration. In response to this
operation, the object should exhibit a re-active behavior,
as described in Section 3.2.

The service is completely transparent for client
applications, which will manipulate object references and
issue requests to reconfigurable objects in the ways

prescribed in the CORBA object model. A client
application issues requests that are handled by a client-
side ORB. The client-side ORB is responsible for sending
requests to the server-side ORB which, under normal
operation, delivers the request to the target object. During
reconfiguration, requests may be queued by the
middleware. In this case, the server-side ORB informs the
client-side ORB of the reconfiguration. At the end of the
reconfiguration, the Reconfiguration Manager notifies the
client-side ORB, which re-issues the request with the new
target registered in the Location Agent.

One might believe that the selective queuing of
requests interferes with ordering guarantees provided by
the middleware infrastructure. Nevertheless, in the
CORBA object model, the order in which a client issues
requests does not imply the order in which a server
processes the requests. In addition, the order in which
replies reach a client does not imply the order in which
the server processed the requests.

4.5 Reconfigurable Object Migration

Object migration is treated as an object replacement
where the factory of the new version of the object is
located in the destination capsule.

5 Implementation

The implementation described in this section is based
on the use of portable interceptors [16] to extend the
functionality of the ORB. Portable interceptors allows the
extension of the ORB through a limited request reflection
mechanism in an ORB-independent manner. It allows a
service to reify requests in specific interception points.

1. replace-object() 10. register-object()
-+ Reconfiguration -+ Location

Agent
\

12. done Manager

Figure 5 - Object Replacement

203

Factory Reconfigurable Object

I / I I ! I \ I \ J

/
receive exceotion: - if exception caused
because of
reconfiguration, wait
notification and
reissue request (via
LocationForward)
(distributed queue)

I
receive reauest:
-extract ‘Invocation
path’
-during reconfig. filter
requests (throw
exception to queue)
-append id of target
obj to invocation path
and copy mto thread
context
- increment # incoming
requests for target obi

send reauest: \
receive exceDtbn:

reissue request (via
LocationForw ardl

request se,.,,ice -wait notiification and

context
send re~k
send other:
send exceotion:
- decrement # 0 application
incoming requests
for target infrastructure

ORB-mediated invocations

-brequest flow (decomposed
ORB-mediated invocations)

. - - - - - - + reply fbw (decomposed
ORB-mediated invocations) - intrecapsule interactions

Figure 6 - Elements of the implementation and request reification points

Figure 6 depicts an overview of the implementation
with a brief description of the actions undertaken in
client- and server-side request interception points.

Before a reconfigurable object receives a request, the
request is reified in the receive-request interception
point, and the service context propagated with the request
is extracted. A service context is an implicit parameter
used by CORBA services to propagate information along
with a request. For the DRS, it contains the list of
reconfigurable objects that depend on the execution of the
request to become idle. The list of reconfigurable objects
is appended with the identification of the request’s target
object and the appended list is copied into the
ReconfigurationCurrent local object. The
ReconfigurationCurrent object provides access to an
implicit per-thread context, and in this way the thread is
associated with the reconfigurable object. When a nested
outgoing invocation is initiated, the list is copied from the
ReconfigurationCurrent object into the request service
context.

For outgoing invocations that do not depend on
incoming invocations, the application calls a method in
the ReconfigurationCurrent object in order to associate
the current thread with the originating reconfigurable
object. The application may spawn a new thread as part of
the processing of a request, in which case the application
is responsible for transferring information from the
ReconfigurationCurrent object of the thread treating the
request to the ReconfigurationCurrent object of spawned
threads.

During the first stage of the reconfiguration process,
server request interceptors inspect the propagated service
context. If any of the affected objects is listed in the
service context, the request should be allowed to
complete, so that all affected objects can progress to the
idle state. If no affected objects are listed, an exception is
raised. This exception is intercepted in the client-side
client request interceptors, which re-issues the request
transparently when the reconfiguration is over. The client
application is not at any moment aware of the
reconfiguration, potentially observing an increase in the
response time of invocations delayed.

6 Evaluation

A prototype of the Dynamic Reconfiguration Service
has been implemented to validate the architecture and the
mechanisms proposed. The prototype has been developed
in Java, using ORBacus 4.0.4 [19].

The prototype has been successfully tested for
applications with multiple multithreaded objects,
including nested and re-entrant invocations. Furthermore,
we have conducted some performance tests on the
prototype. In the following sections we present the results
obtained from these tests: an estimation of the overhead
introduced by the Dynamic Reconfiguration Service
during normal operation; and an estimation of the impact
of reconfiguration on execution.

204

We complete the evaluation by comparing our design
with related work.

6.1 Overhead during normal operation

In order to assess the overhead of the reconfiguration
service during normal operation, i.e., with no on-going
reconfiguration, we have set-up a performance test with a
client and a server object, in different hosts of a local area
network. Since a large part of the overhead introduced by
the dynamic reconfiguration service is incurred by the
implementation of portable interceptors, we have
considered three test cases:

1. client and server with no portable interceptors,
2. client and server with minimal portable

interceptors, i.e., interceptors with placeholders
for interception points, but no code, and

3. client and server with the dynamic
reconfiguration service portable interceptors.

We measure the overhead during normal operation by
measuring the response time R observed at the client. In
this estimation, we simplify R to consist of the delay
introduced by the middleware platform to mediate the
invocation Amlddlenorr added with the delay introduced by
the execution of the application code, AuJl,,licrrrion. For our
tests, the server object provided an operation with no
application code, thus Alll,,llrcot;on=O, and we have:

- R = Amiddlewure + Aupplicutivn - Amiddlewurr

For test case 1, Amidl,lewuru is the delay introduced by
the plain middleware platform (i.e., the middleware
platform without extensions), A,,lll;norh:

'middlewore = A pluinurh

For test case 2, Ami~lll,llrwure can be seen as composed of
the delay introduced by the plain middleware platform
and the delay introduced by the implementation of
portable interceptors, A,urerceJltor,~:

-
Amidd/ewure - A pluinorh + 'interceptors

For test case 3, Amrllrllrwurr can be seen as composed of
the delay introduced by the plain middleware platform,
the delay introduced by the implementation of portable
interceptors and the delay introduced by the dynamic
reconfiguration service portable interceptors, Adr,$.

-
Aniiddlewure - A pluinorh + Ainrercrptors + A d r s

Four batches of IO4 invocations have been executed

Size of i\p/ainorb

arguments + (ms)
result value

0 bytes 1.0388
128 bytes 1.0999
2 Kbytes 1.5305

for each of these three distinct cases, with different sizes
of parameters and result values. The results obtained are
summarized in Table 1 (values averaged from 4 x lo4
invocations). Figure 7 shows a graphical representation of
the results.

Minimal portable interceptors
Aintercepfors Increase from Adrs Increase Amterceptors + Increase
(ms) &/am orb (mS) fmn Aplatnorb Adrs (ms) from

Dynamic reconfiguration service

+Anterceptors &lainorb

0.0771 7.4% 0.0518 4.6% 0.1289 12.4%
0.0625 5.7% 0.0641 5.4% 0.1266 1 1 .5%
0.0834 5.5% 0.0555 3.4% 0.1389 I 9.1%

Delay introduced by the middieware platform in I
ORB-mediated invocations 1

.I.-.. "" ..-

--

0 byte 128 bytes 2048 bytes

Size of results + arguments

plain implementation ?minimal interceptors &i DRS interceptors _ _ _ _ ~ _ ~ _ _ ~. ~~~ ~~

Figure 7 - Normal and increased response times
Summarizing, the increase in Am;ddlewarr incurred by the

introduction of the dynamic reconfiguration service lies in
the range 0.13 ? 0.01 ms. In the worst case, with no
parameters and no result value, the dynamic
reconfiguration service causes an increase of less than
12.5% in the delay introduced in normal ORB-mediated
invocations. Typically, the servant will take some time to
process the request, lowering the relative increase in
invocation response time considerably. Therefore, for
most application scenarios, we consider the overhead of
the reconfiguration service acceptable. In these
experiments we have not considered the overhead
incurred by the use of the Location Agent, since this
overhead is limited to the first operation invocation and
after a reconfiguration.

From the results obtained, we can also conclude that
more than half of the delay added by the dynamic
reconfiguration service is caused by the implementation
of portable interceptors. Since the implementation of
portable interceptors is ORB dependent, these
experiments should be repeated for other ORB
implementations.

Table 1 - Delay introduced by the middleware platform in invocation mediation

205

6.2 Impact on execution during
reconfiguration

Clients of an affected object observe an increase in the
response time of operations invoked during a
replacement. This increase only applies for invocations
that reach the target object afrer the beginning of the
reconfiguration and before the end of the reconfiguration.

The increase in response time during reconfiguration
is highly dependent on the application. It is upper-
bounded by the duration of the longest pending invocation
in the set of affected objects at the moment the
reconfiguration starts plus a fixed delay introduced by the
reconfiguration service for co-ordination overhead. For
active objects, the amount of time taken for the object to
exhibit a reactive behavior should also be considered in
the calculation of the upper bound of the increase in
response time.

The fixed delay introduced by the reconfiguration
service can be seen as a lower bound for the increase in
response time during reconfiguration. According to an
experiment conducted with the replacement of one single
object, this delay is approximately 530 ms. From this
value, 320 ms are related to marshalling and de-
marshalling of service contexts. We see opportunities for
optimizations that should reduce these values.

The experiments should be repeated for different
ORB implementations to reach more conclusive results.
Further tests should consider the effects of reconfiguration
on the performance of the new object right after the
reconfiguration, as queued requests are directed to it.

6.3 Related work

In Bidan et. al.’s approach [3], the implementation of a
reconfiguration service in CORBA is considered. As is
the case for our approach, a reconfigurable entity is a
CORBA object. In this approach, the reconfiguration
infrastructure maintains a representation of the
configuration of the system, through a directed graph of
objects connected through links. Objects A and B are said
to be linked if A can invoke an operation on target object
B. In the approach, all client applications and target
objects must implement a passivate operation to block the
initiation of requests in a specific outgoing link. The
algorithm guarantees the reachability of an idle state by
sending passivate messages to all the clients of an object
and then to the object itself.

Unlike our approach, Bidan et. al.’s approach is not
suitable for a system with re-entrant invocations.
Therefore, in this approach, an object that has initiated an
invocation cannot play the role of server for some
consequent invocation.

Furthermore, the approach does not permit multiple
object replacements simultaneously. This limits the
application of the approach when a group of objects has to

be substituted atomically. It is common to have sets of
related objects, where a change to one object may require
changes to other objects that depend on its behavior or
other characteristics [181.

Compared to our DRS, the functionality for dynamic
reconfiguration is much more at the application layer,
requiring not only server objects but also client
applications to incorporate support for reconfiguration.
Our approach exploits the particular characteristics of
object-middleware to provide more transparency for the
application designer, facilitating distributed application
development.

In [20], another approach to dynamic reconfiguration
of CORBA-based systems is presented. The approach
does not address consistency issues explicitly and is
heavily based on the use of an interpreted language for
object implementation.

Our approach only interferes with those parts of the
system that actually interact with the set of affected
objects during reconfiguration, contrary to approaches [3,
9, 11, 251 that block all potential system activities that
may prevent the system from reaching the safe state. For a
more extensive comparison of our approach with other
non-middleware-specific dynamic reconfiguration
approaches [9, 11,251, see [l].

This paper focuses on reconfiguration of non-
redundant objects. Approaches for redundant objects
promote object replacements by temporarily executing
both old and new versions of an object simultaneously.
These approaches, such as the one adopted by [l l] , are
limited to object replacements where the new version of
an object has the same externally visible semantic
properties when compared to the old object.

7 Conclusions

In this paper, we have presented an approach to
dynamic reconfiguration of object middleware based
systems that allows modifying a running system with
maximum transparency for both client and server side
developers. The proposed approach can be used in
systems with large and changing numbers of clients and
objects and is suitable for a broad set of applications and
reconfigurations.

The approach has been used in the design of a
Dynamic Reconfiguration Service for CORBA, which has
been validated through the implementation of a prototype.
Some preliminary test results have been presented to
assess the overhead introduced by the DRS during normal
operation. These results indicate that the overhead is quite
minimal, and is acceptable for most application domains.
We also presented preliminary measurements on the
impact on the execution of a system during
reconfiguration, which is also acceptable. Our approach
only interferes with those parts of the system that actually
interact with the set of affected objects during

206

reconfiguration, allowing the rest of the system to execute
normally.

The prototype uses portable interceptors (a
standardized ORB extension mechanism) to realize
request reflection and instrument the middleware platform
to obtain configuration information at runtime. This
avoids requiring the application developer or integrator to
provide extensive descriptions of the system and its
objects. By using portable interceptors, we are able to
freeze system interactions on demand.

We have submitted the approach presented in this
paper in Lucent Technologies' response [23] to the
Request For Information (RFI) on Online Upgrades [17]
issued by the OMG, hoping that this approach becomes
incorporated in a forthcoming CORBA standard.

References

[l] J. P. A. Almeida, M. Wegdam, L. Ferreira Pires, M. van
Sinderen. An approach to dynamic reconfiguration of
distributed systems based on object-middleware, to appear
in Proceedings of thel9th Brazilian Symposium on
Computer Networks (SBRC 2001), Santa Catarina, Brazil,
May 200 1.

[2] J. P. A. Almeida, Dynamic Reconfiguration of Object-
Middleware-based Distributed Systems. M. Sc. thesis,
University of Twente, The Netherlands, June 2001.

[3] C. Bidan, V. Issamy, T. Saridakis, A. Zarras. A dynamic
reconfiguration service for CORBA, in Proc. IEEE
International Conference on Configurable Distributed
Systems, May 1998.

[4] T. Bloom and M. Day. Reconfiguration and module
replacement in Argus: Theory and Practice, IEE Software
Engineering Journal, vol8, no 2, March 1993.

[5] M. Endler. A language for implementing generic dynamic
reconfigurations of distributed programs. In Proceedings of
the 121h Brazilian Symposium on Computer Networks,
1994.

[6] M. Henning. Binding, migration, and scalability in
CORBA. Communications of the ACM 41(10), October
1998.

[7] C. Hofmeister, E. White, J. Purtilo. Surgeon: a package for
dynamically reconfigurable distributed applications, in
Proceedings of the IEEE International Conference on
Configurable Distributed Systems, March 1992.

(81 ITU-T / ISO. Open Distributed Processing Reference
Model. Part I - Overview, ITU-T X.901 I ISOlIEC10746-1.

[9] J. Kramer and J. Magee. Dynamic configuration for
distributed systems. IEEE Transactions on Software
Engineering 11(4), pp. 424-436, April 1985.

[lo] J. Kramer and J. Magee. The evolving philosophers'
problem: dynamic change management. IEEE Transactions

on Sofrware Engineering 16(1 I), pp. 1293-1306, November
1990.

[I 11 K. Moazami-Goudarzi. Consistency preserving dynamic
reconfiguration of distributed systems. Ph.D. thesis,
Imperial College, London, March 1999.

[12] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L.
Tewksbury and V. Kalogeraki. Eternal: Fault Tolerant and
Live Upgrades for Distributed Object Systems, in
Proceedings of the IEEE Information Survivability
Conference, Hilton Head, SC, January 2000, pp. 184-196.

[131 P. Oreizy, N. Medvidovic, R. Taylor. Architecture-based
runtime software evolution, in Proceedings of the
International Conference on Software Engineering, April
1998.

[14] Object Management Group, The Common Object Request
Broker: Architecture and specification, Revision 2.4.1,
forma1/00- 1 1-07, November 2000.

[151 Object Management Group. Fault tolerant CORBA
specification, V1.0, ptc/00-04-04, April 2000.

[161 Object Management Group. Interceptors FTF published
drafl of CORBA core and services chapters, ptcl00-03-03,
March 2000.

[171 Object Management Group. Online updates RFI, orbos/OO-

[18] Object Management Group. Online updates RFP draft,

[19] Object Oriented Concepts, Inc. http:/lwww.ooc.com.

[20] N. L. R. Rodriguez and R. Ierusamlimschy. Dynamic
Reconfiguration of CORBA-based applications, in
Proceeding of the SOFSEM'99: 26th Conference on
Current Trends in Theory and Practice of Informatics,
LNCS 1725, Springer-Verlag, Berlin, pp. 95-1 11, 1999.

[21] D.C. Schmidt and S. Vinoski. Object interconnections.
Object adapters: concepts and terminology. SIGS C + +
Report, October 1997.

[22] C. Szyperski. Component software - Beyond object-
oriented programming, ACM Press, New York, 1997.

[23] M. Wegdam and J. P. A. Almeida. Lucent response to
OMG ORBOS RFI on online updates, orbosl01-01-01,
January 2001.

[24] M. Wegdam, D.-J. Plas, A. van Halteren, B. Nieuwenhuis.
Using message reflection in a management architecture for
CORBA, In Proceedings of the 11th IFIP/IEEE
International Workshop on Distributed Systems:
Operations C? Management (DSOM 2000), Austin, Texas,
USA, December 2000.

09- 15, September 2000.

ab/00-03-06, March 2000.

[25] M. A. Wermelinger. Specification of software architecture
reconfiguration. Ph.D. thesis, Universidade Nova de
Lisboa, September' 1999.

207

http:/lwww.ooc.com

