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Abstract: In this paper, we analyze in depth the innovative very versatile and energy efficient
(V2E2) actuator proposed in Stramigioli et al. (2008). The V2E2 actuator is intended to be
used in all kind of robotics and powered prosthetic applications in which energy consumption is
a critical issue. In particular, this work focuses on the development of a port-based Hamiltonian
model of the V2E2 and presents an optimal control architecture which exploits the intrinsic
hybrid characteristics of the actuator design. The optimal control guarantees the minimization
of dissipative power losses during torque tracking transients.

1. INTRODUCTION

Mobile robots and rehabilitation devices have gained a
lot of interest in the research community during the last
decade. For these systems, energy efficiency is of crucial
importance because of the existing trade-off between the
realization of light-weighted devices and the life-time of
the power source. For this reason, research efforts have
been spent in pursuit of the design of an ideal actuator,
depicted in Fig. 1, which should behave as follows:

e the energy flows from the power supply (energy
storage) to the load when an output positive work
is required;

e when negative work is performed on the load, the
energy is completely recovered, i.e. no energy is lost
during the conversion;

e finally, no energy flows when the actuator is required
to have a perfectly stiff or a free moving output shaft,
and to deliver a static output torque.

The arrow through the actuator of Fig. 1 means that
the amount of energy converted from the electrical to the
mechanical domain can change, e.g. by varying the control
input of the actuator. The energy conversion is usually
achieved by means of DC motors. As analyzed by Kim
et al. (2000), such devices show an high energy efficiency
only in the low-torque high-speed region. However, many
robotic applications should deliver high output torques
even at low speed revolution requiring the use of either big
and heavy motors or output gears with high gain ratios,
which cause non-negligible dynamic effects and the lost of
the system backdrivability.

In the literature, a certain amount of strategies for reduc-
ing energy consumption is already present. For example,
compliant actuators with tunable series elastic elements in
the actuation chain have been introduced, among others,
by Pratt and Williamson (1995) to guarantee a safety

1 *gerelli@ce.unipr.it, Dipartimento di Ingegneria dell’Informazione,

University of Parma, 1-43100 Parma, Italy.

2 #{r carloni,s.stramigioli} @utwente.nl, IMPACT Institute, Fac-
ulty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, 7500 AE Enschede, The Netherlands.

Energy

Transfer A

—

Energy
Storage

Actdator Load

Fig. 1. Ideal actuator.

interaction between robots and their unstructured sur-
rounding environment, and by Thorson et al. (2007); van
Ham et al. (2005) to design biomimetic walking robots.
Although series elastic elements can store energy, the com-
pliant behavior can be changed only if energy is supplied.

A step forward in the direction of approaching some of the
features of the ideal actuator of Fig. 1 have been proposed
in Stramigioli et al. (2008), where a novel actuator concept
has been described. This innovative very versatile and
energy efficient actuator (V2E2) is depicted in Fig. 2. The
main novelty lies in the use of an intermediate mechanical
energy storage (MES) in conjunction with a mechanical
Infinite Variable Transmission (IVT), see e.g. Mantriota
(2002), connected to the system load.

In this paper we intend to present the port-Hamiltonian
model of the V2E2 concept and an optimal control strategy
which aims to minimize the overall power-losses during the
tracking of a desired torque profile.
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Fig. 2. The V2E2 actuator concept presented in Stramigioli
et al. (2008).

2. ACTUATOR MODEL
2.1 Behavior at a glance

The V2E2 concept is made of a standard electrical drive,
e.g. a DC motor, coupled to a mechanical energy storage.



On the other side, the MES is connected to an IVT,
used as the output interface toward the inertial load. The
IVT, which represents the most complex component of the
actuator, is a mechanical transformer whose transmission
ratio can vary within a positive and a negative value
m € [Mumin, Mmagz), Where Mpin € R™, Myper € RT. The
team of authors are currently working at the realization of
an efficient IVT prototype with a ratio m € [—0.5,0.5].

In most practical situations, the actuator output torque
will be provided by the stored energy in the MES, possibly
modulated through the IVT; hence, the electrical drive has
to compensate for frictions and the non-idealities of the
system. In this work, a rotational spring has been used as
mechanical energy storage in combination with a clutch
on the output shaft of the electrical drive which prevent
to unwind the spring from the motor side.

Due to the introduction of the cluch, the V2E2 actuator
works in two operation modes: the unclutched case (UC),
in which the clutch is not activated, and the clutched case
(CC). Properly controlled, the UC configuration allows
to mimic the first two requirements of an ideal actuator.
In fact, when a positive work is performed on the load,
energy is drained from the power source to increase the
energy stored in the series spring. When negative work is
done, the extra energy is not wasted, as in conventional
actuators, but it can either be stored in the MES or it can
be recovered to the power source by using the motor as a
generator in conjunction with a reversible amplifier.

When the clutch is activated in the CC configuration, no
energy injection occurs from the power supply since the
output torque is entirely generated by the energy stored
in the series spring. Therefore, the control action has only
to modify the IVT ratio in order to compensate for power
losses due to the IVT frictions. A smart IVT could be
designed so to have friction coefficients comparable with
the one of a simple fixed gear.

2.2 The Hybrid evolution

According to the discussion of the previous Section, it
follows that the V2E2 actuator can have two different
operation modes and, therefore, it can be modeled as an
hybrid system Zefran et al. (2001); Goebel et al. (2004), in
which the two discrete states correspond to the UC and the
CC configurations. A high-level state transition diagram is
reported in Fig. 3.

Assume the actuator is operating in clutched mode, i.e.
the electrical drive is constrained at the zero angular
velocity. Be 75 the torque given by the spring due to its
stored energy and be 7, the output torque. To simplify the
discussion, initially assume the IVT as a pure kinematic
device. Therefore, the output torque 7, can be obtained
by simply setting the IVT transmission ratio m according
to the following equation
To
m==2
Ts
If the resulting value of m is in the admissible range, i.e.
m € [Mmin, Mmaz), then the actuator can remain in the
clutched state while assuring that the output torque 7,
is tracking a desired torque 74. This condition fails any
time the desired torque cannot be delivered by exploiting

]ES - Eu,nK 3

Control Signals
ja=0 Noelectrical and mechanical
power losses in dc motor

Control Signals
ja # ()  Energy Injection or

Energy Restoration
m 2 VU IVT transmission ratio within
the admissible range

m 1 M IVT transmission ratio within
the admissible range

Control Law |

Control Law
Jit—>td

Jit—>1d

Es<EOREs>E
Fig. 3. State transition diagram for the hybrid model.

the IVT transmission ratio, i.e. when the energy FEy stored
in the MES is either too low or too high. In both cases,
the clutch on the electrical drive has to be released. Note
that, due to the system frictions, the energy conversion
is not ideal and therefore, during the clutch phase, the
spring energy tends to decrease. Since the spring should
not be completely unloaded, see Stramigioli et al. (2008)
for details, in Fig. 3 jumps are added when the stored
energy becomes lower of a band guard value, i.e. F; < F.
Analogously, to prevent the spring getting into a region
of plastic deformation, a switch to the UC configuration
is added when the energy exceeds an upper band guard
value, i.e. Ey > FE, activating the electrical drive to
recover the extra amount of stored energy. During the
CC configuration, the current in the DC motor is fixed to
1 = 0 since the electrical drive is decoupled from the MES
and it does not influence the value of the output torque 7.
However, in order to preserve the energy accumulated in
the elastic element, before the system state transition from
CC to UC configuration, a suitable current i, is drained
from the power source to generate, at the electrical drive
output, a reaction force to avoid the spring to unwind, see
Fig. 3.

In the UC state the output torque becomes a function of
both the actuator variables, namely the motor current i,
and the IVT ratio m. A degree of freedom is available to
define an optimization control strategy and, in Section 3, a
constrained control problem is formulated to minimize the
system electromechanical power losses. If the transition to
the UC configuration is caused by a low spring energy, i.e.
FE; < E, the electrical drive has to be used as a motor
to increase the amount of energy E;. On the contrary, if
Es > E,| the electrical drive has to be used as a generator
to recover the extra stored energy.

When E; reaches the value E,,; defined by the optimiza-
tion problem, the system can switch back to the CC config-
uration, i.e. the motor clutch is newly activated as shown
in Fig. 3, and the output torque can again be statically de-
livered without continuously energy injections. Note that,
in this case, the guard condition is |Es — Eop| < € in
order to have robustness in the switch by introducing the
threshold value €.

2.3 Actuator Model

In this section, the model of the V2E2 actuator is presented
using bond graphs and Port Hamiltonian formalism in or-
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Fig. 4. Bond graph model of the actuator in its unclutched mode.

der to highlight the energetic relationships existing inside
the system.

Bond graph models were early introduced by Paynter
(1961), as a systematic graphical means of tracing systems
energy flow. Any physical system can be modeled by
properly interconnecting a set of simple elements, each of
them characterized by a specific energetic behavior. Hence,
differently from other graphical models, bond graph gives
an insight on the energy interaction/flow between each
elementary block, each of which is characterized by one
or more power port. Power ports consist of a pair of
conjugate variables, called effort and flow, whose product
gives the power P instantaneously transferred through the
port. Depending on the considered domain, effort and flow
assume different meaning: for electrical ports they are,
respectively, the voltage v and the current i, while in the
mechanical domain they represents the force 7 and the
velocity w (see Karnopp et al. (1990) for more details).

The bond graph model of the V2E2 actuator, operat-
ing in the unclutched configuration, is shown in Fig.4.
Ky, Jm,dy, are the electrical drive parameters, i.e. the
motor mechanical constant, inertia and friction coefficient,
respectively. Analogously, Kpg represents the transmis-
sion ratio of a small fixed gear connected to the electrical
drive and dp¢ is its corresponding friction parameter. Sg
represents the elastic constant of the series spring used
as MES and Ji, J3,dy,ds3,S; and S3 are the inertias, fric-
tion coefficients and elastic couplings of the IVT shafts,
respectively. According to its mechanical design, the IVT
transmission is expressed as

{ w3z = Tw2 (1)
aws = PBws + wq

where wi,ws € R are the input and output angular
velocities, w3 € R is an internal angular velocity, o, 3 € R
are constant ratio and n € Rt is the modulation input.
Given (1), the IVT kinematic between the input and the
output port is equal to

= (na — B)wz = mwy (2)

Equation (2) highlight that the modulation input 7 allows
for the continuous change of the IVT transmission ratio m,
which therefore represents a control input to the system. In
particular, if n < (/a, the resulting value of m is negative,
otherwise if n > [/a the transmission ratio is positive.
When n = /a a decoupling between the input and the
output port is realized.

Assumption 2.1. In the IVT model of Fig. 4 only me-
chanical frictions and inertias are considered, while it is
assumed that any change of n can be achieved instanta-
neously with no power losses.

Assumption 2.2. Without any loss of generality the load is
modeled as a mass-damper system.

Given a bond graph model, the natural way to derive
its analytically representation is by means of the port-
controlled Hamiltonian formalism. In particular, the hy-
brid port-controlled Hamiltonian model is described by the
following set of differential and difference equations

T
(6) = 7 (a(0) u(0) - Re(ole)] (G (ete))
G uelt) ®

where the notation proposed in Haddad et al. (2003)
has been used. The differential equation (3) is referred
to as the continuous-time dynamics. Moreover, the skew-
symmetric matrix function F.(x,u) captures the internal
hybrid system interconnection structure, the input matrix
function G.(x) captures hybrid interconnections with the
environment and the symmetric positive definite matrix
function R.(z) captures the hybrid system dissipation.

According to the model of Fig. 4, the system state vector
is defined as = := (P, qs,p1,41,03,q3.p2) € x C R7,
where p, indicates the generalized momentum related to
inertia J,, and ¢, is the generalized displacement related
to elastic component S,. The corresponding Hamiltonian
function, representing the system total energy, is given by

1
H(z) = pm—l— -Sg s+ p1+ 511
2 Jm 2 27, )
Y. 5934 2y L0L
2 T3 33T 57,

while the SyStem dynamlcs T = (pm; qS7p37 q3ap17 Q17pL)T
is expressed, after some algebraic manipulations, by means
of the following equations

OH OH
m = Kmia — K2.)=— — Kpg——
Pm mla (dm + dFG FG) apm FG aqs (5)
OH OH
=Kpa—0 — —
gs = Kra 8pm (9p1 (6)
_OH  OH | OH 7)
. dgs  Oq ' op
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Fig. 5. Bond graph model of the actuator in its clutched mode.
. OH  9H  _OH 0 Krg 00000
D= g o o ) ~Kpg 0 00000
OH OH  OH 0 0 00000
Ps=a— —dg—— — =— (9) Fo(z):=| 0 0 00000 (15)
Oq1 “Ops  0Ogs 0 0 00000
q.szaj_naj (10) 0 0 00000
dps  pr 0 0 00000
pr =gt _g0M O (1) Rel@) = diag((dm +drcKie), 0, 0,0, 0,0,0) (16)
Jqs3 oq1 OpL with input vector given by
Ge(z) == [Kpm, 0, 0, 0, 0, 0, 0]" (17)

Rearranging (5)-(11) into the matrix form (3), the inter-
connection and dissipation matrices of the hybrid port-
Hamiltonian system are defined as

0 —Kp¢ 0 0 0 O O
Krg¢ 0 -1 0 0 0 O
0 1 0 -1 0 0 O
Felzyu):=| 0 0 1 0 -« 0 g (12)
0 0 0 o 0 =10
O 0 0 0 1 0 -
O 0 0 -0 n 0

Re(z) = diag(dm + drcKpg, 0, ds, 0, di, 0, dr) (13)

with input vector given by

Ge(x) :=[Kn, 0, 0, 0, 0, 0, 0]" (14)
It is not surprisingly that the interconnection matrix
Fel(+y-) explicit depends on the control input 7. Since
Fe(+,+) captures the energy interconnections, a depen-
dences from 7 highlights the possibility to steer the power
flows in the actuator by simply externally changing the
IVT mechanical ratio.

When the output port of the electrical drive is latched,
the system operates in its clutched configuration and the
model simplifies as reported in Fig. 5. Two important
differences can be evinced with respect to the UC con-
figuration of Fig. 4:

o the V2E2 actuator reduces to a SISO system, being
1 the only controlled input;

e the electrical drive dynamics does no longer influence
the actuator behavior.

This allows to formulate the continuous dynamic in the
clutched case

It is worth noting that, in the clutched state, the dissi-
pative terms caused by the electrical drive dynamics are
negligible, while the energy flows in the actuator can still
be modified by acting on the IVT modulation input 7. As
explained in Stramigioli et al. (2008) and as previously re-
marked, the proposed actuator will operate in its clutched
configuration in most practical operations, meaning that
power losses are reduced, with respect to standard motors,
simply by its mechanical design.

3. CONTROL DESIGN

The following sections are devoted to formalize the V2E2
actuator control architecture. According to Buss et al.
(2000), we formulate two different dynamic controls de-
pending on the current state of the hybrid model.

8.1 Unclutched case

When the actuator operates in the UC configuration, a
degree of freedom is available to shape the output torque
profile 7,(t). More precisely, the output effort can be
changed either by varying the transmission ratio n or by
varying the electrical motor output torque, through an
energy injection from the main energy storage.

The available degree of freedom allows the definition of an
optimal control problem. The goal is to track an output
torque profile in finite time while minimizing the actuator
power losses.

Problem 3.1. Given the dynamical system (3) described
by matrices (12)-(14) and a desired output torque 74,
determine the control functions i,(t) and 7(t) such that

ty
minia(t),n(t)/o Ppogss(t)dt



where Pj,qs(t) are the power losses during the tran-
sient, subject to the output torque tracking condition
To(ia(t),n(t)) = 7q at the final time ¢ = ¢; and such
that spring energy conditions to preserve the UC condition
(Fig. 3) are fulfilled.

It is worth noting that we are assuming the final time
ty to be known in advance. Therefore, the transient time
needed to generate the desired torque 74 is not given as the
outcome of the optimization problem but it is requested
to be an input parameter, which value has to be designed
according to the dynamic of the system.

At a high level, the actuator can be seen as a multi-bond
system, described in Karnopp et al. (1990), consisting of
a set of inputs, modeled as sources of flow S¢, a set of
dissipative elements R and energy storing blocks C, as
depicted in Fig. 6.

V2E?
Actuator

Fig. 6. High level representation of a port-Hamiltonian
system.
The actuator power losses of the proposed model, shown
in Fig. 4, are given by:
Ploss(t) = Raig + dmw?n + dFGw%G + dlwf + dgwg + d(gwg
18)
where time dependences are omitted for conciseness.

Proposition 1. Being the Hamiltonian (4) bounded from
below, the system is passive.

Proof. Being Jp,,Ss,J1,51,J3,53, Jioaa € Rsg, it is
straightforward to observe the boundedness from below
of equation (4). Moreover it holds that H(z) = 0 if and
only if the state is = 0 € R”.

Definition 8.2. A dynamical system defined by

l" = f(xa u, t)a

y=g(z,u,t)

is said to be zero-state-detectable (ZSD) iff
(u,y) = (0,0) =2 —0

Proposition 2. System (3) defined by matrices (12)-(14) is
zero-state detectable.

x(0) =z, u(t) el (19)

Proof. ZSD property can be simply proved by showing
that when the system input, the output and the output
derivatives till the (n — 1)-order, with n the state-space
dimension, are set to zero also the system state converges
to zero.

Proposition 3. The equilibrium point x = 0 is a strict local
minimum for the system (3).

Proof. Recall the Hamiltonian function defined in (4). It

is straightforward to verify that
T z3 x5 7

VH)r = | =—,Ssza, —, S124, —, S3x¢,

( )z Jm32J114J336

Jload

and moreover that

OH
0 o "
Being
0*H 1 1 1 1
—— =di —.,Sg,—,83, —, 51, —— 0
82$ lag(Jm, S,Jg, 3 Jl’ 17Jload> >

it holds that z = 0 is a strict local minimum for (3).

Proposition 4. Being x = 0 a strict local minimum for (4)
and being the system ZSD, the system is stabilizable.

Proof. see Van Der Schaft (1996).

To define the control strategy, the classical variational
calculus is applied to the port-Hamiltonian system. The
following theorem gives necessary conditions to find the
optimal input u*.

Theorem 3.3. Assume u*(t) is an optimal control input on
[ti,tf] for the nonlinear system (19) with respect to the
control functional I : x xU — R

L(u) = M(z(ty), ulty)) + / " L), u(t),0dt (20)

t;
where M (z,u) and L(x,u,t) are continuously differen-
tiable functions of each of their argument.

If x*(t) denotes the solution of differential equation (19)
for the input u*(t), and the control Hamiltonian function
is defined as

H\ z,u,t) = L(z,u, t) + AT f(x,u,t) (21)
then there exists \*(t) € (C[t;, t¢])"™ such that
oH .
o —A*(t) (22)
oH
S =0 (23)
oM
(1) = 28 24
A) = |, (24)

Proof. See, e.g., Agrachev and Sachkov (2004).

Equation (22) is called the adjoint differential equation
and the function A*(t) is called the co-state.

Remark 3.4. Theorem 3.3 expresses only necessary con-
ditions for optimality. Therefore not every control wu*(t)
satisfying equations (22)-(24) for some co-state function
A*(t) need to be optimal.

The following convexity property gives a sufficient condi-
tion to determine the unique optimal control for a certain
class of dynamic systems.

Proposition 5. If the control Hamiltonian (21) is convex
with respect to the state x and the control u, then
conditions (22)-(24) are also sufficient for the uniqueness
of the optimal control u*(t).

Based on (18), the cost function (20) is defined as follows:

Maltp)utty) = e (e 5| =85 = lty)
Leat) = (n0 50 = 65 ~nt)) +

c3 (Raia(t)2 + xTEx)



where (c1,ca,c3) € P C (RT)3 are the cost parameters
and where £ € £ C R™7 is the diagonal matrix defined
as

dp  Kiodpe di _ dz  da
E = diag | —— + —£< =20, —,0,—,0, —
lag <J72n + J72n ) Jl 9 ng 9 J2

The Hamiltonian H (A, x,u,t) then becomes

_ OH  OH 2
H(\z,u,t)=c — —[B— -
( )=c2 (778% ﬂaql d)
+c3(Rgi2 + 27 Ex)
+AT {(]-‘C - Rc)a—H + ch} (25)
Ox
Proposition 6. Equation (25) is convex with respect to

both z and wu, being a composition of convex functions
in z and u.

Therefore, the solution of the two-point boundary value
problem, defined by equations (22)-(24), is the constrained
optimal control «*(¢) which minimize the power injection
during the transient phase of the torque tracking. Accord-
ing to the constraints introduced in Problem 3.1, a transi-
tion from the UC to the CC case, during the optimization
time horizon [t;,tf], never occurs: the clutched state is
activated only when the system output reaches the desired
torque 74. Hence u*(t) is the actual optimal control and,
for this reason, we have handled in a separated way the
control strategy during the UC state and the clutched one,
analyzed in the following section.

3.2 Clutched case

When the clutch is enabled, the desired output torque 74(t)
is provided only by the force generated in the series spring,
potentially modulated by the mechanical ratio n applied to
the IVT. In an ideal case, i.e. assuming that no power loss
occur in the energy transfer, any desired output torque can
be obtained by varying the control function 7(t) according
to
7o(t) = n(t)7s(t)
where 7¢(t) is the torque generated by the series spring.

When also the IVT dynamics is considered, according to
Fig. 5, output torque function is given by
T(t)o = —B73 + 171 (26)
and therefore the control input 7(t) needed for tracking
T4(t) is equal to
_ Ta+ P13 T4+ P15 — f(x,0)
n(t) = = .
1 ats — g(z, &)

(27)
where

f(x, @) = B[115 + 7as],

g($7.'1'7) = a[TJa + Tds] + 75 + 74,

4. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problem of the port-
Hamiltonian modeling and control for a new type of very
versatile energy efficient actuator. It has been shown the
hybrid nature of the system and a description of the

actuator behavior in each working state has been given.
Two different port-Hamiltonian model has been devised
considering the constraint imposed on the internal electri-
cal motor. An optimal control problem has been defined
and the general Euler-Lagrange framework has been suc-
cessfully applied to the port-Hamiltonian model.

The authors are currently working to the numerical simu-
lations of the hybrid control strategy herein described.
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