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Abstract— This paper describes the design of a motion
control algorithm for a humanoid robotic head, which consists
of a neck with four degrees of freedom and two eyes (a stereo
pair system) that tilt on a common axis and rotate sideways
freely. The kinematic and dynamic properties of the head are
analyzed and modeled using screw theory. The motion control
algorithm is designed to receive, as an input, the output of a
vision processing algorithm and to exploit the redundancy of
the system for the realization of the movements. This algorithm
is designed to enable the head to focus on and to follow a target,
showing human-like motions. The performance of the control
algorithm has been tested in a simulated environment and, then,
experimentally applied to the real humanoid head.

I. INTRODUCTION

In the last years, the research interest on humanoids

has increased and, within that, the interest in developing

humanoid heads. In the literature, there are two categories of

robotic head systems which basically differ in the complexity

of the mechanical design, i.e. structure and number of

degrees of freedom (DOFs), and in the movement speed they

can perform. For example, ASIMO [14] and Maveric [10]

rely, respectively, on 2 and 3 DOFs and can realize fast

movements while tracking objects. iCub [1] and QRIO [5]

can move slowly but they have, respectively, 3 and 4 DOFs so

to interact with humans by mimicking human-like motions.

The University of Twente, in collaboration with an in-

dustrial partner, has developed a humanoid head (i.e. a

complete system comprising a neck and two cameras). In

the purpose of developing a research platform for human-

machine interaction, the humanoid head should not only be

able to focus on and track targets, but also it should be able to

exhibit human-like motions, e.g. observing the environment

by expressing interest/curiosity and interacting with people.

The general mechanical design of the Twente humanoid

head is presented in [2] and it had to be a trade-off between

having few DOFs enabling fast motions and several DOFs

enabling complex, human-like motions/expressions. The final

choice was to have a four DOFs neck structure and three

DOFs for the vision system, as shown in Fig. 1. The

major contribution in the mechanical structure is due to the

introduction of a differential drive, which combines in a

small area the lower tilt (a rotation around the y-axis) and

the pan (around the z-axis) motions of the neck. The other

two degrees of freedom of the neck are the roll (around

the x-axis) and the upper tilt motions. Finally, the cameras,

mounted on a carrier, share an actuated tilt axis and can

rotate sideways freely, realizing three DOFs more.
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Fig. 1. Mechanical design of the humanoid head - The mechanical design
consists of seven rigid bodies: a differential housing (body 1), two neck
elements (bodies 2, 3), the head plate (body 4), the eye carrier (body 5) and
two eyes (bodies 6, 7). The system has seven DOFs: the differential drive
combines the lower tilt and pan movement, the neck realizes the roll and
the upper tilt, the cameras tilt on a common axis, but rotate independently.

In this paper, we build the kinematic and the dynamic

model of this humanoid head based on screw theory and we

propose a motion control algorithm which uses the kinematic

properties of the model by exploiting the redundancy of the

mechanical structure. In particular, the control algorithm pro-

cesses the information from the vision system and, while the

target position is changing in the image plane, the humanoid

head can track it. Moreover, human-like motions/expressions

can be performed while looking at the target. This means

that through the control algorithm we are proposing, we

properly exploit the mechanical structure of the system so

to make the humanoid head move as described in biological

studies. In particular, we are aiming to realize the behavior

proposed in [6], according to which human beings use both

their head and eyes to track targets: the gaze (i.e. the angle

of the eyes with respect to a fixed reference) changes fast

due to the the fast and light-weight eyes moving towards

the target quickly, while the heavy head follows later and

slower. Fig. 2 shows a simulated one dimensional saccade,

i.e. an abrupt gaze change, which we reproduce in both a

simulation environment and the real setup.

II. MODEL OF THE HUMANOID HEAD

As shown in Fig. 1, the humanoid head consists of seven

rigid bodies, interconnected by joints. In order to facilitate al-

gorithm development and simulation testing, a kinematic and

dynamic model of the complete system has been developed

using screw theory, which provides the mathematical tools

to describe the relations between connected rigid bodies.
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Fig. 2. A simulated saccade of a human - The gaze (bottom) is defined as
the angle of the eyes with respect to a fixed reference. The sum of the angle
of the eyes with respect to the neck (middle) and the angle of the head with
respect to the fixed reference (top) gives the gaze. The gaze quickly reaches
the desired angle because of the fast movement of the eyes. The eyes keep
the angle of the gaze constant by counter rotating to compensate for the
relatively slow movement of the neck.

A. Rigid Bodies

With the aim of modeling a chain of rigid bodies, we recall

here some notation of screw theory, see [11] for more details.

As depicted in Fig. 3, each rigid body i is characterized

by a reference coordinate frame Ψi, centered in the joint

connecting body i to a previous body i−1 and aligned with

the joint rotation axis. Moreover, a principal inertia frame,

Ψip
, is centered in the center of mass (COM) of the body.

This coordinate frame is chosen such that it is aligned with

the principal inertia axes of the body so that the inertia tensor

of body i, denoted by Ii, is diagonal when expressed in this

frame.

B. Kinematic Model

The humanoid head is made by seven rigid bodies in-

terconnected by actuated joints. Each joint is characterized

by a twist (generalized velocity) and wrench (generalized

force) pair which defines the relative motion of the bodies

connected by the joint. The relation between the scalar

rotational velocity ω of the output shaft of each joint motor

and its twist is given by T = Jω, in which J is a six-

dimensional column vector equal to the unit twist T̂.

The kinematic model of the complete system, i.e. the

kinematic relation between the joint movements and the

movements of each camera, gives the twist T
0,0

{L,R} of the left

(ΨL) and right (ΨR) camera coordinate frame with respect

to the global coordinate frame Ψ0, expressed in Ψ0

T
0,0

{L,R} = J{L,R} (q) q̇, J{L,R} ∈ R
6×7 (1)

where q ∈ Q ⊆ R
7 denotes the generalized joint states

defined in the vector space Q, q̇ ∈ TqQ, the tangent space

to Q, its time derivative defined as the vector of the joints

body i − 1

body i

body i + 1

COM

Ψi

Ψip

Ψi+1

body reference frame

principal inertia frame

Ψ0

Fig. 3. Representation of a rigid body - The body coordinate frame Ψi is
chosen to be coincident with the joint connecting it to the previous body. A
principal inertia coordinate frame is defined in the center of mass, aligned
with the principal axes of the body.
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and the Jacobian matrices J{L,R} are, for the left camera,

JL (q) =
[

Jdec J3 J4 J5 J6 0
]

(3)

and, for the right camera,

JR (q) =
[

Jdec J3 J4 J5 0 J7

]

(4)

where Jdec ∈ R
6×2 is the Jacobian corresponding to the

differential drive and Ji ∈ R
6, i = 3, . . . , 7 are the Jacobians

corresponding to the other joints. Note that the indices refer

to the body numbers as defined in Fig. 1.

In order to build the kinematic model of the system,

we derive the expression of the Jacobians J{L,R}. Except

for the differential drive, the Jacobians describing the joint

motions take the form of the unit twist with only one non-

zero element, because the body coordinate frames are chosen

to be aligned with the joint rotation axis. For example, for

the roll motion of the neck (body 3), i.e. a rotation about the

local x-axis, the Jacobian is

J3 = T̂
0,2
3

= AdH0

2

T̂
2,2
3

= AdH0

2

[

1 0 0 0 0 0
]T

(5)

where the unit twist T̂
2,2
3

gives the relative twists of the

bodies 2 and 3 connected by the joint and expressed in Ψ2,

AdH0

2

is the adjoint of the matrix H0

2
, the homogeneous

matrix which defines the coordinate change from Ψ2 to Ψ0.

For the differential drive, the expression of the Jacobian

Jdec(q) is different since the twist of the body attached to

the differential drive is a function of two actuators. In order

to explain the derivation of the twist of the differential drive,

we refer to the schematic representation depicted in Fig. 4.

The generalized velocity of frame Ψ1 (located in the center

of the common gear) with respect to frame Ψ0 as a function
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Fig. 4. Schematic representation of the differential drive - Fig. 4a
presents a schematic drawing of the design in which the motions of the
common (upper) gear are constrained by the motion of the two driven gears.
Fig. 4b presents a schematic representation of the differential drive with the
definition of the coordinate frames.

of the rotational velocities of the driven gears, ωa and ωb,

can be found by considering the constraints imposed on

the contact points c1 and c2, which can be expressed in

homogeneous coordinates in Ψ0 as

c0

1
=

[

rd sinα rc rd cos α 1
]T

c0

2
=

[

rd sinα −rc rd cos α 1
]T (6)

where the angle α is the angle of the z-axis of frame Ψ1 with

respect to the z-axis of frame Ψ0, rc and rd are the radii of

the common and driven gears. Note that, from Fig. 4, α is

given by α = 1

2
(θa + θb), where θa and θb denote the angle

rotated by the driven gears, i.e. the integral of ωa and ωb.

Let p1 be a point fixed in Ψ1 and pA be a point fixed

in ΨA (on gear A). Furthermore, let both p1 and pA be

coincident with the contact point c1. The linear velocity of

p1 and pA, expressed in Ψ0, must be equal when the gears

are assumed to be ideal, i.e. no backlash. The linear velocity

of p1 expressed in Ψ0 is given by

ṗ0

1
=

d

dt

(

H0

1
p1

1

)

= Ḣ0

1
p1

1
= T̃

0,0
1

p0

1
(7)

where H0

1
is a homogeneous matrix that defines the change

of coordinates from Ψ1 to Ψ0 and T̃
0,0
1

is the skew-

symmetric twist corresponding to the motion of Ψ1 with

respect to Ψ0, expressed in Ψ0. The same result is obtained

for pA

ṗ0

A =
d

dt

(

H0

ApA
A

)

= T̃
0,0
A p0

A
(8)

Since p1 and pA are both coincident with c1, Eq. (7) and

Eq. (8) must be equal

T̃
0,0
1

p0

1
= T̃

0,0
A p0

A → T̃
0,0
1

c0

1
= T̃

0,0
A c0

1
(9)

Analogously for c2

T̃
0,0
1

c0

2
= T̃

0,0
B c0

2
(10)

Note that T̃
0,0
A and T̃

0,0
B are the skew-symmetric twists

corresponding to the rotations ωa, ωb and that the linear

velocity of Ψ1 expressed in Ψ0 is zero by design

T
0,0
1

=
[

ωT 0
]T

(11)

From this equation, Eqs. (6), (9), (10), and the definition of

the Jacobian matrix, it follows that

T
0,0
1

= Jdiff

[

ωa

ωb

]

=

















− 1

2

rd

rc
sin α 1

2

rd
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sinα

1

2

1

2

− 1

2

rd
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cos α 1

2

rd

rc
cos α

0 0
0 0
0 0

















[

ωa

ωb

]

(12)

In the mechanical design, there is a differential housing

with a non-neglectable mass that rotates only along the y-

axis of the differential drive. Therefore, T
0,0
1

in Eq. (12)

should be decoupled into two separate rotations along the y-

and z-axes as

T
0,0
1

= Jdec

[

ωy

ωz

]

=

















0 sin α

1 0
0 cos α

0 0
0 0
0 0

















[

1

2
(ωa + ωb)

1

2

rd

rc
(ωb − ωa)

]

(13)

C. Dynamic Model

In order to simulate the complete humanoid head system,

it is necessary to build the dynamic model, which is based on

the kinematic model derived in the previous Sec. II-B. Bond

graph theory provides the tools to describe the dynamics of

the rigid bodies connected by the actuated joints.

The dynamic model of the complete system is based on

screw theory. In particular, for each rigid body i, we can

define the moment screw
(

Pi
)T

= IiT
i,0
i where Ii is the

diagonal inertia tensor of the rigid body and T
i,0
i is the twist

of the body fixed in its coordinate frame Ψi, with respect to

the global coordinate frame Ψ0 and expressed in Ψi.

By applying the second law of dynamics, it follows that the

momentum of body i expressed in frame Ψ0, and therefore

its dynamics, is Ṗ0,i = W0,i where W0,i represents the total

wrench acting on body i, expressed in the global coordinate

frame Ψ0.

Finally, the system dynamics is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (14)

where M(q) is the symmetric, positive definite mass matrix,

C(q, q̇)q̇ describes the centrifugal and Coriolis forces, G(q)
the forces due to gravity, τ is the torque applied to the joints.
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III. MOTION CONTROL

The vision processing algorithm determines where the

humanoid head should look at by always choosing the most

salient target point x in the image space X (see [13] for more

details on the target selection algorithm). The output of this

algorithm is supplied as input to the motion control algorithm

which calculates the generalized desired joint velocities q̇d.

In particular, the relation between the time derivative of

vector x, i.e. ẋ, and q̇ is

ẋ = F (q) q̇ (15)

where ẋ ∈ TxX , the tangent space to X , and the map F :
TqQ → TxX .

A. Target Perception

Before entering into the details of the design of the visual

servoing control algorithm, it is required to know how the

target perception by the cameras changes during the joint

movements, i.e Eq. (15). From the pinhole camera model [9],

it follows that the target coordinates are defined as the

projection of the target on the image plane in the camera

coordinate frame, as is shown in Fig. 5. Let

p{L,R} =
[

x y z
]T

(16)

be a target point in three dimensional Euclidean space E(3),
expressed in coordinate frame Ψ{L,R}, for the left and right

cameras. The projection of this target point, expressed in the

camera coordinate frame, p
{L,R}
proj , is given by

p
{L,R}
proj =

[

yproj

zproj

]{L,R}

=
f

x{L,R}

[

y

z

]{L,R}

(17)

where f is the focal depth of the camera.

Assuming that the origin of the camera coordinate frame

is located in the center of the image, focus on the target is to

be interpreted as pproj being in x0 = (0, 0) for both cameras.

Therefore, the vector of target coordinates x is defined as

x =

[

pL
proj

pR
proj

]

(18)

B. Target Perception and Joint Movement

From Eq. (17), it follows that when the camera coordinate

frame moves, the projection is affected because p{L,R}

changes. An expression for the instantaneous rate of change

of p{L,R}, denoted by ṗ{L,R} and caused by the joint move-

ment, can be found by assuming the situation as depicted in

Fig. 5.

Let the homogeneous coordinates of the target, expressed

in the left camera coordinate frame ΨL, be given by
[

pL

1

]

= HL
0

[

p0

1

]

(19)

where p0 denotes the target coordinates in Ψ0. The linear

velocity of pL expressed in ΨL is found by differentiating

Eq. (19) with respect to time, yielding
[

ṗL

0

]

= ḢL
0

[

p0

1

]

(20)

prj

x

y

z

x

y

z

x

y

z

target point p
{L,R}

f

Ψ{L,R}

Ψ0

Ψp

X

Fig. 5. Target coordinates - The target coordinates as perceived by the
cameras can be modeled by a projection on the image plane X using a
pinhole camera model. The image plane is at focal depth f on the x-axis
of the camera frame. Ψ{L,R} denotes the left and right camera coordinate
frames, respectively.

where we are considering the instantaneous case in which

ṗ0 = 0. By using the relation ḢL
0

= T̃
L,L
0

HL
0

we obtain

[

ṗL

0

]

= T̃
L,L
0

HL
0

[

p0

1

]

= T̃
L,L
0

[

pL

1

]

(21)

that can be also written as

ṗL =
[

−p̃L I3

]

T
L,L
0

(22)

The twist T
L,L
0

is given by

T
L,L
0

= −AdHL
0

T
0,0
L (23)

by noting that T
i,i
j = −T

i,j
i and T

i,j
i = AdHi

j
T

j,j
i . Finally,

from Eq. (1), it follows that

ṗL =
[

p̃L −I3

]

AdHL
0

JL (q) q̇ (24)

From Eq. (17), pL
proj is found to be a scaled version of pL,

and therefore

ṗL
proj =

[

0 1 0
0 0 1

]

[

P̃L
proj −I3

]

AdHL
0

JL (q) q̇ (25)

with

PL
proj =

[

f

pL
proj

]

(26)

where the projected target pL
proj is given by Eq. (16) and

where ṗL
proj denotes the two dimensional velocity vector, i.e.

the instantaneous velocity of the observed target on the image

plane.

With the same approach, we find a similar expression for

the right camera, and by combining these results we obtain

the expression of the matrix F in Eq. (15)

F(q) =









[

0 1 0
0 0 1

]

[

P̃L
proj −I3

]

AdHL
0

JL (q)

[

0 1 0
0 0 1

]

[

P̃R
proj −I3

]

AdHR
0

JR (q)









(27)
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C. Control Law

The goal of the visual servoing control law is to move

the perceived target coordinates p
{L,R}
proj to x0 = 0, i.e.

in the center of the camera image. This is obtained by a

proportional control law in the image space given by

ẋd = K(x0 − x) = −K

[

pL
proj

pR
proj

]

(28)

where ẋd is the desired target point velocity in the image

plane and K > 0 is the proportional gain matrix.

In order to apply this control law, it is required to invert

the relation (15). Since the system is redundant, the solution

is given by [7]

q̇d = F♯ẋd +
(

I7 − F♯F
)

z (29)

where q̇d is the desired joint velocity, F♯ : TxX → TqQ
denotes the weighted generalized pseudo inverse of the map

F and z ∈ TqQ is an arbitrary vector which is projected onto

the null-space of F. Note that F♯ is given by

F♯ := M−1

q FT (FM−1

q FT )−1 (30)

where Mq is a positive definite diagonal matrix that defines

a metric on the tangent space TqQ. The first right-hand term

of Eq. (29) is a minimum norm solution, where the norm is

defined by the matrix Mq [4]

‖q̇‖ =
√

q̇T Mqq̇ (31)

Fig. 6 visualizes the minimum norm solution for a two

dimensional system. The plotted surface represents the

norm (31) for a given set of values of q̇. The line represents

all solutions to Eq. (29) for a given set of values of ẋd and

z and its minimum (marked with •) is the minimum norm

solution obtained for z = 0.

Note that Mq = diag(mqi
) > 0, i = 1, . . . , 7 in which

the first four elements refer to the neck and the remaining

three refer to the eyes. This implies that by choosing the

matrix Mq appropriately, we can select the ratio between the

velocities of the eyes and of the neck joints. In particular,

we select the velocity of the eyes greater than the one of the

head since we want the eyes to be faster than the neck.

In target tracking, we select the vector z in (29) as

z = z(q) = W (q0 − q) (32)

where W = diag(wi) ≥ 0, i = 1, . . . , 7 in which, again, the

first four elements refer to the neck and the remaining three

refer to the eyes. This means that vector z is a proportional

control that, through motions in the null-space, steers the

joint configuration q to a desired neutral configuration q0,

in which the head is in a upright position and the eyes straight

to the target, i.e.

q0 =
[

0 0 0 0 0 0 0
]T

W = diag(w1, 0, w3, 0, w5, w6, w7)
(33)

Note that w2, w4 are equal to zero to require the humanoid

head to look at the target by using the pan and the upper tilt.

‖q̇‖

q̇1

q̇2

Fig. 6. Minimum norm solution for a two dimensional system - The plotted
surface represents the norm (31) for a given set of values of q̇. The line
represents all solutions to Eq. (29) for a given set of values of ẋ and z and
its minimum (marked with •) is the minimum norm solution, for z = 0.

Motion Control
Vision Processing Robotẋd = −Kxd

q̇d = F♯ẋd +
(

I7 − F♯F
)

z

xd q̇d

q

Fig. 7. Controller overview - The vision algorithm provides the motion
control algorithm with target coordinates. From this, the controller calculates
the joint velocities q̇d.

The other values w1, w3, w5, w6, w7 are positive to steer all

the other joints to the neutral position.

The vector z in Eq. (29) is also used to achieve expression

motions while the head is looking at a target, like nodding

in agreement, shaking on disagreement, moving the head

backwards in surprise or moving the head towards the target

in curiosity. These motions can be generated by applying

an appropriate time varying function to one or more of the

joints. For example, nodding can be achieved by taking z

z = z(t) =
[

α sin t 0 0 β sin t 0 0 0
]T

(34)

with the parameters α and β that define the speed of the

motion. This will result in a nodding motion of the head

while it keeps aimed at the target at the same time.

An overview of the controller structure is shown in Fig. 7.

D. Stability Analysis

In Eq. 14, the torque τ applied to the joints is determined

by a PD controller with gravity compensation, i.e.

τ(q, q̇,qd, q̇d) = KP (qd − q) + KD(q̇d − q̇) + G(q)

where qd is the desired joint position derived from Eq. (29),

KP and KD are the positive definite gain matrices.

By following the arguments in [8], it is possible to show

that, by properly choosing the gain matrices KP and KD,

the dynamic control law guarantees the asymptotic tracking

of a desired trajectory in the image plane.
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IV. SIMULATION RESULTS

The dynamic model and the motion control algorithm have

been implemented in a simulation environment using 20-sim

simulation software [3]. The cameras have been modeled

using the pinhole camera model given by Eq. (17) together

with a delay due to the time that the vision processing

algorithm needs to process the images.

From biological studies [6], it follows that for humans the

peak velocity ratio between the head and the eyes is about

1 : 5. This ratio is used to define the generalized pseudo

inverse in Eq. (29)

Mq = diag(5.0, 5.0, 50.0, 5.0, 1.0, 1.0, 1.0) (35)

in which the contribution of the neck roll motion is penalized

more in the implementation since this motion is minimally

used by humans.

Fig. 8 presents the simulation results in continuous line.

The figure shows the time response of the joint angles for

the pan motion of the neck and the pan motion of the left

eye during a saccade. It can be seen that the behavior of the

simulated head matches the results of the simulated human

behavior plotted in Fig. 2. The main difference between the

plots of the simulated head and the simulated human is in the

time scale. This is principally due to the trade-off between

getting as close as possible to the human capabilities and

what was really feasible with the real setup, considering the

restrictions imposed by the mechanical design/realization.

V. EXPERIMENTAL RESULTS

The tests performed in the simulated environment have

been implemented in the real setup and the results are shown

in the accompanying video, see also [12] for a complete

overview of the system.

The experimental realization of a horizontal saccade is

illustrated in Fig. 8 in dashed line, on the top of the

simulation results. The time plots of the pan angles for the

neck and the left eye of the real setup correspond to the plots

of the simulated model.

VI. CONCLUSIONS

A motion control algorithm for a humanoid head has

been designed. The algorithm acts on the inputs of a vision

processing algorithm and can control the humanoid head

according the results of biological studies. This has been

achieved by appropriately actuating the redundant joints

using a null-space projection method. A kinematic and a

dynamic models based on screw theory and bond graphs

have been developed and have been used to test the motion

control algorithm in a simulated environment. Simulations

have shown that both saccades and target tracking tasks can

be performed. Finally, experiments on the real setup have

validated the model and the control algorithm.
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Fig. 8. Time plots of the joint angles in a saccade in simulation and
experiment - The upper plot shows the neck pan angle over time while the
bottom plot shows the pan angle of the eyes.
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