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Abstract—Multimedia applications process streams of values
and can often be represented as task graphs. For performance
reasons, these task graphs are executed on multiprocessor sys-
tems. Inter-task communication is performed via buffers, where
the order in which values are written into a buffer can differ
from the order in which they are read. Some existing approaches
perform inter-task communication with first-in-first-out buffers
and reordering tasks and require applications with affine index
expressions. Other approaches communicate containers, in which
values can be accessed in any order, such that a reordering task
is not required. However, these containers delay the release of
locations, which can cause deadlock in cyclic task graphs.

In this paper, we introduce circular buffers with overlapping
windows for deadlock-free execution of cyclic task graphs that
may contain non-affine index expressions. Inside the windows,
values can be written or read in an arbitrary order, such that a
reordering task is not required. Deadlock is avoided by releasing
a written location directly from the write window. The approach
is demonstrated for the cyclic task graph of an orthogonal
frequency-division multiplexing (OFDM) receiver application,
containing non-affine index expressions.

I. INTRODUCTION

Multimedia applications are often executed on multipro-
cessor systems for performance reasons. These applications
process streams of values and can be represented as task
graphs. The tasks in these task graphs are executed in parallel,
possibly on different processors, and communicate values via
buffers. A value can be read from a buffer after it has been
written, otherwise the reading task has to be blocked until the
value has been written, this requires synchronization between
the tasks.

In existing approaches [1]–[3], inter-task communication
is performed via first-in-first-out (FIFO) buffers. Therefore,
if the write order of values in a FIFO buffer differs from
the order in which the values have to be read, a reordering
task has to reorder the values in a reordering memory. This
task becomes complex if it has to keep track of values that
are read multiple times. To determine the behavior of the
reordering task, affine index expressions are required for the
two communicating tasks, where an affine index expression is
limited to a summation of variables multiplied with constants
plus an additional constant.

Another approach for inter-task communication [4] uses
containers, where a container is a place holder for values.
Inside a container, values can be accessed in any order and
therefore a reordering task is not required. After values are
written in a container, the container is released such that the
values in it can be read.

x[0] = ∼;
x[1] = y[0];
x[2] = y[0];
x[3] = y[1];

t1 t2

sx

sy

y[0] = x[0];
y[1] = x[1];
y[2] = x[3];
y[3] = x[2];

Fig. 1. Task graph with a cyclic dependency

However, for a cyclic task graph the use of containers with
more than one value can lead to deadlock, as demonstrated
with the didactic example in Figure 1. The tasks t1 and t2
communicate via the buffers sx and sy , according to the
sequential code given beside the tasks, in which ∼ depicts code
that is omitted for clarity. The tasks have a cyclic dependency,
because the assignment-statements of t1 depend on values
written by t2 and vice versa. The read order from sx can be
captured in a container with two locations and the read order
from sy in a container with one location. This means that t2
can read the values of x by reading consecutive containers
from sx. However, task t1 can release its first container, with
the values x[0] and x[1], in sx after t2 released its first
container in sy , with the value y[0], but to release its first
container in sy, t2 requires the first container released by t1.
Both tasks are waiting for a container of the other, resulting
in deadlock for this cyclic task graph.

In this paper, we present a so-called circular buffer (CB)
with an overlapping read and write window for deadlock-free
inter-task communication in cyclic task graphs with non-affine
index expressions. A read (write) window contains locations
for reading (writing) that a task can access multiple times in
an arbitrary order, such that a reordering task is not required.
With overlapping windows, deadlock is avoided for cyclic task
graphs by releasing a location from the write window directly
after it is written.

In a CB, each location has a full-bit that is set if the location
contains a value. The novelty of the full-bit is that it does
not require atomic read-modify-write operations, because it is
only set and cleared by the writing task. In a CB, the writing
task, called the producer, has a write window (WW). Before
the producer writes a location in its window, the location
consecutive to the head of the WW has its full-bit cleared
and is added to the WW. After writing a value to a location,
the producer releases this location directly from its WW by
setting its full-bit.

In a CB, the reading task, called the consumer, has a read
window (RW) in which the locations with a set full-bit can be
read. The RW can overlap with the WW, because there can be
a sequence of locations from which some can be read while



other locations still have to be written. After reading a location
in the RW, the consumer releases the location at the tail of its
RW. In contrast to releasing the read location immediately,
releasing the location at the tail of the RW makes it possible
to read locations in the RW multiple times. The release for
the location at tail of the RW is executed conditionally, where
the simple condition compares a constant with a variable.

We will extend tasks to perform inter-task communication
via CBs with overlapping windows. Determining sufficient
buffer capacities to guarantee deadlock-free execution of a
task graph is a problem that cannot be solved by computing a
sufficient capacity for each buffer in isolation, but requires
the whole task graph to be considered at once, this is il-
lustrated with an example. We show that the communication
via overlapping windows can be captured in a cyclo static
dataflow (CSDF) model [5]. Using this CSDF model, we can
compute sufficient buffer capacities to guarantee deadlock-free
execution of the extended task graph. In the case study, we
demonstrate our approach for a fragment of an orthogonal
frequency-division multiplexing (OFDM) receiver application
that has a cyclic task graph.

The organization of this paper is as follows. In Sec-
tion II, the related work is discussed. Subsequently, Section III
presents the supported applications. CBs with overlapping
windows are explained in Section IV, before Section V dis-
cusses their usage. In Section VI, the extension of the tasks
is presented. It is shown that buffer capacities for deadlock-
free execution of a task graph cannot be computed per buffer
in Section VII. Section VIII illustrates how capacities are
determined for the CBs. The case study is presented in
Section IX. Finally, conclusions are drawn in Section X.

II. RELATED WORK

A CB with a non-overlapping read and write window for
the inter-task communication and synchronization in an acyclic
task graph is presented in [6]. The synchronization is captured
in a CSDF model, with which sufficient buffer capacities
for deadlock-free execution are determined. In contrast, we
present the extension of tasks to communicate via buffers with
overlapping windows, in which a location is directly released
from the WW after it is written, this is mandatory to guarantee
deadlock-free execution of cyclic task graphs. The additional
costs for overlapping windows are the full-bits.

The synchronization-statements for our approach are not
supported by current streaming libraries, as e.g. [7]. Their
APIs only support the addition of a location with a value to
the head of the RW, this results in non-overlapping windows.
In contrast, our approach requires a synchronization-statement
that verifies the location to be read to contain a value, so if
its full-bit is set.

A full-empty bit for each location in an inter-task com-
munication buffer is proposed in [8]. The producer sets the
full-empty bit of a location after writing and the consumer
clears the full-empty bit after reading a location for the last
time. In contrast, we use a full-bit for each location that is
only set or cleared by the producer when the location is added
to or removed from the WW, respectively. Because only the
producer sets and clears the full-bits, no atomic read-modify-
write operations are required.

In [9], a buffer with a window to be used by a single task
with an affine index expression is described. This approach

is extended in [10] such that the buffer can be allocated over
multiple memories. In contrast, we present a buffer for inter-
task communication and synchronization between two tasks
that can be executed on different processors.

III. INPUT APPLICATIONS

Throughout this paper, we assume that an application is
represented by a directed task graph H = {T, S, A, α, ρ, σ, θ}
that may contain cycles. The set of vertices is T . Each vertex
ti ∈ T represents a task, where the functional behavior of a
task is defined by a nested loop program (NLP). For a stream,
a task is executed an infinite number of times. The set of
arrays is A. Each array aj ∈ A is declared in an NLP. The
set of directed edges is S. An edge sj = (th, ti), with sj ∈
S, is from task th to task ti, with th, ti ∈ T and th 6= ti.
Each edge represents a buffer. In a buffer sj the values of the
corresponding array aj are stored. The l-th access of task ti
in array aj , accesses the array location with index α(ti, aj , l),
with α : T × A × N → N. The function ρ(ti, aj) returns the
total number of accesses performed during one execution of a
task ti in array aj , with ρ : T×A → N. The size, in number of
locations, of the array aj is given by σ(aj), with σ : A → N.
The capacity of buffer sj is the number of locations θ(sj),
with θ : S → N.

We describe the NLP that defines the behavior of a task
using a C-like-syntax. The NLPs define the inter-task com-
munication by reading and writing arrays. An NLP contains
assignment-statements and for-loops. We use for i : l : u as a
shorthand notation for a for-loop, with i the iterator of the for-
loop, l the lower-bound, and u the upper-bound. The iterator
is incremented with one after each iteration of the for-loop.
The upper-bound and the lower-bound are constant values.

An array is either read or written in an NLP. Furthermore,
an NLP should contain single assignment code, this means
that a location in an array is assigned a value at most once
per execution of the task. The index of a location in an array is
determined with an index expression that can have the iterators
of nested for-loops as variables. The index expression is not
limited to be affine, but the result of the index expression
should be a function of the used variables. Therefore, by
executing each task once, we can derive for every array the
sequence of written and read locations. These are the locations
that are returned by the α(ti, aj , l) function.

Figure 2 depicts a synthetic task graph that is used in a
number of examples in this paper. In this task graph, task
t2 reads from array aa using the non-affine function F . The
symbol ∼ denotes a code fragment that is omitted for clarity.

For the accesses of tasks in arrays, three interesting access
patterns are identified, being out-of-order access, multiplicity,
and skipping [2], [4].

For the out-of-order access pattern, non-consecutive loca-
tions in an array are accessed. In Figure 2, t1 writes out-of-
order in array aa, because location two is written during access
zero of t1, α(t1, aa, 0) = 2, and the non-consecutive location
one is written during access one, α(t1, aa, 1) = 1.

The multiplicity access pattern occurs if a location is
accessed more than once. Figure 2 shows an example of mul-
tiplicity for the access of t2 in aa, where location two is read
during access zero and five, α(t2, aa, 0) = α(t2, aa, 5) = 2
with F (0, 0) = F (1, 2) = 2.
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for i0:0:2
for i1:0:2{
a[3i0-i1+2]=b[3i0+i1];
}

b[0]=∼;
for j0:0:2

for j1:0:2{
b[3j0+j1+1]=
a[F (j0 ,j1)];

}

int F (int n0 ,int n1){
switch (n0) {
case 0:return 2-n1;
case 2:return 4+n1;
case 1: switch (n1){

case 0:return 5;
case 1:return 4;
case 2:return 2;}

}}

Fig. 2. Task graph with the NLPs for the tasks

ŵ
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Fig. 3. CB with a read and write window

The skipping pattern occurs if a location is written in the
array, but not read. An example is shown in Figure 2, where
t1 writes location three, seven and eight in array aa, but t2
never reads these locations.

IV. OVERLAPPING WINDOWS IN A CIRCULAR BUFFER

We perform inter-task communication via a CB in which
both tasks have a window, a task can access the locations in
its window in an arbitrary order. This section first explains
CBs with non-overlapping windows that guarantee deadlock-
free execution of acyclic task graphs. Subsequently, CBs with
overlapping windows that guarantee deadlock-free execution
of cyclic task graphs are explained.

The two tasks that communicate by reading from and writ-
ing in a buffer are executed in parallel, possibly on different
processors. A value can only be read after it has been written,
therefore the reading task should be blocked if it attempts
to read an unwritten location, this because our processors do
not run in lockstep [11]. The order in which read and write
operations in a buffer become visible and accessible for other
processors is defined by a memory consistency model. We use
a memory consistency model that synchronizes using acquire
and release calls, as the memory consistency models in [12],
[13] do. Before accessing a location we perform an acquire
call for it, this function blocks until the location is signaled
to be available. Succeeding the access to a location a release
call signals that the location is available. A location acquired
for writing cannot be acquired by the consumer for reading
before the producer released it.

We use a CB for the inter-task communication. A CB can
be implemented with a read pointer r and a write pointer w, as
depicted in Figure 3. Arbitrary locations can be read between r
and w in the CB, therefore allowing the multiplicity, skipping,
and out-of-order access patterns. Between w and r in the CB
arbitrary locations can be written. The pointer w or r can
be incremented to make a location available for reading or
writing, respectively. A pointer that reaches the end of the CB
is wrapped around.

In a CB, starting at r a number of consecutive locations are
acquired that form a RW, where r̂ points to the location at
the head of this window. Similarly, starting at w a number of
consecutive acquired locations form a WW, with ŵ pointing to
the head of the window. For a window the pointer to its head

Write window

Read window

ŵr̂
Read pointer(r) Write pointer(w)

CBLow address High address

Fig. 4. CB with an overlapping RW and WW

and the pointer to its tail administrate the consecutive acquired
locations. Both tasks have random access in their window.

In [6], inter-task communication is performed via a CB with
a non-overlapping RW and WW. Preceding an access to a
location in the window, a task acquires the location consecutive
to the head of the window by incrementing the pointer to
the head of the window. Succeeding an access, the location
at the tail of the window is released by incrementing the
pointer to the tail of the window. This results in a sliding
RW and WW, as depicted in Figure 3. The main advantage
of using a sliding RW is that it allows locations in the
RW to be read multiple times without requiring a complex
reordering task. Both the acquire and release operation are
executed conditionally, where the simple condition compares
a counter variable with a constant. The main drawback is
that non-overlapping windows can cause deadlock in a cyclic
task graph, because the location written in the WW is not
necessarily the location that is released. The delayed release of
a location from the WW and the cyclic dependencies can cause
deadlock, as illustrated in the example in the introduction.

For cyclic dependencies, as in Figure 1, a value should be
available for reading directly after it has been written. This
requires the producer to release a written location directly from
its WW, such that the consumer can acquire it for reading. For
non-overlapping windows the location at w is released after
a write access. Because a written location is not necessarily
at location w, we have to allow reading past w in the CB,
this results in an overlapping RW and WW, as depicted in
Figure 4.

For overlapping windows, per location in the WW it should
be administrated if it can be acquired for reading. This can
be done with a full-bit that is cleared when its location is
acquired for writing and set directly after a value is written at
its location. A location in the RW with a set full-bit can be
acquired for reading.

A full-bit can either be stored along with its location or
in the buffer administration. Some architectures [14], [15]
provide an additional bit for every location in the shared
memory that can be used as a full-bit. An alternative is to store
full-bits in the buffer administration by using a bit vector, with
a full-bit for each location in the CB.

Before writing a location, the producer adds a location to the
WW. To add a location to WW, the producer clears the full-bit
of the location consecutive to ŵ and acquires this location by
incrementing ŵ. Note that ŵ cannot overtake r, therefore if r
is the location consecutive to ŵ, the clearing of the full-bit and
the acquire are blocked until r is incremented. After writing
a location, it is released from the WW by setting the full-bit
of this location.

To read a location in a CB the consumer acquires this
location. The acquire call for a location checks if the full-
bit of the location is set and that the location is not past ŵ.
After reading a location, the consumer releases the location at



r by incrementing it. Because locations in the RW can still be
read multiple times, overlapping windows do also not require
a complex reordering task.

Updating the read pointer r, write pointer ŵ, and full-
bits requires no atomic read-modify-write operations, as for
example test-and-set and fetch-and-add. These operations are
not required, because r is only updated by the consumer and
ŵ and the full-bits only by the producer. Note that due to the
full-bits, overlapping windows do not need r̂ and w.

V. USING OVERLAPPING WINDOWS

In a CB with an overlapping RW and WW, the producer
acquires a consecutive location preceding a write access and
the consumer releases a consecutive location succeeding a
read access. The producer may need to acquire a number of
locations before its first write, to make sure that the location
to be written is acquired during each write. The consumer
should not succeed each read with a release, to make sure that
no location is released before it is read for the last time. In this
section, we will determine the number of locations acquired
before the first write and the number of reads that should not
be succeeded with a release, these will be used in Section VI
to extend tasks to use overlapping windows in a CB.

Preceding a write access, a producer acquires the location
consecutive to ŵ, until for all locations from the communicated
array a a location has been acquired in CB s. Because the
first location to be written in s is not necessarily the location
consecutive to ŵ, more than one location may need to be
acquired before the first write. It can be guaranteed that before
each write access of the producer the location to be written
is acquired, by acquiring a number of locations preceding the
first write and its acquire. For a producer tp that writes in
s, this number of acquired locations preceding the first write
access and its acquire is called the lead-in d1(tp, s), with
d1 : T × S → N.

Figure 5 depicts the intuition behind the lead-in, for the
writing in sa by t1 from Figure 2. The upper sequence in the
figure contains the acquired locations and the lower sequence
the written locations. The sequence with acquired locations
is shifted left, such that no location is written before it is
acquired. In this figure, the locations in bold are acquired and
written during the same access, they determine the lead-in. For
this example we find that by acquiring two locations preceding
the first write and its acquire, so d1(t1, sa) = 2, during each
write access the written location is acquired.

0 1 4 632 7 8

2
d1=2

1 0 8 7 6

Location acquired

Location written α(t1 ,aa,l)345

5

Fig. 5. The lead-in d1 for t1 in sa, from Figure 2

Given a task tp, a CB sj with its corresponding array aj , and
an access counter l for which it holds that 0 ≤ l < ρ(tp, aj),
the expression for the lead-in is:

d1(tp, sj) = max
l

(α(tp, aj , l) − l) (1)

The validity of this expression is proven in [6].
In a CB with overlapping windows, the consumer can

succeed a read access by releasing the location at r. It is

possible that the first location read by a consumer from s
is not the first location in s, which is equal to r. The first
location in s is only acquired for reading during the second
read, if the first read is not succeeded by a release. To make
sure that during each read of the consumer the location to
be read is still acquired, possibly a number of the first reads
should not be succeeded by a release. The number of reads
of a consumer tc in s without a release is called the lead-out
d2(tc, s), with d2 : T × S → N.

Figure 6 depicts the intuition behind the lead-out, for the
reading in sa by t2 from Figure 2. In this figure, the upper
sequence represents the read locations and the lower sequence
the released locations. The sequence with released locations is
shifted right such that no location is released before it has been
read for the last time. Location two is depicted in bold, because
it determines the lead-out, which is three, so d2(t2, sa) = 3.

2 1 0 245 4 5 6 Location read α(t2,aa,l)

Location released
d2=3

0 1 872 4 5 63

Fig. 6. The lead-out d2 for t2 in sa, from Figure 2

Given a consumer tc, a CB sj , and an access counter l for
which it holds that 0 ≤ l < ρ(tc, aj), the expression for the
lead-out is:

d2(tc, sj) = max
l

(l − α(tc, aj , l)) (2)

The correctness of this expression is proven in [6].
If a consumer skips the first locations in a CB its lead-

out can be negative. For example, a consumer tc that only
reads location two from sj has a lead-out of minus two,
d2(tc, sj) = −2, this lead-out is found by applying Equation 2
with l = 0 and α(tc, aj, 0) = 2.

VI. EXTENDING THE NLP

To communicate and synchronize via CBs with overlapping
windows, the C-code of the NLP that defines a task is extended
with synchronization-statements and statements for communi-
cation. Acquire-statements and release-statements are added
to the code for synchronization and assignment-statements are
adjusted for the communication via CBs instead of arrays, as
presented in this section.

For overlapping windows two different acquire-statements
and release-statements are required. The statement to acquire
(release) the location consecutive to the head (tail) of the win-
dow in s is acquire(s) (release(s)). In contrast, the statement to
acquire (release) a location l, as given by an index-expression,
in s is acquireL(l,s) (releaseL(l,s)). Both acquire-statements
are blocking, this means that they do not return until they
succeed.

A template to extend the C-code of the NLP that defines a
task t is depicted in Figure 7. In this template, t reads from
CB sr using index expression mr with the read statement.
Task t writes a value in sw using index expression mw with
the write statement. For CB sr the producer is task tp and for
CB sw the consumer is tc.

Three phases are depicted by the template in Figure 7, the
initial phase, the processing phase, and the final phase. In
the initial phase, lead-in (d1(t, sw)) locations are acquired for



int p= 0;
for (i:1:β(t)){

if (i ≤ d1(t, sw))
acquire(sw );

p++;
}
int lw = 1;
int lr = 1;
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Initial phase

for-loops{
if (lw ≤ σ(aw) − d1(t, sw))

acquire(sw );
acquireL(mr ,sr);
write(mw ,sw ,F0(read(mr ,sr)));
releaseL(mw ,sw);
if (lr > d2(t, sr))

release(sr );
lw++;lr++;p++;

}
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;

Processing phase

for (i:1:η(t)){
if (i ≤ σ(aw) − ρ(t, aw) − d1(t, sw))

acquire(sw );
if (i ≤ σ(ar) − ρ(t, ar) + max(0, d2(t, sr)))

release(sr );
p++;

}
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>

>

>

>
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>

>

>

;

Final phase

Fig. 7. Template for extending the NLP of t, where CB sr is read and CB
sw is written

all written CBs, to guarantee that during a write access the
location to be written is acquired. In the processing phase, the
assignment-statements of the NLP are adjusted by adding read
and write statements for the accessed CBs. To synchronize
via these CBs the assignment-statements are encapsulated by
acquire-statements and release-statements. Note that in this
template a single assignment-statement is depicted. For an
NLP that contains more than one assignment-statement, each
assignment-statement is adjusted and encapsulated in acquire-
statements and release-statements. In this case, it is possible
that a CB is either read or written by multiple assignment-
statements. During the final phase, the remaining locations
in the read CBs are released. During these three phases, in
each CB s in total σ(a) consecutive locations are acquired
and released, where σ(a) is the number of locations in the
array a that corresponds to s.

We define a synchronization section of an extended task,
as a sequence of executed statements together with acquire-
statements and/or release-statements. During the initial phase
and the final phase of an extended task, each iteration of
the for-loop is a synchronization section. In the process-
ing phase, each assignment-statement with its encapsulating
acquire-statements and release-statements is a synchronization
section. The template in Figure 7 contains a dummy counter
p. During the execution of a task, the value of p represents
the number of the current synchronization section. In section
VIII, synchronization sections will be used to derive a CSDF
model from the extended task graph.

The initial phase, as depicted in Figure 7, is executed at
the beginning of a task. This phase introduces counters for the
accessed CBs and contains a for-loop that acquires locations in
the written CBs. In a written CB sw, lead-in d1(t, sw) locations
are acquired. Note that every iteration of the for-loop acquires
at most one location in a written CB. To acquire more locations
at once requires knowledge of the buffer capacity, to avoid an
acquire-statement for more locations than available in the CB.
The same holds for releasing locations.

The number of iterations performed by the for-loop in

the initial phase, depends on the number of locations to be
acquired for the lead-in among the written CBs, with:

β(t) = max(d1(t, sw) | sw = (t, tc) ∈ S) (3)

For a CB an access counter is introduced that counts the
number of accesses in it. An access counter is incremented
after each access to the corresponding CB, where different
assignment-statements in the NLP can access the CB. Because
not all assignment-statements have to access the same CBs,
each CB has its own counter. In the template in Figure 7,
the counter lw is introduced for sw and lr for sr. Note that
since this example contains only one assignment-statement
that accesses both sw and sr, a single counter would also
have been sufficient.

During the processing phase of a task t, each assignment-
statement is preceded by acquire-statements and succeeded
by release-statements for the accessed CBs. The template
of Figure 7 depicts that for a written CB conditionally a
consecutive location is acquired and that the written location
is released. For a read CB, the location to be read is acquired,
this verifies that the full-bit of the location is set, and condi-
tionally a consecutive location is released. Succeeding the last
release-statements, the access counter of each accessed CB is
incremented.

Preceding a write access to sw, an if-statement determines
whether there are locations left to acquire using the access
counter lw, so if lw ≤ σ(t, sw) − d1(t, sw). In the assignment-
statement, the write access to array aw at location mw is
replaced with write(mw,sw,x), where sw is the CB corre-
sponding to aw and x the value to be written. Succeeding an
assignment-statement that writes location mw in sw, location
mw is released by a releaseL(mw,sw) statement.

Preceding the assignment-statement that reads location mr

from sr, in the processing phase, an acquireL(mr,sr) state-
ment acquires this location. The part of the assignment-
statement that reads location mr from ar is replaced with
read(mr,sr), to read location mr from CB sr. Succeeding
the assignment-statement, an if-statement checks if lead-out
d2(t, sr) accesses have been performed in sr by using its
access counter lr, to verify whether a location can be released.

The last phase depicted in Figure 7 is the final phase, during
which a for-loop acquires and releases the remaining locations
for the arrays communicated via the CBs. Due to skipping,
possibly not all locations were acquired in a written CB sw.
The for-loop of the final phase acquires the remaining σ(aw)-
ρ(t, aw)-d1(t, sw) locations in sw, where ρ(t, aw) returns for
one execution of t the number of accesses in aw. For a read CB
sr there can be remaining locations that have to be released,
due to multiplicity, skipping, or out-of-order access. The for-
loop releases the remaining σ(ar)-ρ(t, ar)+max(0, d2(t, sr))
locations in sr, where the maximum of 0 and d2(t, sr) is taken
to cover the case that the lead-out is negative.

The number of iterations performed by the for-loop in the
final phase is determined by the maximum number of locations
to be released in the read CBs or the maximum number of
locations to be acquired in the written CBs, with:



t2t1

sa

sb

while(){
int la = 1;
for(c : 0 : 1)

acquire(sa);
for i0 : 0 : 2

for i1 : 0 : 2{
if(la≤7)

acquire(sa);
acquireL(3i0+i1,sb);
write(3i0-i1+2,sa,

read(3i0+i1 ,sb));
releaseL(3i0-i1+2,sa);
release(sb);
la++;}

release(sb);
}

while(){
int la = 1;
acquire(sb);
write(0,sb,∼);
releaseL(0,sb);
for j0 : 0 : 2

for j1 : 0 : 2{
acquire(sb);
acquireL(F(j0, j1),sa);
write(3j0+j1+1,sb,

read(F(j0, j1),sa));
releaseL(3j0+j1+1,sb);
if(la>3)

release(sa);
la++;}

for(c : 0 : 2)
release(sa);

}

Fig. 8. Extended task graph, of Figure 2

η(t) = max(

{σ(ar) − ρ(t, ar) + max(0, d2(t, sr)) | sr = (tp, t) ∈ S},

{σ(aw) − ρ(t, aw) − d1(t, sw) | sw = (t, tc) ∈ S}) (4)

For the C-code of an NLP, the presented template illustrates
a structured way to add synchronization-statements and to
adjust the assignment-statements. Therefore, the extension of
NLPs can be automated.

Figure 8 depicts the extended task graph of Figure 2. It
depicts the added acquire-statements and release-statements
and the adjustment of the assignment-statements to access CBs
instead of arrays. Furthermore, the last statement of t1 releases
the one remaining location in sb that is skipped for reading.
Note that for t1 the for-loop for the final phase could be
omitted because it only had to perform a single iteration. In the
extended task graph, task t1 does not contain an access counter
for sb and t2 does not for sb. These access counters could be
omitted because they are not used in any of the conditions.

VII. DETERMINING CAPACITIES PER BUFFER

In this section we will demonstrate that determining suffi-
cient buffer capacities per CB cannot guarantee deadlock-free
execution of an application. This will be demonstrated with
an example in which the locations in the CBs are accessed
in-order.

Figure 9 depicts an extended task graph, where the tasks
have a cyclic dependency due to communication via sx and
sy . Both t1 and t2 access the locations in sx and sy in-
order, without skipping and multiplicity, therefore there is
FIFO communication via both sx and sy . For a CB in isolation
FIFO communication requires only one location in the buffer,
because the producer writes the values in the same order as
the consumer reads them, so θ(sx) = θ(sy) = 1.

Due to the cyclic dependency and the execution order of the
sequential code, the extended task graph in Figure 9 deadlocks
if the CBs sx and sy both have a capacity of one location. The
reason is as follows. Task t1 starts by acquiring the location
in sx for its WW, writes a value on it and releases it. Task
t2 acquires the location in sx in its RW, the location in sy

in its WW, reads from sx, writes in sy , and releases both

t1 t2

sx

sy

while(){
for i : 0 : 1 {

acquire(sx);
write(i,sx ,∼);
releaseL(i,sx);}

for i : 0 : 1{
acquire(sx);
acquireL(i,sy);
write(i + 2,sx,read(i,sy));
releaseL(i + 2,sx);
release(sy);}

}

while(){
for j : 0 : 1{

acquire(sy );
acquireL(j,sx);
write(j,sy ,read(j,sx));
releaseL(j,sy);
release(sx);}

for j : 2 : 3{
acquireL(j,sx);
write(∼,∼,read(j,sx));
release(sx);}

}

Fig. 9. Deadlocking extended cyclic task graph

locations. Now the location in sy contains a value and the
location in sx is empty. Task t1 acquires the empty location
in sx in its WW, writes the location, and releases it. Now
both the location in sx and sy contain a value. To continue
their execution, task t1 requires an empty location in sx and
t2 requires an empty location in sy , these are not available,
so the task graph deadlocks. The buffers are too small for
deadlock-free execution, due to the order in which the read
and write operations of both tasks are performed.

VIII. BUFFER CAPACITY COMPUTATION

This section illustrates the derivation of a CSDF model from
the synchronization sections in an extended task graph. With a
CSDF model we can determine sufficient buffer capacities for
an extended task graph to guarantee deadlock free execution.
We start by describing the CSDF model. Following, we first
derive a CSDF model from an extended task graph that only
accesses locations in-order, without skipping and multiplicity,
subsequently we derive a CSDF model from an extended task
graph with out-of-order access.

We model the synchronization sections of the tasks in
an extended task graph in a cyclo static dataflow (CSDF)
model [5], [16]. A CSDF model consists of a directed graph
G = (V, E, δ, φ), with V the set of actors and E the set of
directed edges. An edge ej = (vh, vi), with ej ∈ E, is from
actor vh to actor vi, with vh, vi ∈ V . An edge represents
an unbounded queue. Actors communicate tokens over edges.
There are δ(ej) initial tokens on an edge ej , with δ : E → N.
An actor vi has a period that contains φ(vi) phases, with
φ : V → N. The first phase is phase 0. For an actor, per
phase a number of consumed tokens is given for each input
edge and a number of produced tokens for each output edge.
An actor is fired for each phase. At the moment an actor vi is
fired, it atomically consumes the tokens for the current phase
from its input edges. On finishing a firing, an actor atomically
produces the tokens for the current phase on its output edges.

To derive a CSDF model from an extended task graph,
every task t is modeled by an actor v. A CB sh = (ti, tj)
is modeled by an edge pair, with an edge eh = (vi, vj) and a
back-edge eh′ = (vj , vi) between the actors vi and vj . Initially
eh′ contains δ(eh′) tokens, which corresponds to the capacity
θ(sh) of the modeled CB. Edge eh contains no initial tokens.
Each synchronization section in an extended task t, as depicted
by the counter p in the template in Figure 7, corresponds with
a phase of v. The number of phases (φ(v)) of an actor v is
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ex′

ey′

v1 v2

〈1,1,0,0〉

〈4·1〉

〈1,1,0,0〉

〈4·1〉
δ(ex′ )

δ(ey′)

〈4·1〉

〈0,0,1,1〉

〈4·1〉

〈0,0,1,1〉

Fig. 10. CSDF model of the extended task graph in Figure 9

ex ex′ ey ey′

initial 0 1 0 1
v1 1 0 0 1
v2 0 1 1 0
v1 1 0 1 0

TABLE I
FIRING SEQUENCE FOR ACTORS FROM FIGURE 10

equal to the total number of synchronization sections of the
corresponding extended task t.

First we will discuss the derivation of the CSDF model
depicted in Figure 10 from the extended task graph in Figure 9.
In this extended task graph both tasks access the locations
in their CBs in-order without skipping and multiplicity. The
acquireL-statements (releaseL-statements) in this task graph
behave as acquire-statements (release-statements), because
they only acquire (release) consecutive locations.

The CSDF model in Figure 10 models task t1 with actor v1

and t2 with v2. CB sx is modeled by the edge pair ex and ex′ ,
with ex′ being the back-edge. A back-edge contains a black
dot that represents a number of initial tokens on this edge.
Above the black dot of ex′ the number of initial tokens δ(ex′)
is depicted. CB sy is modeled by the edge pair ey and ey′ .

The n consecutive locations acquired in s during synchro-
nization section p of t, are modeled by the consumption of n
tokens by v during phase p from the incoming edge e, with e
from the edge pair that models s. In Figure 10 the incoming
edge ey at actor v1 contains the list 〈0, 0, 1, 1〉, in this list each
element corresponds with a phase of actor v1 and the elements
in the list corresponds with the number of consumed tokens
during that phase. This list shows that during synchronization
sections 0 and 1, task t1 acquires no locations, and in both the
sections 2 and 3, one location is acquired in sy , as depicted
in Figure 9. For the consumption of actor v1 from ex′ the list
〈4·1〉 is a shorthand notation for four phases that consume one
token.

The n consecutive locations released in s during synchro-
nization section p of task t, are modeled by the production of
n tokens on the outgoing edge e by actor v during phase
p. In Figure 10 the outgoing edge ey of v2 contains the
list 〈1, 1, 0, 0〉 that represents the number of tokens produced
during the four phases. From Figure 9, we see that both
synchronization sections zero and one of task t2 release one
location in sy and sections two and three do not release a
location, which corresponds with the number of produced
tokens on ey by v2 during its four phases.

The CSDF model in Figure 10 and the firing sequence
in Table I depict, in a more explicit way than the textual
description in Section VII, that assigning both back-edges one
initial token leads to deadlock. Table I depicts that initially ex′

and ey′ contain one token. After firing actor v1, one token is

t1
sa t2

while(){
int la = 1;
acquire(sa);
for i0 : 0 : 1
for i1 : 0 : 1{
if(la≤3)
acquire(sa);

write(2i0-i1+1,sa,∼);
releaseL(2i0-i1+1,sa);
la++;}}

while(){
for j : 0 : 3{
acquireL(j,sa);
∼=read(j,sa);
release(sa);}

}

v1 v2

ea

δ(ea′ )〈4·1,0〉

〈0,4·1〉

〈4·1〉

〈2,0,2,0〉

Fig. 11. Extended task graph with CSDF model

consumed from ex′ and produced on ex. The token on ex is
consumed by firing actor v2, which also consumes the token
on ey′ and produces a token on ex′ and ey. For its second
phase actor v1 consumes the token from ex′ and produces one
token on ex. Actor v1 cannot fire for its third phase, because
there is no token on ex′ and actor v2 cannot fire for its second
phase because there is no token on ey′ , this is a deadlock
situation.

In [16] an algorithm is presented that can determine suffi-
cient initial tokens in a CSDF model for deadlock freedom.
Applying this algorithm to the CSDF model in Figure 10
results in 2 initial tokens being sufficient for ex′ (δ(ex′) = 2)
and one for ey′ (δ(ey′) = 1), to guarantee deadlock freedom.
So, deadlock-free execution of the extended task graph in
Figure 9 is guaranteed with CB capacities of at least θ(sx) = 2
and θ(sy) = 1.

The derivation of the CSDF model from the extended task
graph in Figure 11 is less straight forward than for the previous
example, due to the out-of-order write access of t1 in sa. The
remainder of this section presents how acquireL-statements
and releaseL-statements are captured in a CSDF model.

As presented above, a release-statement or an acquire-
statement for a consecutive location in s is modeled by the
production or consumption of one token on e′ in a CSDF
model, with e′ being a back-edge. In a CSDF model tokens are
consumed in FIFO order from an edge. The tokens produced
on a back-edge by an actor that models a release-statement
always represent consecutive locations, therefore the tokens
consumed from such an edge represent consecutive locations.
In contrast, a releaseL-statement or an acquireL-statement can
acquire or release an arbitrary location between w and r.
To model these statements the order in which locations are
acquired and released must be considered.

A releaseL-statement in s is modeled by the production of a
token on e, where the produced token represents the released
location. The basic idea of modeling an acquireL-statement in
s, is to consume tokens from e until the token that represents
the location to be acquired is consumed. For example, for a
modeled releaseL-statement that produces a token representing
location 0 followed by a token representing location 1 on an
edge e, the acquireL-statement for location 1 is modeled by
consuming both tokens from e. If the next acquireL-statement
should acquire location 0, this is modeled by consuming zero
tokens, because the token representing location 0 has already
been consumed in the previous phase.

Modeling an acquireL-statement requires the lists with
released and acquired locations. For sa in Figure 11, the
list of locations released by t1 is {1, 0, 3, 2} and the list



of locations acquired by t2 is {0, 1, 2, 3}. Task t1 does not
release a location in synchronization section zero, releases
location 1 during synchronization section one, and releases
location 0 during synchronization section two. In the CSDF
model this is captured by v1 producing no tokens in phase
zero, one token representing location 1 on ea in phase one,
and one token representing location 0 on ea in phase two.
The acquireL-statement in sa by task t2, is captured by the
consumption from ea by v2. Actor v2 consumes two tokens
from ea during phase zero to model the acquire of location
0, first the token that represents location 1 and next the
token that represents location 0. The acquireL-statement in
synchronization section one of t2 acquires location 1, actor
v2 captures this by consuming zero tokens from ea during
phase one, because it already consumed the token representing
location 1.

To model an acquireL-statement of a consumer tc from
a CB s we specify a function that returns the number of
tokens to be consumed from an edge e. First the function
ω(tc, s, i) is specified that returns the list with locations
released by the producer tp in s, before the location read by
the consumer tc in synchronization section i is released, with
ω : T × S × N → {N}.

ω(tc, s, i) = {α(tp, a, j) | 0 ≤ j ≤ g;

α(tp, a, g) = α(tc, a, i − β(tc))} (5)

For task t2 from Figure 11, ω(t2, sa, 0) results in {}, be-
cause the synchronization section is in the initial phase, and
ω(t2, sa, 1) results in {1,0}, because the producer writes
locations 1 and 0 before the consumer can read location 1
in its synchronization section one.

We have to determine the locations that have to be acquired
between synchronization section i − 1 and i. This list is
found by taking the relative complement (\) of the list with
locations released preceding the location to be acquired in
synchronization section i (ω(tc, s, i)) and the union of all
locations released preceding the already acquired locations

(
⋃j<i

j=0 ω(tc, s, j)). By taking the cardinality (||) of the resulting
set, i.e. the number of elements in this set, the function
λ(tc, s, i) returns the number of tokens to be consumed
from e by actor vc that models tc during phase i, with
λ : T × S × N → N.

λ(tc, s, i) =| ω(tc, s, i) \

j<i⋃

j=0

ω(tc, s, j) | (6)

For task t2 from Figure 11, λ(t2, sa, 1) results in 2, be-
cause | {1, 0} \ {} |= 2 and λ(t2, sa, 2) results in 0, because
| {1, 0} \ {1, 0} |=| {} |= 0.

Figure 12 depicts the CSDF model derived from the ex-
tended task graph in Figure 8. Sufficient initial tokens to
guarantee deadlock freedom are derived using the approach
in [16]. We found that a sufficient number of initial locations
is δ(ea′) = 6 and δ(eb′) = 1. This corresponds to sufficient
buffer capacities of θ(sa) = 6 and θ(sb) = 1 for deadlock-free
execution.

v1 v2

ea

eb

δ(eb′ )

δ(ea′ )

〈0,0,9·1,0〉

〈0,0,10·1〉

〈0,0,9·1,1〉

〈9·1,3·0〉 〈4·0,9·1〉

〈10·1,3·0〉

〈0,5·1,3·0,4,3·0〉

〈10·1,3·0〉

Fig. 12. CSDF model derived from the extended task graph in Figure 8

TC FFT DM

sb

sa

sc sysx

for h0 : 0 : 7 {
a[h0]=adjustTiming(

x[h0],u); }
for h1 : 0 : 7 {

u[h1]=b[h1];
}

for i0 : 0 : 7{
t[i0]= a[i0];}

v=FFT(t);
for i1 : 0 : 7 {

b[B(i1)]=v[i1];
c[B(i1)]=v[i1];}

for j : 0 : 7 {
y[j]=demodulate(c[j]);

}

Fig. 13. Task graph of an OFDM receiver

IX. CASE STUDY

In this section, we demonstrate our approach for a com-
pacted OFDM receiver application for digital video broadcast-
ing [17], similar to the one described in [18]. A fragment of the
OFDM receiver application is presented to keep the extended
task graph and its CSDF model understandable.

Figure 13 depicts the task graph of an OFDM receiver
application, where a timing corrector (TC) task reads values
from array ax. In this task graph, one execution of TC reads
eight values from ax, whereas an OFDM receiver operating
in 2K mode would read 2048 values. Using the values from
array au, the values read from ax are adjusted using the
function adjustTiming before they are written in aa. Initially
au contains eight zeros. The fast fourier transformation (FFT)
task reads eight values from aa, stores them in the array at,
and applies the function FFT to at from which the result is
stored in av. The values from av are written in ab and ac,
using the bit-reverse function B that results in the write order
{0,4,2,6,1,5,3,7}. The demodulator (DM) task demodulates the
values it reads from ac, using the function demodulate, before
writing them in ay .

Figure 14 depicts the extended task graph of Figure 13. The
FFT task writes in bit-reversed order in both sb and sc and
has therefore a lead-in of three locations in both CBs, thus an
initial phase with three iterations. Furthermore, in the FFT task
the assignment-statements that write in sb and sc are in the
same loop-body, both assignment-statements are encapsulated
with an acquire-statement and a releaseL-statement.

Figure 15 depicts the CSDF model that is derived from the
extended task graph in Figure 14. The CBs sx and sy are
not included in this model to obtain a more compacted figure.
Task TC is modeled by actor vt, task FFT by vf , and task
DM by vd. The consumption by vf from ec is given by the list
〈11·0, 8·〈0, 1〉〉, in which 8·〈0, 1〉 is a shorthand notation for an
eight times repetition of the consumption list 〈0, 1〉. Actor vf

has 27 phases that model the 27 synchronization sections of the
FFT task. The FFT task has three synchronization sections for
the initial phase and three times eight synchronization sections
in the processing phase.

During its processing phase, the FFT task executes releaseL-
statements in sc that release locations out-of-order. This



TC FFT DM

sb

sa

sc sysx

while(){
for h0 : 0 : 7 {

acquire(sa);
acquireL(h0 ,sx);
write(h0 ,sa,
adjustTiming(
read(h0,sx),u));

release(sx);
releaseL(h0,sa);

}
for h1 : 0 : 7 {

acquireL(h1 ,sb);
u[h1]=read(h1 ,sb);
release(sb);}

}

while(){
int lb=1;int lc=1;
for c : 0 : 2{

acquire(sb);
acquire(sc);}

for i0 : 0 : 7{
acquireL(i0 ,sa);
t[i0]=read(i0 ,sa);
release(sa);}

v=FFT(t);
for i1 : 0 : 7 {

if(lb ≤ 5)
acquire(sb);

write(B(i1),sb,v[i1]);
releaseL(i1,sb);lb++;
if(lc ≤ 5)

acquire(sc);
write(B(i1),sc,v[i1]);
releaseL(i1,sc);lc++;}

}

while(){
for j : 0 : 7 {

acquire(sy );
acquireL(j,sc);
write(j,sy ,

demodulate(
read(j,sc));

release(sc);
releaseL(j,sy);}

}

Fig. 14. Extended task graph of Figure 13
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Fig. 15. CSDF model derived from the OFDM receiver in Figure 14

releaseL-statement is modeled by the production of one token
by vf on ec during every corresponding phase. In contrast, the
in-order acquiring of locations by the DM task from sc using
an acquireL-statements, is modeled by the consumption from
ec by vd. The consumption order 〈1, 4, 0, 2, 3 ·0, 1〉 from ec by
vd is a consequence of the out-of-order production of tokens
by vf .

For the CSDF model depicted in Figure 15, we have
determined sufficient initial tokens. We found that δ(ea′) = 1,
δ(eb′) = 7, and δ(ec′) = 7 are sufficient initial tokens
to guarantee deadlock freedom in the CSDF model. This
corresponds with θ(sa) = 1, θ(sb) = 7, and θ(sc) = 7
being sufficient buffer capacities to guarantee deadlock-free
execution of the OFDM receiver.

For overlapping windows, compared to non-overlapping
windows, the administration overhead is one full-bit per loca-
tion in the CB. For the OFDM receiver each location in a CB
stores a 32-bit complex number, therefore the administration
overhead for sa, sb, and sc is one full-bit per 32-bit complex
number, which is 1

32 · 100 ≈ 3%.
For the cyclic task graph of an OFDM receiver appli-

cation, we apply overlapping windows, because they guar-
antee deadlock-free execution. It might be possible to use
non-overlapping windows for some inter-task communication
buffers in a cyclic task graph, but this requires verification for
deadlock freedom. If a deadlock situation is encountered, it
may not be clear which buffer causes it.

X. CONCLUSION

In this paper, we introduced a circular buffer with an
overlapping read window and write window that can be used
for the inter-task communication and synchronization in cyclic

task graphs, where the tasks may contain non-affine index
expressions. The novelty of these buffers is that a location
is directly released from the write window after it is written,
which is required to guarantee deadlock-free execution of
cyclic task graphs.

An important difference with current approaches is that we
use windows in which the locations can be accessed in an
arbitrary order. Therefore, we do not require a reordering task.

To administrate whether a location can be acquired for
reading, we introduced the concept of a full-bit. Each location
in a buffer has a full-bit that the producer clears when the
location is added to the write window and sets when a
value is written at the location. No atomic read-modify-write
operations are required, because only the producer clears and
sets the full-bits.

We have demonstrated that computing a sufficient buffer
capacity for each buffer in isolation does not always result
in deadlock-free execution of the task graph. Therefore, the
synchronization performed by all tasks in a task graph is
captured in a data flow model, with which sufficient buffer-
capacities for deadlock-free execution can be computed.

The presented buffers with overlapping windows enable
deadlock-free execution of cyclic task graphs. In the future,
we plan to use these buffers for deadlock-free execution of
task graphs, with non-affine index expressions, of which the
tasks are automatically derived from sequential code.
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