Trainspotting, a WSN-based train integrity system

Hans Scholten
University of Twente, Enschede, the Netherlands

Roel Westenberg, Manfred Schoemaker
Strukton, Hengelo, the Netherlands

Abstract

In contrast to classic train protection systems where
most of the safety measures are built into the rail infras-
tructure, future versions of the European railway safety
system ERTMS (European Railway Traffic Management
System) require trains to check their own safety. One of the
safety measures is the train integrity check, which checks
whether all carriages are still in the train. The check
has to be completed in a certain amount of time. This
paper presents an overview for communication in such
an integrity system, based on a wireless sensor network
(WSN). Because a WSN with nodes in each carriage has a
linear structure, existing communication protocols which
assume a mesh-like topology do no suffice. Simulation
shows that the proposed communication is feasible and
has the necessary (soft) real-time properties to complete
an integrity check in time. The protocol, based on the
IEEE 802.15.4 network stack, is implemented and tested
by Strukton.

I. Introduction

Many train safety systems exist around the world. In
the Netherlands ATB and ATB-NG are used, Belgium and
France use TBL/Crocodile/Memor and in Germany LZB is
used. Although different on implementation level, most of
them are based on the principle that trains cannot collide
if they are not permitted to occupy the same section of
track at the same time. So the railway lines are divided
into blocks in which a train detection system detects the
presence of a train. If a block is occupied by a train,
a second train is not allowed to enter that block and
will be stopped. These systems have many drawbacks.
One of them is that systems are not compatible. Trains
crossing borders need to be equipped with all applicable

safety systems for countries they travel to. For example,
the high speed Thalys has five different systems on board
because it travels to France, Belgium, the Netherlands and
Germany. Another drawback is the amount of rail side
equipment for train detection, control systems and signals,
which all has to be maintained and must be prevented
from stealing (copper!). Yet another drawback is the poor
utilization of the tracks, because block length is fixed. A
more flexible system could adjust block length e.g. based
on speed, weight and length of trains. To overcome these
problems, a new European train protection system is being
developed under the name ERTMS (European Railway
Traffic Management System) [1]. There are three levels of
ERTMS: the first level is similar to ATB-NG and doesn’t
offer many improvements except that it will be a European
standard. It uses train detection and signaling on track, and
(short range) communication with the locomotive is done
via eurobalises. Eurobalises are antennas placed between
de rails at regular intervals. ERTMS level 2 is more ad-
vanced: signal information is moved from the track to the
locomotive, so trackside signals aren’t necessary anymore.
Signal information is exchanged wirelessly. The train reads
its position from the eurobalises and the actual position
is interpolated using speed sensors. This information is
also transmitted to a control center where it can be used
to calculate the necessary safe distance to the next train.
Rail side train detection is still used in this level. In
level three, the old fashioned train detection system using
segments is removed from the track, and replaced by
a moving block around the train which is dynamically
determined: The train reports its location to the control
center where the required safe distance to the next train
is calculated. Because this level of ERTMS lacks rail side
train detection, the whole system’s safety depends on the
location trains pass on to the control center. The required
amount of trackside systems in ERTMS level 3 is reduced
to a minimum. All parts of the train protection system are
moved to the locomotives and a central system. However,

sometimes a carriage gets lost (disconnected) from the
train. While in the old system the number of carriages
is counted by the rail side detection system, in ERTMS
level 3 the train itself must check its integrity at all times.
It will report to the control center the moment it loses a
carriage. In our approach all carriages are equipped with
sensor nodes that measure movement. Integrity of the train
is checked by measuring synchronicity of movement of
the different carriages [2][3]. The topology of the train
is calculated from the paths messages follow between
locomotive and carriages. In the following we focus on
the WSN communication, which differs significantly from
existing WSN protocols because of the linear topology of
trains.

II. Communication overview

Train communication features some rather specific char-

acteristics for the protocol to be developed. Some are
similar to general WSN [4], others are unique for the train
integrity system.
Coordinator: The distinction between ordinary sensor
nodes and special nodes is clear. The locomotive is the
only special sensor node which initiates actions. Initially
more than one ’coordinator’ may be in the network, to
one of them a carriage eventually will subscribe. Routing:
Nodes only need to reach the locomotive and their direct
neighbors. So routing algorithms can be kept simple;
packets only need to be routed towards, or away from
the locomotive. Multi-path: Packets will barely travel
via different paths, because the sensor nodes will be
situated in a more or less straight line. Topology: Only
the locomotive needs to know the network’s topology.
Synchronization: Synchronization (normally considered an
expensive procedure) can be combined with other commu-
nication, a message periodically sent from the last carriage
for instance. Sending/receiving: Sending and receiving is
regulated (nodes don’t initiate communication themselves,
besides the correlation data in the initialization phase.
Other communication will only be in response to a re-
ceived packet. This makes collision avoidance much easier.
Complex collision avoidance techniques such as using time
slots, allocated for each individual node, aren’t necessary.
Traffic fluctuations: The amount of traffic in the network
does not depend on events from the environment, except
for the initialization state. During operation, the traffic
patterns are known on beforehand.

The train communication protocol is outlined in figure
1. The initialization is implemented in step 1 and 2: the
sensor data correlation, and the topology discovery. By
broadcasting sensor data at regular intervals, a sensor node
will become aware of its neighbors presence. During the
topology discovery, the request floods from the locomotive

1. Sensordata Correlation N

!

Y

——0—t—0—0—§

range

2. Topology discovery

. Topology request

Topology replies

3. To Operation

Qperation Request

4. Integrity checking

Alive message (1 per second)

wagon

Fig. 1. Communication modes

into the network, in which individual hop counts are
calculated. Each node replies to this message with a
discovery reply, in which the node’s neighbor information
is contained. This way, nodes become aware of their
neighbors, and the locomotive obtains an overview of their
network, and the position of the carriages. At the request of
the locomotive, sensor nodes can finally go into operation
mode (figure 1-4), a state in which the train’s integrity
is continuously checked, and messages are routed from
back to front at regular intervals. This is done with an
operation request (figure 1-3), a message which contains
all the carriages which will be part of the locomotive’s
network. One sensor node needs special mentioning, this

node, usually a node on the last carriage of the train, will
be master during the operation state. This means that it
will announce its presence at regular intervals (i.e. each
second) with an alive message.

A. Range fluctuation and packet loss

Range fluctuation has a potential impact on both the
communication’s reliability and the validity of the esti-
mated distances from sensor nodes to locomotives. Dis-
tance can be used to assess whether a sensor node will need
to route a message because it is closer to the locomotive,
or whether it should ignore the message because the
sensor node is further away. So for the routing problem,
the topology finding algorithm must take care of range
fluctuations. The fact that a sensor node might be reachable
once does not imply that this node will always be reachable
and hence will be a reliable router. Depending on the
average received signal strength, and the time for how a
sensor node is visible, the protocol treats nodes differently.
Figure 2 illustrates this. Figure 2a shows the ideal situation;
every node has a fixed constant range, and only one
neighbor can be reached. In reality however, due to range
fluctuations, situations 2b and 2c¢ may arise in bad or
worst case scenarios. If during the establishment of the
hop counts, node d is able to reach b, and not ¢ (by
extreme coincidence), this topology will be fixed, and node
¢ will wrongly assume that it is further apart from d,
then b (figure 2c). This will never lead to good routing
results, so the protocol should be able to deal with these
exceptional situations. The locomotive could for instance
send these types of floods more than once into the network.
Eventually the nodes will receive their correct hop counts.
Once the topology is established, and nodes are aware of
their position in the network, the protocol should contain
an efficient procedure to deal with the fact that a message
might not be received by any node considered to be able
to route the message at all. The protocol must decide when
messages are resent, and which nodes will participate in
resending the message, without flooding the network.

B. Energy consumption

Sending and receiving messages is an expensive oper-
ation as far as energy consumption is concerned. So the
time the radio is used should be limited, and during this
time, resending packets should be prevented as much as
possible. Still, reliable data delivery and low latency should
be aimed at for this system. Sensor nodes usually provide
low-power modes or stand-by modes, which should be
taken advantage of as much as possible. In these low-
power states, power consumption can be as low as a few
microwatt. When the train is standing still, the system can

(a) Ideal

ﬁ\ T e

AN

@@é

(b) Moderate

T _—

{ y N '// /‘\\é//\
2 1 1 0
(c) Bad!
A\ /ﬁ\\
@ & o o
2 1 2 0

Fig. 2. Hop count calculation

go into a deep sleep mode. During initialization, informa-
tion between neighboring carriages and locomotives will
be exchanged continuously, so this state can hardly use
any energy-conserving features. An effective approach to
conserve energy is to minimize the time the radio is in
the listening state. Very sophisticated MAC layer protocols
which deal with this problem are for instance S-MAC
[5] and LMAC [6]. These techniques synchronize all the
sensor nodes and designate a collaborative sleep period.
In between the sleep periods, communication is possible
because all possible senders and receivers will be awake at
the same time. This technique, though very sophisticated,
isn’t suitable for the train integrity network because in this
specific situation, we don’t want all the nodes to be awake
at the same time, but we would rather provide an efficient
linear path from the last carriage to the locomotive. For our
application, when using the LMAC or S-MAC protocol,
the problem arises that a node will not be able to receive
a message, and forward it in the same short listen time
interval. Instead. it inevitably waits for another sleep period
before another sensor node can be contacted. Therefore, an
approach similar to DMAC [7] is better suited. In DMAC,
some node is considered the sink, towards many source
nodes send messages. The awake intervals are ordered
successively, where nodes closer to the sink wake up later,

Reev | Send |sleep

Recv | Send sleep
Reev | Send sleep Reev | Send | sleep
v
Reev Scm slecp mmﬂ“l’

Fig. 3. DMAC data gathering tree

RoutePacket

Arrivel of packet which
requires routing

A

Loc known ?

*

Yes

\ A
Retreive node’s

Legend:
Hop count:

Packet Direction:

packet_hopcount:
node_hopcount:

Retries packet:

The distance of a sensomode to the locomotive, in
number of hops (no. of packet forwarding actions).
This is stored in a table (Lo Table), per loc in range.

Direction of the message, towards the loc, or away
from the loc.

Hopcount of the node which sent the packet.
Hopcount of the node which received the packet

The number of times a node already tried to send the
packet (included in the packet).

hopcount to loc from
c Table

v

Packet

direction? From Loc

A/ /Swap node_hopcount,
packet_hopcount
To Loc

A
-
Compare
packet_hopcount,
node_hopcount

In packet
history?

’Add to AckedPacketHistory,
Remove packet from queue

packet_hopcount
<node_hopcount

packet_hopcount

> node_hopcount™

No Queue packet
for forward

packet_hopcount == node_hopcount Yes

Send Explicit
Ack

A
In acked Yes
packet history
No
A4

Retries
packet > 0

No
Ignore packet

Fig. 4. Packet routing

thus providing an efficient path without sleep delays, as
shown in figure 3.

C. Routing

Packets which require routing are processed using the
routepacket procedure. Its flowchart is given in figure 4.
Instead of an explicit acknowledgement when sending
a packet, the protocol will, after having forwarded a
message, receive the same packet again, this time sent by
a neighbor closer to the destination. That way it knows
that the message did not fail to propagate further through
the network, and the node can stop retransmitting the
packet. Under normal circumstances, the protocol assumes
that packets can hop at least one hop closer towards the
destination per retransmit of the packet. For the less ideal
case where a node fails to reach one hop closer to the
destination, nodes with the same hop count distance will
also start forwarding this packet after a certain amount of

2| @ w2 @ 2T
B Environmen) tainsim (id=1) (pUCx30S3080)
trainsim

w1 u

E i 13| o neg 2 fo 1] A

14803 'a‘q;m N oL R B

/By 18, .»{Nuew.mﬂvél (O3 14,/ R4

;i e d by as 3

| L] (S | 8 S w 18 n'.’l‘-'l"_u WO
sarsy, MLACDC S oA DG 1 A D 1o

Toaz\ J5N g\ T0E0N, 7 s TSN desd DN roso

36 ; T\ oy
p it g T AT A3 o e i wa
1 (O iwHA wip |

3 . M 2 o1 o

oe 7052 70sa 7080 w0
2 2 [G]

T
aazy 14l
15

1
no m ® w w0 2]

TN
e N
/ \
a =] . | R L] L.
L Il i [Go i {0 b i
4] 9 37 7). 5 1] 3 0] 1 o
s133 1 g1ar G147 K 5153 G180 H/ g7y G170 W gi7g 1178 B 71a5 0
1B 15 1 15 B Sw B w118 0
M o PN @ T M~ w
~ ~ e ~
/]
/ \
[= e == =,
'
aors M1 2 eoe0 % omoee B1LD o som T2 eoss M 3111/ 0
L 5 48 3 40 a az [g/ o
[9] pop Ol g M [51\ [3] 1] /
- Y

Fig. 6. Transmission range

retries. After all, it is very well possible that these nodes
are (though at the same hop count level) in fact physically
closer to the destination node. To prevent collisions caused
by nodes at the same hop count distance trying to forward
a message at the same time, the routepacket procedure can
be extended with simple techniques such as a short random
hold-off time, or a hold-off time dependent on the received
signal strength. The latter can be used to optimize the
packet forwarding, by letting nodes farther away (with a
lower received signal strength) forward the packet quicker,
as opposed to nodes closer to the sender.

III. Simulations

This section describes the Omnet++ simulation of the
basic protocol discussed in the previous sections. Because
Omnet++ is mainly used to simulate wired networks, it
only supports direct communication amongst modules via
channels. If we want to model wireless communication,
we need to implement channels between one node and all
the other sensor nodes in its range. This approach is for
instance used by Dulman and Havinga in their Omnet++

Topology discovery

Out of rang
T P S
o= ignored

Fig. 7. Bad hop count discovery

simulation template for Wireless Sensor Networks [8].
The sending of one packet from the application layer, is
modeled in Omnet++ by copying the packet and sending
these copies over all individual links. Figure 5 shows
the graphical representation of a random train topology.
Each node has a position from which the connections
with other sensor nodes are derived. Positions of nodes
and interconnections are shown in this screen. During
simulation, packets flowing through the network are an-
imated. The rectangles represent carriages, equipped with
two sensor nodes, and the single sensor nodes at the
end of a row of carriages are the locomotives. Several
parameters can be set on initialization of the simulation.
For instance, the number of trains (with for each train
the number of carriages), the positions of the trains, the
range of the sensor nodes and the amount of packet loss.
Figure 6 shows varying the range of the sensor nodes
on one train. As expected, this changes the number of
interconnections, and it affects the hop count per node.
The hop count is illustrated in the simulation as the upper
number in the list of four variables printed below each
sensor node. The nodes address is the number below,
between square brackets. The moment, and the interval at
which the locomotives starts sending topology discovery
requests into the network can also be regulated by setting
parameters. It is very well possible that one flood will not
reach every single sensor node in the network, or nodes
may only be reached via detours, resulting in bad hop
counts. Multiple floods solve this problem, so the duration
of the initialization state, and the interval at which floods
are initiated can be chosen freely as well.

A. Problems

Running the protocol in the simulator revealed some
major shortcomings in the initial version of the protocol.
Situations like illustrated in figure 7, where nodes receive
messages from nodes with the same hop count, may arise
after an initial discovery flooding in case of packet loss
or extreme transmission ranges. This problem is solved
by detecting if a node at the same distance continuously
tries to forward a packet without result. In this case, nodes
on the same level must eventually start forwarding the
packet as well. Determining the last carriage, by sorting
the modules on the train by hop count does not suffice in
case of larger ranges for the sensor nodes. This may result
in more than one node having the highest hop count. Right
now, amongst these nodes, the node which is the farthest
away is determined using average RSSI (signal strength),
which might not always be the best solution. It solves
the problem, as long as fluctuations in this parameter stay
within certain limits.

B. Results

Simulations are carried out for a train composed out
of 20 carriages (40 sensor nodes), for the duration of
30 minutes using an alive packet interval of 1 second.
The situations in which one neighbor, two neighbors or
three neighbors are reachable are simulated. The effect of
this, in combination with different packet loss percentages
are examined and the results are shown in figure 8. For
different individual packet loss percentages, both the effect
on the source-to-sink packet delivery, and the source-to-
sink packet travel time are shown in the figure. In this
simulation, the topology discovery is carried out without
packet loss, in order to start the simulation with the
correct source-node at the last carriage. Given ERTMS
constraints, such as a deadline of four seconds for the alarm
message, and a SIL (Safety Integrity Level) requirement of
99,90 we are able to judge whether the protocol performs
sufficiently. For instance; given a very poor interconnection
configuration of only one neighboring sensor node being
reachable, we can derive from 8a that the individual packet
loss percentage should be kept well below 25 %. If we
assume a more realistic configuration, in which three
neighboring sensor nodes are reachable, the individual
chance for packet loss may be as high as 60 to 70 %! Next
should be determined how long it takes the alive packets to
travel from the back of the train to the locomotive. Figure
8b gives the average travel times for this, along with the
standard deviation for this average. Note that after the last
point on the curve, the travel time actually goes to infinity,
because no packet is able to reach the destination anymore.

IV. Hardware implementation

The application’s behavior in Omnet++ is programmed
without any special Omnet++ or C++ features. To check
the behavior of the developed protocol in practice, the same
code is ported to a Rabbit [9] platform, equipped with
MaxStreams XBee modules [10]. These radio modules
were not chosen for their ZigBee functionality, which
they can offer as well, but for the IEEE802.15.4 [11]
firmware, with which they are delivered normally. This
firmware offers the exact amount of functionality needed
for our purpose; the physical and MAC layers, without any
upper stack layers. During testing energy consumption is
measured. Though the Rabbit platform is not designed for
minimal power consumption, they performed rather well.
On average, they are awake for a very short time, consum-
ing 50mA@3.3V for the XBee module, and 25mA @3.3V
for the Rabbit module. Asleep, the whole module con-
sumes slightly less than ImA@3.3V . Given that real
sensor node platforms feature much better performance for
energy consumption in both awake and standby states, this
offers possibilities for this protocol. Using this platform,
the roundtrip time of a message is 14 ms on average, and
around 10 % of the packets gets lost.

V. Conclusion

In this paper we focused on the communication of a
wireless sensor network based train integrity system for
ERMTS. During different modes of communication the
locomotive can determine the composition and integrity
of the train. The current approach assumes that a carriage
disconnected from the train by accident quickly disappears
out of range, which results in absence of alive packets.
Given the range of sensor nodes this is an appropriate
solution. The current implementation of the protocol by
Strukton has proven to work in the real world on a
Rabbit3400-Xbee combination.

References

[1] Ertms (European rail traffic management system):
http://www.ertms.com.

[2] Mihai Marin-Perianu, Raluca Marin-Perianu, Paul
Havinga, Hans Scholten: ”Online movement correlation
of wireless sensor nodes”, 2007

[3] R.S. Marin-Perianu, M. Marin-Perianu, P.J.M.
Havinga, J. Scholten: "Movement based group awareness
with wireless sensor networks”, 2007.

[4] Mario Strasser, Andreas Meier, Koen Langendoen,
Philipp Blum: "Dwarf: Delay-aware robust forwarding
for energy-constrained wireless sensor networks”, 2007.

(a) Lost alive packets dependent on individual packet loss between nodes
100,00

20,00 //

e,

70,00

60,00
0,00 / /
4000

30,0

Lost alive packets [%]

200
1000 /
sk "_/ . -
0 10 Bl El 0 E &0 [a0 el 100
| Individual packet loss (%) |
\ \ \

(b) Average overall ali*e packet travel time, depfndem on individl{al packet loss between nodes

1600

1400

1200

1000

00

Overall travel time [ms]

0 10 20 0 40 50 60 70 a0 90 100

Individual packet loss (%)

Fig. 8. Packet loss and overall travel time

[5] Wei Ye; John Heidemann; Deborah Estrin: ”An
energy-efficient mac protocol for wireless sensor
networks”, 2002.

[6] L.LEW. van Hoesel and P.J.M. Havinga: ”A
lightweight medium access protocol (LMAC) for wireless
sensor networks”, 2004.

[7] Gang Lu, Bhaskar Krishnamachari, Cauligi S.
Raghavendra: ”An adaptive energyefficient and
low-latency mac for data gathering in sensor networks”,
April 2004.

[8] S. O. Dulman and P. J. M. Havinga: A simulation
template for wireless sensor networks”, Technical Report
TR-CTIT-03-15, Enschede, April 2003.

[9] Rabbit semiconductor: “rcm3400 rabbitcore module”,
http://www.rabbitsemiconductor.com/products/rcm3400/
docs.shtml.

[10] Maxstream: “xbee 802.15.4 rf module:
http://www.maxstream.net/products/xbee/xbee-oem-rf-
module-zigbee.php.

[11] IEEE 802.15.4 standard:
http://www.ieee802.org/15/pub/TG4a.html.

——1nb

3 nbs

——1nb
—=—2nbs

3nbs

