
A Trust-Enabling Support for Goal-Based Services

Luiz Olavo Bonino da Silva Santos, Luis Ferreira Pires, and Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500AE, Enschede, The Netherlands

E-mail: {l.o.bonino,l.ferreirapires,m..j.vansinderen}@ewi.utwente.nl

Abstract

Service-Oriented Computing allows new applications to
be developed by using and/or combining services offered by
different providers. In several cases a service needs sensi-
tive information from the clients in order to execute. The
existence of a trust relationship between the client and the
provider determines which restrictions the service has con-
cerning the use of this information by the service. In this
paper we present a metamodel for services computing that
incorporates the support for trust relationships. The meta-
model provides the means for specifying services and ser-
vice requests including trust requirements and constraints.
The proposed metamodel is encompassed in a framework
for goal-based service discovery and composition.

1 Introduction

Service-Oriented Computing (SOC) has emerged as a
computing paradigm that uses the concept of service as
the basic construct for distributed applications. SOC has a
promising vision of a world of cooperating services where
cooperation relations can be dynamically created to form
applications and business processes [5]. In a simple SOC
setting we have a service client that requests the execution
of a service to a service provider. Typically, a service needs
to gather information from the service client as the input
data for its execution. In case of a single request and if only
one service provider is considered, it is straightforward for
the service client to decide whether the required information
is sensitive or not and whether it can be sent to the service.
Even if the information is sensitive, in this simple scenario
the service client can decide in an ad hoc manner to send
it to the service if a (implicit or explicit) trust relationship
exists between the service client and the service provider.

However, in environments where a large number of ser-
vice clients and service providers are present, it becomes
difficult to manually and individually assess the sensitive-
ness of the information as well as control and manage

the trust relationships between service clients and service
providers. In such environments, the need for a supporting
service platform emerges. A service platform can support
service clients in activities such as service discovery, se-
lection, composition and invocation [2]. The support can
also be extended to service providers by providing a mech-
anism for rapid creation, deployment and advertisement of
services. The addition of semantics to service descriptions
and to messages exchanged between service clients, service
providers and the supporting service platform enables com-
plex reasoning tasks [8]. Among these reasoning tasks are
the interpretation of service providers’ capabilities and ser-
vice clients’ requirements.

Consider initially a scenario where the interactions be-
tween service clients, service providers and the supporting
platform are solely based on the syntax of the exchange
messages. In this scenario, activities such as service dis-
covery can be performed by matching the terms contained
in the request of a service client with the terms in the de-
scription of a service. The terms should have an exact
match. This implies that problems can arise if for instance
the service client maps concept C to term T1 and the ser-
vice provider maps this same concept C to term T2. This
semantic mismatch can be solved or at least minimized by
the introduction of semantic annotations. Assuming that the
participants share the same conceptual model and that the
terms in the exchanged messages are mapped to this model,
a semantic interoperability becomes possible.

In this work, we propose to raise the abstraction level of
interoperability. At the higher abstraction level, the organi-
zational and social levels are considered and the mapping
is established between a client’s goal and the service that
fulfills that goal. This paper presents a framework for goal-
based dynamic service discovery and composition. The
framework includes a precise definition of goal, techniques
for goal assessment and modeling, and the rationale for dy-
namic service discovery and composition. Trust aspects are
included in all components of the framework. The approach
to tackle trust issues is the focus of this paper.

This document is further structured as follows. Section

The 9th International Conference for Young Computer Scientists

978-0-7695-3398-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICYCS.2008.463

2002

2 presents our goal-based service framework. Section 3 de-
tails the proposed metamodel focusing on the trust aspects.
Section 4 presents a usage scenario to illustrate the appli-
cability of the framework, and Section 5 gives conclusions
and identifies topics for future work.

2 The goal-based service framework

In recent years, goal-based analysis has been used in
different areas of Computer Science to identify stakehold-
ers’ objectives, determine requirements for software sys-
tems and guide system’s behavior. As a representation of a
user’s objectives, goals are used in Service-Oriented Com-
puting to indicate the desired outcome of a service. In the
Service-Oriented Computing literature we can find initia-
tives for service discovery and composition based on goals
such as the Web Service Modeling Ontology (WSMO) [1],
GoalMorph [9] and the approach presented in [10]. These
initiatives have in common the assumption that goal defini-
tions are already available and have been previously identi-
fied and modeled. However, these initiatives do not clarify
how these goals are gathered and modeled and how the goal
descriptions relate to concrete services. Moreover, trust-
related issues are treated ad-hoc and mainly by passing to
the service client the responsibility to decide to whom in-
formation should be provided. We claim that prescriptions
of how to model goals and how to define trust relationships
are still missing and that they should be addressed when
developing a dynamic service discovery and composition
framework based on goal gathering and modeling.

Our framework to support dynamic service discovery
and composition is based on goal modeling, and assumes
that the involved stakeholders (client applications, service
providers, supporting platform) are placed in a common and
known domain. This requirement is necessary because the
approach relies on the availability of domain-specific on-
tologies. For each domain, valid goals for the stakeholders
of that domain are identified together with the tasks required
for their fulfillment. Moreover, trust relationships can be
defined at the modeling level allowing the supporting plat-
form to enforce these relationships. Figure 1 depicts the
main elements that comprise our framework:

• Service platform. A service platform supports the in-
teraction between service providers and service clients.
From the service provider’s perspective, the platform
supports the publication of service descriptions. From
the service client’s perspective, the platform provides
facilities for service discovery, composition, invoca-
tion and monitoring, among others. Different platform
implementations can offer different sets of facilities. In
this work we assume that the platform offers to the ser-
vice client at least service discovery and composition.

• Goal-based service metamodel. This metamodel de-
fines domain-independent concepts such as service,
stakeholder, organization, goal and task, and their re-
lations. These definitions are further used and special-
ized in the domain and task ontologies.

• Domain ontologies. These ontologies define domain-
specific concepts and the relations among these con-
cepts. Domain ontologies should be available for the
service platform as well as for the service providers
and clients.

• Task ontologies. Associated with domain ontologies,
task ontologies provide domain-specific definitions of
the tasks valid in a domain. These task definitions in-
clude not only a list of valid tasks in a domain but also
the structure of these tasks, i.e., dependency relations
among tasks and task decomposition.

Goal-Based
Service

Metamodel

Domain and
Task

Ontologies

Service
Platform

Service

<<defines>>

<<annotates>>

<<interacts with>>

<<is used by>>

Figure 1. Main components of the goal-based
services framework

The concept of goal has several different definitions
varying from ”the result of scoring”and ”the physical struc-
ture that defines where the score is achieved” in some ball
games to ”a statement of intent for the direction of the busi-
ness” in business administration. The definitions strongly
depend on to which application area this term is applied.
Narrowing down to the Computer Science domain, a variety
of definitions of the goal concept can also be found. In the
Artificial Intelligence (AI) realm, goal is defined as a ”de-
scription of a world state that is expected to be realized” [7].
Among the several definitions for goal in the agent-oriented
computing community in [4] goal is defined as a ”state with
highest utility and an agent must choose the course of ac-
tion to reach that goal” and in [6] goal is defined as a ”final
state that the agent tries to achieve by moving from its initial
state through a defined and finite sequence of intermediary
states”.

For the purposes of this framework, we define goal as a
description of an agent’s intended state of affairs. This def-
inition encompasses two aspects: (i) the agent has a setting
of the world that he/she wants to be reached, and (ii) the
agent is committed to the fulfillment of the goal and will act

2003

accordingly to have it fulfilled. The latter aspect is also re-
ferred to as the agent’s intentionality. A task is defined here
as the means to fulfill a goal, i.e., it defines a behavior that
transforms the world from a setting A into a setting B. When
the state of affairs derived by task T’s outcome matches the
description of the state of affairs of goal G, we say that task
T supports goal G.

Figure 2 depicts the relations between goals, tasks and
the related agents. In Figure 2 we derive two other relations:

1. If Agent B executes Task A and Task A supports
Goal A, it implies that Goal A is fulfilled by Agent B.

2. If Agent A has Goal A and, for some reason it can-
not fulfill the goal itself, a delegation is performed.
This delegation implies trust relationships and com-
mitments that are further detailed in next sections.

Agent_A:
Agent

Goal_A: Goal

Task_A: Task

isOwnedBy

isSupportedBy

Agent_B:
Agent

isExecutedBy

|delegatesTo

|isFulfilledBy

Figure 2. Relations between goals and tasks

3 The service metamodel

We related our definition of goal and task from Section
2 with concepts of the Service-Oriented Computing realm.
The notion of agent, as used in Figure 2 is refined by the no-
tion of service client and service provider. Figure 3 depicts
the relations between goals, tasks, services, service clients
and service providers.

In our approach we consider a service the concrete real-
ization of a task. In other words, a task is an abstract (in
the sense that it does not have a direct implementation) def-
inition of activities whose outcome can match the state of
affairs defined by a goal. This separation between a defi-
nition of activities and the actual implementation of these
activities allows the division of administrative domains of
tasks and services. While services are typically defined and
operated by service providers, tasks can be defined not only
by service providers but also by the service client, domain
specialists or by the providers of the supporting service plat-
form. In the scope of our work as depicted in Figure 1,

GoalService Client

Service
Provider

owns

|delegates

Service
provides

|executes

|fulfills

Task

performs

supports

Figure 3. Relations between goals, tasks and
services

we assume that task definition is mainly done by domain
specialists by means of task ontologies associated with do-
main ontologies. In this scenario the following steps are
followed:

1. Domain specialists define domain and task ontologies
including goals valid in a domain;

2. Service providers define their services and make them
available to the supporting service platform. These
services are semantically annotated according to the
available domain ontologies;

3. The supporting service platform tries to match the ser-
vices with the tasks defined in the task ontologies;

4. Service clients define their goals and request the ful-
fillments of these goals to the supporting service plat-
form;

5. The supporting service platform matches client-
defined goals with the domain ontology goals.

After these steps, we have a relation between a client-
defined goal, its counterpart domain-defined goal, a task
supporting the goal and a service that performs the task.
Once this relation is established, a service can be executed
and its outcome fulfills the service client’s goal.

These steps are only possible when a trust relationship
exists between service client and service providers. This re-
lationship can be direct, i.e., a service client A trusts a ser-
vice provider B; or it can be indirect (by transitivity), i.e.,
the service client A trusts the supporting service platform
and, indirectly, trusts the service providers associated with
the service platform. In these two scenarios we have binary
relationships relating service clients to service providers or
to the service platform. However, more complex scenarios
emerge when we consider that the trust relationship has a
context. Considering the real-world example where John
trusts Peter to borrow his car but does not trust him his
personal account’s password. In this example, the trust

2004

relationship includes a conditional element (borrowing of
John’s car) that limits its existence.

In our framework, the conditional element of a trust re-
lationship is the goal. By including a goal in the trust rela-
tionship between a service provider and a service client we
define trust as a ternary relationship as depicted in Figure 4.
The trust, ownership and delegation relations in our frame-
work are based on and extend the relations presented in the
Secure Tropos modeling framework [3] and are defined as
follows:

• Ownership. Represents the fact that the service client
is the legitimate owner of the goal. The owner has full
authority over the owned goal and can grant its fulfill-
ment to another agent (the service platform or a service
provider);

• Trust. Represents the belief of one agent (the service
client) that another agent (the service platform or a
service provider) will not misuse the goal it has been
granted. The former actor is called truster, the later is
called trustee and the object around which the trust is
centered is called trustum;

• Delegation. Represents a formal event on which an
agent delegates to another agent the permission to ful-
fill a goal. The former agent is called delegater, the
later agent is called delegatee and the object of the del-
egation is called delegatum.

GoalService Client

Service
Provider

owns

|delegates

|fulfills

trust

Figure 4. Trust relationship

Regarding trust, the role of the supporting platform is
to only allow the establishment of the delegation of a ser-
vice client’s goal to a service provider if a trust relationship
exists between them. Ultimately, the service platform inter-
mediates the discovery and selection of services according
to the client’s goals. Therefore, the delegation relationship
is complete only when the service platform discovers, se-
lects and invokes a service that matches the requirements of

the client’s goal and a trust relationship can be established
(directly or indirectly) between the service client and the
service provider.

The trust relationship can be indicated in two alterna-
tive ways: (i) the service client explicitly informs to the
supporting platform the service providers that it trusts or;
(ii) the service client informs to the supporting platform the
conditions for trusted service providers. In the former case,
the platform only selects services from providers that have
trust relationships with the requesting service client. In the
later case, the service platform receives the conditions from
the client and matches these conditions to the information
concerning the providers. For instance, a service client can
define that it only trusts providers that are located in its city.
In this example the service platform only selects the ser-
vices from providers located in the same city of the service
client.

4 Example scenario

To illustrate the applicability of our framework, we chose
the Domotics domain for our example scenario. In the ex-
ample, John (a service client) has a goal of getting cus-
tomized comfort settings whenever he arrives at home. Fig-
ure 5 depicts the ownership relation between a service client
(John) and its goal (GetCustomizedComfort). This relation-
ship is automatically assessed by the supporting platform
when the service client informs the platform the goal it
wants to be fulfilled.









Figure 5. Service client’s goal

Among the several goals defined in the domotics domain
ontology, in this paper we consider one to customize the
comfort settings of the house according to the user. This
goal specifies which comfort settings the user wants, e.g.,
ambience lighting, temperature, etc. Figure 6 shows the
model defined by domain specialists in which the domain-
defined goal GetCustomizedComfort is supported by the
task SetLights. In this model, a task decomposition structure
is also presented. The model shows that the task SetLights
can be composed by the sub-tasks SetLightColor and Set-
LightIntensity. This decomposition model allows the plat-
form to search for services that can perform the activities
defined in the SetLights task. If no service could be found
to perform the activities of the SetLights task, the platform
searches for services that can perform the activities defined
in the sub-tasks SetLightColor and SetLightIntensity.

2005

<<DomainGoal>>
GetCustomizedComfort

<<Task>>
SetLights

<<Task>>
SetLightColor

<<Task>>
SetLightIntensity

+support

Figure 6. Domain goal and tasks

Figure 7 shows the trust relationships defined by the ser-
vice client and informed to the service platform. In this
example, John defines that he trusts the service providers
ServProv A and ServProv B. Based on this information the
service platform proceeds to search for services provided by
the service providers trusted by John and that perform the
activities defined in the tasks depicted in Figure 6.

<<Service Client>>
John

trust

<<Service Provider>>
ServProv_A

<<Service Provider>>
ServProv_B

trust

Figure 7. Service client’s trust relationships

Figure 8 shows the services provided by three service
providers. If trust is not considered, the first choice of
service according to the goal and task model presented
in Figure 6 would be the SetLights service provided by
the ServProv C service provider. However, as depicted in
Figure 7 John does not have a trust relationship with the
ServProv C service provider. Therefore, the platform can-
not choose services provided by this service provider for the
client John. Since no service has been found that performs
the activities defined in the SetLights task, the platform pro-
ceeds to the sub-tasks defined on the task decomposition
structure. In this case, the platform finds sub-tasks that com-

pose the SetLights task and searches for services performing
the activities defined in these sub-tasks from trusted service
providers.



















  

Figure 8. Service providers and their services

The platform finds the services SetLightColor and Set-
LightIntensity that performs the activities defined in sub-
tasks SetLightColor and SetLightIntensity, respectively.
Now the supporting platform could establish a relation be-
tween the client’s goal (GetCustomizedComfort), its related
domain goal (GetCustomizedComfort), the task that sup-
ports the domain goal (SetLights), its sub-tasks (SetLight-
Color and SetLightIntensity) and the services that perform
these sub-tasks (SetLightColor and SetLightIntensity). Hav-
ing established this relation, the platform succeeds in find-
ing the services that fulfill the client’s goal.

5 Conclusions and future work

In this paper we presented a metamodel for goal-based
semantic services that enables the definition and enforce-
ment of trust relationships. This metamodel is part of a
framework that supports goal-based semantic services. Be-
sides the metamodel, the framework is composed by do-
main and task ontologies and a service supporting platform.

The metamodel defines goals as the description of a ser-
vice client’s intended state of affairs. The domain and task
ontologies define valid goals for a specific domain and tasks
that support the fulfillment of these goals. Finally, services
are offered to the platform by service providers and are also
annotated according to the domain ontologies. When the
fulfillment of a goal is requested by a service client, the
supporting platform matches the goal to the domain-defined
goals and retrieves the tasks defined on the task ontologies
that support the goal. A task is an abstract description of
activities that can, as its outcome, fulfill a goal. The ser-
vice is defined here as the concrete realization of activities
prescribed by a service provider.

The distinction between the abstract description of activ-
ities (the task) and the concrete realization of activities (the
service) has been shown useful in our framework to support
dynamic service discovery.

The framework assumes the previous existence of do-
main and task ontologies defined by domain specialists.

2006

This assumption makes the framework suitable for environ-
ments where the domain is clear and well known. If the
domain changes, the domain and task ontologies should be
updated to reflect the new conditions.

The mechanism for trust enforcement is embedded in the
goal-based service metamodel and starts with the service
client defining a list of service providers it trusts or defining
criteria for potential trusted service providers. Then the sup-
porting service platform searches for services from trusted
service providers or for service providers that comply with
the informed trust criteria. Preliminary evaluation shows
that the definition of trust criteria offers more flexibility. In
this way the service client does not need to inform the plat-
form every time it trusts a new service provider. The plat-
form uses the trust criteria to automatically infer whether a
service provider can be trusted by the service client or not.

The next steps of our research on this trust-enabling and
enforcement framework are: (i) the definition of more com-
plex domain and tasks ontologies; (ii) the complete imple-
mentation of the supporting platform; (iii) the definition of
evaluation criteria for the framework and;(iv) the compre-
hensive evaluation of the framework against the defined cri-
teria.

Acknowledgements

The present work is partly funded by the Freeband Com-
munication project A-Muse (http://a-muse.freeband.nl). A-
Muse is sponsored by the Dutch government under contract
BSIK 03025. The work on the definition of the goal con-
cept is being conducted in cooperation with Dr. Giancarlo
Guizzardi, Universidade Federal do Esprito Santo, Brazil.

References

[1] S. Arroyo, E. Cimpian, J. Domingue, C. Feier, D. Fensel,
B. Knig-Ries, H. Lausen, A. Polleres, and M. Stollberg. Web
service modeling ontology primer. W3C Member Submis-
sion, June 2005.

[2] L. O. Bonino da Silva Santos, M. van Sinderen, and L. Fer-
reira Pires. Architectural models for client interaction on
service-oriented platforms. In M. van Sinderen, editor,
1st International Workshop on Architectures, Concepts and
Technologies for Service Oriented Computing (ACT4SOC
2007), pages 19–27. INSTIC, July 2007.

[3] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone.
Requirements engineering meets trust management: Model,
methodology, and reasoning. In In Proceedings of the 2th
International Conference on Trust Management, April 2004.

[4] M. Moghadasi, A. Haghighat, and S. Ghidary. Evaluating
markov decision process as a model for decision making
under uncertainty environment. Machine Learning and Cy-
bernetics, 2007 International Conference on, 5:2446–2450,
Aug. 2007.

[5] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-oriented computing research roadmap. Technical
report, European Union Information Society Technologies
(IST), Directorate D, 2006.

[6] J. S. Rosenschein and G. Zlotkin. Rules of encounter: de-
signing conventions for automated negotiation among com-
puters. MIT Press, Cambridge, MA, USA, 1994.

[7] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[8] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dy-
namic discovery and coordination of agent-based semantic
web services. IEEE Internet Computing, 8(3):66–73, 2004.

[9] M. Vukovic and P. Robinson. Goalmorph: partial goal sat-
isfaction for flexible service composition. In Proc. Interna-
tional Conference on Next Generation Web Services Prac-
tices NWeSP 2005, page 6pp., 22–26 Aug. 2005.

[10] K. Zhang, Q. Li, and Q. Sui. A goal-driven approach of
service composition for pervasive computing. In Proc. 1st
International Symposium on Pervasive Computing and Ap-
plications, pages 593–598, 3–5 Aug. 2006.

2007

