
1-4244-1455-5/07/$25.00 c©2007 IEEE

Flexible Sensor Network Reprogramming for
Logistics

Leon Evers Paul Havinga
University of Twente

Drienerlolaan 5
7522 NB Enschede, the Netherlands

Email: {l.evers,p.j.m.havinga,j.kuper}@utwente.nl

Jan Kuper

Abstract—Besides the currently realized applications, Wireless
Sensor Networks can be put to use in logistics processes. However,
current WSN software platforms cannot provide the flexibility
and safety needed. This paper presents SensorScheme, a runtime
environment based on semantics of the Scheme programming
language, used to realize a logistics scenario. SensorScheme is a
general purpose WSN platform, providing dynamic reprogram-
ming, memory safety (sandboxing), blocking I/O, marshalled
communication and compact code transport. We illustrate the
use of our platform and provide experimental results that show
its speed of operation and energy efficiency.

I. INTRODUCTION

In the foreseeable future wireless sensor networks can make
a great impact in the supply chain management business.
WSN nodes attached to crates, roll containers, pallets, and
shipping containers can be programmed to actively monitor
the transportation process.

This paper describes a WSN enabled logistics application
scenario in section II, that verifies proper handling conditions
of goods like temperature for fresh foods and actively monitors
every transported item to significantly reduce delivery delays
and loss or theft of goods, which cause a significant loss of
revenue.

Programming these devices requires a level of flexibility
and security beyond what is currently offered by WSN system
software. In this paper we present a platform called Sen-
sorScheme that is able to deliver on the requirements posed
by active tracking logistics scenarios. SensorScheme is an
interpreter to execute dynamically loaded application code for
WSN platforms based on the Scheme programming language.

Besides tracking logistical processes, SensorScheme is also
beneficial to many other, more ‘traditional’ WSN applications.
SensorScheme bears many similarities with the Maté [1] vir-
tual machine platform in terms of functionality. But due to its
different design, SensorScheme can provide a wider range of
capabilities, and allow richer applications to be executed on it.
Section III describes the design of SensorScheme. Section IV
discusses application implementation issues using the logistics
scenario as an example. We then evaluate SensorScheme’s
performance in section V, and conclude in section VI.

 
1. at farm: among peer nodes? 

2. in truck 

3. on harbor dock: at good position?

4. inside container 

5. at distribution center 

detect truck

detect absence of truck 
and harbor access point

detect container: shippingID

detect distribution center access point

Figure 1. State diagram of the transportation process

II. SCENARIO

This section discusses a small transportation scenario to
illustrate how WSN nodes can be used in logistics. Consider
a shipment of bananas as it travels from the farm near Rio
de Janeiro, Brazil to a supermarket distribution center in
Rotterdam. The bananas are packed in boxes stacked onto
pallets, each equipped with a tracking device. From the farm,
these pallets travel in trucks to a loading dock at the harbor,
where they are loaded into shipping containers that carry them
all the way to the supermarket chain’s distribution center.

Figure 1 shows a state diagram of the stages and transitions
that these pallets will go through during the transportation
process from the farm to the distribution center.

While a pallet is waiting at the farm to be loaded into
the truck it tries to verify whether it is positioned correctly,
near other pallets that are to be loaded into the same truck.
It does this by comparing its destination and contents with
(the majority of) peer nodes on other pallets nearby. When a
pallet is not positioned correctly or no peer nodes are found,
it should raise an alert.

Next, the pallets are loaded into the truck transporting them
to the harbor. Nodes can detect being loaded by ‘hearing’
a device inside the truck, at which point they’ll make the
transition to stage 2. While in the truck, pallet nodes have



to detect being taken out of the truck, which is concluded
from absence of the truck, and presence of the wireless
infrastructure (access point) of the harbor loading dock.

When unloaded on the dock, the devices again verify
whether they are positioned correctly to be reloaded into
shipping containers. When placed incorrectly, it can directly
send an alert message to the dock infrastructure that will
inform workers to correct it.

For the last stage of the transport, the pallets are loaded
into containers. These can be recognized by a matching
shipping ID programmed into each container. Finally, when
the container arrives in the distribution center, pallet devices
sense the distribution center access point and make the state
transition.

A. Application requirements

Upon every new transport, each device is reprogrammed
with a small executable program that in effect tracks the
bananas as they move through the logistics process. A number
of code reprogramming mechanisms exist for wireless sensor
network platforms, such as XNP [2] and Deluge [3] for the
TinyOS platform [4]. These replace the entire program image
(typically are a few tens of kilobytes in size) as a whole, taking
time in the order of minutes, which would take too long for
our scenario and cost significant amounts of energy.

Safety must also be considered: transporters may not be able
to ‘break’ the devices (ie. modify their software operation).
Therefore, an interpreter or virtual machine is a more suitable
approach for our scenario, acting as a sand box to shield off
the hardware. Misbehaving or buggy applications thus cannot
crash a device or damage its critical functions. Furthermore,
only the application code needs to be transported to the
devices, which significantly reduces the size of transported
code.

Maté [1] is a virtual machine designed specifically for
memory-constrained WSN devices. Unfortunately, Maté can
contain only truly tiny applications and exclude our application
scenario from being implemented on top of Maté because
of the lack of VM-implemented procedure libraries, container
data types, and limited communication capabilities.

III. SENSORSCHEME

SensorScheme is a novel interpreted platform for WSN’s
used to implement our application scenario. It uses execution
semantics of the programming language Scheme, hence its
name.

A. Program representation

In SensorScheme, program fragments take the shape of
a specially formatted linked list of memory cells. Figure
2 summarizes the SensorScheme grammar. The operational
semantics is as in regular Scheme. The grammar describes
the set of legal SensorScheme expressions. Its first three
constructs represent SensorScheme’s lambda-calculus core:
variable reference, application and lambda abstraction. The
next four constructs are the special forms needed to make a

exp ::= sym
| (exp exp ...)
| (lambda (sym ...) exp)
| (define sym exp)
| (set! sym exp)
| (if exp exp exp)
| (quote exp)
| (prim exp ...)
| num | #t | #f | ()

Figure 2. A grammar for SensorScheme

minimally complete Scheme implementation: global variable
definition, variable assignment, conditional evaluation, and
literal quotation. Then primitive procedure invocation, and the
last four rules represent constant reference (numbers, true,
false, empty list).

Using the SensorScheme program representation and ex-
ecution model, programs are represented as data structures
that can be operated on. One of the operations that can be
performed on these programs-as-data structures is to execute
or evaluate them, using the eval primitive. SensorScheme
relies on this principle for loading new programs at runtime:
When a node receives a program-as-data from the wireless
network interface, it will invoke the eval primitive on it,
which executes the contents of the program. This program
then calls define to add new global procedures and event
handlers.

B. Memory

SensorScheme is designed specifically for the small memory
size of WSN platforms. All memory is allocated from a single
pool of small equally-sized cells. These cells correspond to
Scheme cons-cells, and each contains two data members which
can be a reference to any other value, such as another cons-
cell, a number, booleans (#t, #f) or the empty list (()). Cells
can be combined to form lists, trees, association lists, and so
on. Garbage collection is used to reclaim unused cells in the
memory pool.

The global memory pool stores application data as well as
program code and interpreter state like the call stack, local
and global variable bindings and scheduling queues. Garbage
collection reclaims unused cells in the memory pool.

C. Task Scheduling

WSN nodes have an inherently event-based nature, reflected
in today’s WSN operating systems. Program execution is
organized in a number of short-running tasks, which can
be scheduled to execute in response to some event. In gen-
eral, tasks run until completion, starting after the previous
one has ended. SensorScheme is designed to run on these
sensor network operating systems, and is implemented as a
single operating system task. The ‘OS-level’ SensorScheme
task defines its own scheduling mechanism. When an event
occurs, a SensorScheme task is scheduled. These tasks are
handled in FIFO order. The kinds of events that can occur in



a.
(define (time-loop)

(call-at-time (+ (now) 5) time-loop)
(bcast (list ’gossip 1 2 3)))

b.
define-handler (gossip a b c)

; react to the gossip message
...)

Figure 3. Example code snippets showing the use of timer and communi-
cation events

SensorScheme are 1) reception of a network message and 2)
firing a timer, and 3) hardware events originating from sensors.

Timer events perform a computation scheduled at a pre-
determined moment in time. SensorScheme provides a prim-
itive procedure call-at-time that takes as parameters
the scheduled time and the computation as a zero-argument
function. At the scheduled time, the computation is executed
as an event handler.

Use of timer events is best illustrated by an example. In
the code sample in figure 3(a) the time-loop function
repeatedly schedules itself at 5 second intervals to broadcast
a message.

D. Communication

Wireless network communication is one of the crucial com-
ponents to WSN platforms. In SensorScheme communication
is designed to be compact and simple.

All SensorScheme data is contained in memory cells of a
small set of data types, tagged with a type code. When sending,
devices encode the message (a data structure) into a linear
representation. Upon reception the receiver can decode the
message into (a copy of) the same data structure from the
linear representation.

A SensorScheme message consists of a header symbol and a
number of data items. The message header refers to the global
function that will handle the message, and the data items in
the message act as parameters to the handler function. The
primitive procedure bcast simply sends a message to all
nodes within transmission range. It accepts a single parameter:
a list containing the message content. See figure 3 for a code
sample containing bcast. The bcast primitive encodes the
message content in linear form into one or more physical
packets, depending on the size of the message content.

Receivers of this message decode the content of each packet
into the corresponding data items. Then the message handler
denoted by the header symbol is looked up and scheduled to
run as an event handler. The code sample of figure 3 (which
is loaded at all nodes in a WSN) shows how communication
takes place. Nodes broadcast a message containing header
gossip and three data items, the values 1, 2 and 3. Receiving
nodes schedule procedure gossip, which takes the source ID
of the sending node as an implicit parameter bound to src,
and bind the three data items of the message to a, b, and c.

Communication of SensorScheme application code is
straightforward: the data structure describing the code can
be packed inside a SensorScheme message, and on reception
‘eval’-ed to load and execute. There is a primitive procedure

1 ; requests the value of given keys from all neighbors
2 (define (peer-dict timeout key)
3 (let ((reqid (rand)))
4 (bcast (list ’peer-dict-hdl reqid key))
5 (set! reqs (cons (cons reqid ()) reqs))
6 (call/cc (lambda (k)
7 (call-at-time (+ (now) timeout)
8 (lambda ()
9 (k (cdr (assoc-and-remove!
10 reqid reqs)))))
11 (exit)))))
12
13 ; handler invoked at neighbors
14 (define-handler (peer-dict-hdl reqid key)
15 (bcast (list ’peer-dict-rpl src reqid
16 (cdr (assoc key global-dict)))))
17
18 ; handler receiving values from neighbors
19 ; called at requesting node
20 (define-handler (peer-dict-rpl dst reqid val)
21 (when (= dst id)
22 (let ((req (assoc reqid reqs)))
23 (set-cdr! req (cons val (cdr req))))))

Figure 4. peer-dict source code

called eval-handler, that performs only that, making it
possible to bootstrap an ‘empty’ SensorScheme node. The
eval-handler primitive is defined as:

(define-handler (eval-handler sexpr)
(eval sexpr))

and can be used in the following way:
(bcast (list ’eval-handler

’(define sqr (lambda (x) (* x x)))))

The SensorScheme communication interface poses no restric-
tions on the size of a message, and the message contents
can not be assumed to fit inside a single packet used by the
physical network interface, and multiple packets must be used.
We will not discuss the details of encoding and packing of
these messages and correct unpacking on the receiver in this
paper due to space constraints.

IV. DISCUSSION

We show by example how SensorScheme can serve as an
implementation platform for our logistics scenario, with an
implementation of one of the states of figure 1. The example
shows construction of communication protocols and blocking
call creation, especially useful for communication-oriented
WSN applications.

Figure 4 shows a SensorScheme implementation of the
peer-dict procedure. It takes a key and timeout value as
parameters, and communicates with all direct neighbors to find
their dictionary entries of given keys. The procedure blocks the
calling task, returning only after timeout seconds.

Function peer-dict sends a request to all neighbors (line
4) containing a unique request ID (created at line 3) and
the requested key, and stores the request ID in the reqs
dictionary (line 5). The call/cc invocation on line 16
creates a continuation, used to return to the function’s caller
after the timeout. At line 7 a timer is set up to signal the end of
the timeout. Finally, a call to exit (line 11) aborts the current
task, allowing other events to be processed while peer-dict
is blocked.



Code size program library all
Source code 963 1032 1991 chars
Net-encoded 176 186 362 bytes
In memory 181 194 375 cells
Available 1975 cells

Table I
CODE SIZES OF EXAMPLE PROGRAM

program time 208 ms
program energy 1.27 mJ 7%
OS time 130 ms
OS energy 0.80 mJ 4%
# messages TX 14.4 msgs
# messages RX 119.6 msgs
air time 455 ms
radio energy 16.45 mJ 89%
Total energy used 18.52 mJ 100 %

Table II
EXECUTION STATISTICS

The message broadcast at line 4 is handled by the
peer-dict-hdl handler at all receiving nodes (lines 14-
16). These nodes simply reply with a peer-dict-rpl
message containing the senders’ ID, the original request ID
and their global dictionary value associated with the key.

Upon reception of peer-dict-rpl messages at the re-
questing device (lines 20-23), it looks up the request ID in the
reqs dictionary, and extends the value list with the value just
received (line 23).

When after timeout seconds the timer expires (line 8-10),
the request ID is once more looked up, and removed from
the dictionary. Then, with a call to the continuation bound to
variable k, procedure peer-dict is returned, with the value
list created in subsequent invocations of peer-dict-rpl
as return value.

V. EVALUATION

A. Code size and memory use

Before we will discuss the performed evaluations, we first
consider the size of the program code, shown in table I. To
enable running the program presented in figure 4, some stan-
dard library functions are also made available on the nodes,
like every and assoc. Table I shows that the library code is
just slightly larger than the application itself. Compared to the
source code, the compact network encoding used reduces it
to less than a fifth during transmission across the network. In
memory, the program code size is larger, since it is contained
in memory cells, and consumes a total of 1500 (375×4) bytes.
That leaves another 1975 cells available for additional program
code and for use during program execution, by the call stack,
global and local variables, scheduling and timer queues and
application data.

Especially during transmission of program code, Sen-
sorScheme produces a very compact representation that en-
ables fast and energy-efficient reprogramming.

Energy use is the crucial performance factor for battery-
operated devices, so we have measured the energy used by

execution of SensorScheme programs. We use a processor
emulator in a simulated network of 20 nodes, each periodically
running the peer-dict function of figure 4. This represents
a real-world situation, since only one itinerary verification
would be taking place at any given time. All energy calcula-
tions are based on the data sheets of the hardware components
of our implementation platform.

Table II lists the running time per invocation of the
peer-dict function. For each such a period, the Sen-
sorScheme code takes only 208 ms execution time. With a
period duration of 10 seconds (the minimum with twice a
timeout of 5 seconds) this is just two percent of CPU time
spent.

Communication takes a significant fraction of the total
energy use on WSN nodes. Table II shows the number of
messages sent and received per period, and the energy spent
on additional computation by the OS, and the energy use of
the radio during sending and receiving. (Before sending, the
radio needs to power up taking an additional 3 ms, included
in the air time.)

Finally, taking these three sources of energy use together,
shows that most energy is used by the radio power during
communication (89 %), while computation time takes only 7
% of the total energy spent. We have not taken into account
other sources of energy use like MAC protocol overhead (idle
listening) and sensor readouts, which only reduce the fraction
of energy used by program interpretation. In conclusion, the
effect of interpretation overhead on the total energy budget is
minimal, accounting for no more than 7 percent.

VI. CONCLUSION

We discussed a logistics application example requiring
frequent change of on-device applications, which are possibly
insecure, and require compact program representations. Virtual
machines have typically been used to meet similar require-
ments. For wireless sensor networks, existing solutions have
high resource requirements, or provide too little functionality
to satisfy the application requirements, mainly due to memory-
starved WSN platforms. By making better use of the little
available memory, SensorScheme is able to provide a wider
range of functionality. Despite their interpreted nature, Sen-
sorScheme programs cause only marginal additional energy
use and no significant delays due to program interpretation.

REFERENCES

[1] P. Levis, D. Gay, and D. Culler, “Bridging the gap: Programming sensor
networks with application specificvirtual machines,” UC Berkeley, Tech.
Rep. CSD-04-1343, Aug 2004. [Online]. Available: citeseer.ist.psu.edu/
levis04bridging.html

[2] Crossbow Technology, “Mote in-network programming user reference,”
Crossbow Technology, Inc., 2003, http://www.tinyos.net/tinyos-1.x/doc/
NetworkReprogramming.pdf.

[3] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programmingat scale,” in Proceedings of the 2nd
international conference on Embedded networked sensorsystems. ACM
Press, 2004, pp. 81–94.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E.Culler, and K. S. J. Pister,
“System architecture directions for networked sensors,” in Architectural
Support for Programming Languages and Operating Systems, 2000, pp.
93–104. [Online]. Available: citeseer.ist.psu.edu/382595.html


