
IMPrECISE: Good-is-good-enough data integration
Ander de Keijzer, Maurice van Keulen

*University of Twente
Postbus 217, 7500AE Enschede

The Netherlands
{a.dekeijzer;m.vankeulen}@utwente.n1

Abstract- IMPrECISE is an XQuery module that adds prob-
abilistic XML functionality to an existing XML DBMS, in our
case MonetDBlXQuery. We demonstrate probabilistic XML and
data integration functionality of IMPrECISE. The prototype is
configurable with domain knowledge such that the amount of
uncertainty arising during data integration is reduced to an
acceptable level, thus obtaining a "good is good enough" data
integration with minimal human effort.

I. INTRODUCTION

Data integration is a challenging problem in many ap-
plication areas as it usually requires manual resolution of
semantic issues like schema heterogeneity, data overlap, and
data inconsistency, before data sources can be meaningfully
used in an integrated way [1]. We believe, however, that data
integration can be made into less of an obstacle by striving
for less perfect, but near-automatic integration, i.e., "good
is good enough" data integration. Data integration problems
are symptoms of semantic uncertainty. Therefore, being able
to properly handle uncertainty in data can provide for near-
automatic data integration. Parts of the data that require tighter
integration can be improved incrementally while the integrated
source is being used.
The basis of our approach is depicted in Figure 1 [2],

[3]. We view a database as a representation of information
about the real world based on observations. In this view,
data integration is a means to combine observations stored
in different data sources. Since observations may conflict,
the DBMS may become uncertain about the state of the real
world. In particular, the DBMS may be uncertain about data
overlap, i.e., whether or not two data items refer to the same
real-world object (rwo). We have chosen a representation of
uncertain data that compactly represents in one XML tree all
possible states the real world can be in, the possible worlds,
for which an intuitive and consistent theory exists. In this way,
it is not necessary that all semantic problems be solved before
the integrated data can be used in a meaningful way. Posing
queries to an uncertain database means that an application
may receive several possible answers. In many application
areas, this suffices if those answers can be properly ranked
according to likelihood. Furthermore, a user interacting with
an application can provide feedback on the correctness of
these answers [4]. Feedback on query answers can be traced
back to possible worlds and be used to remove data related
to impossible worlds from the database, hence incrementally
improving the integration result.

observations

I ~~-_,tn s>;D

CZ

I query

.................

F/,,,,,,,reedba., ,..,k.

Fig. 1. Information cycle

Our ideas are consistent with those of the DSSP approach
(DataSpace Support Platform) [5]. Several other groups are
developing system support for managing uncertain data such
as Trio[6], Orion [7] and MystiQ [8]. In contrast with these
systems, IMPrECISE uses the XML data model instead of
relational. The main reasons for this choice are that XML is
the prominent data model for data exchange and integration,
and its tree structure naturally resembles decision trees [2].
Other XML-based approaches are Fuzzy trees [9], PXML [10],
and ProTDB [11].

II. PROBABILISTIC XML

To capture uncertainty in the XML datamodel, we introduce
two new node types: probability nodes (V) and possibility
nodes (o). The root node of the document is always a prob-
ability node. Child nodes of probability nodes are always
possibility nodes. Each possibility node has an associated
probability, which is the probability that the node and its
subtree exists. Sibling possibility nodes are mutually exclusive,
hence probability nodes indicate choices. Child nodes of
possibility nodes are regular XML nodes (o). Child nodes of
regular XML nodes are probability nodes. This data model
defines a layered XML document where all nodes on the
same level have the same type. If all probability nodes have
only one child node and these possibility nodes have an
associated probability of 1, then the document is certain. A
formal definition of the probabilistic XML data model is given
in [2]. An example probabilistic XML tree is given in Figure 2
in which uncertainty about phone numbers of people named
"John" is captured. The document could be the result of the

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE

Qjj!ffw.w/. O'70, .
,- - -0.sTvat",

1548 ICDE 2008

0-

person I

I addressbook

0--
person/

integrate(
addressbook *

person I

. person

nm tel l tel l nm l tel l nm l tel
John 1111 2222 John 1111 John 2222

Fig. 2. Example probabilistic XML tree.

integration of two address books, both containing a person
named "John", where the first address book lists "1111" as
John's phone number, and the second "2222". The example
tree represents three possible worlds:

* There is one person John with phone number 1111,
. There is one person John with phone number 2222,
. There are two persons named John, one with phone
number 1111 and the other with phone number 2222.

III. PROBABILISTIC INTEGRATION

Although a data integration system should definately support
schema integration, we consider it to be a separate issue. We
assume therefore that the schemas of data sources are already
aligned.
The probabilistic integration process is executed in a recur-

sive fashion starting from the roots of both source documents
(see Figure 3). The integration function tries to match the
child nodes of both sources. Two child nodes match if they
refer to the same rwo. For example, two person elements
match if they refer to the same persons in real life. In many
cases, this can't be established with certainty, so the system
needs to consider two cases: the two person elements refer
to two different persons or they refer to the same person.
For two sequences of persons, this may create many different
combinations of possibilities limited by those possibilities the
system can rule out based on a DTD or other semantical
knowledge. In Figure 2, we depicted the final result where the
DTD specified that persons also only have one phone number,
hence the possibility of John having two phone numbers is
rejected. A complete description of the integration process is
given in [2]

IV. SYSTEM OVERVIEW

The global architecture of the IMPrECISE system is given
in Figure 4. The system is built as XQuery modules on top of
the XML DBMS MonetDB/XQuery [12]. The bottom layer
contains all functionality related to managing uncertainty in
data based on the probabilistic XML approach. The middle
layer contains the data integration functionality. A specific
component, called "The Oracle", determines the probability
that two XML elements refer to the same rwo based on
knowledge rules (see Section V).

* addressbook
I person

nm . * tel nm * ` tel
Johnllll John2222

Y
addressbook

V
0 0

integrateQ person * perso
person * perso.L te cV V
nm * * tel nm* * tel
Johnl lll John2222nm l tel nm tel

Johnllll John2222

Fig. 3. Integration process

Fig. 4. Architecture of IMPrECISE

V. POSSIBILITY REDUCTION

We experiment with integrating metadata of movies from
two different data sources: IMDB and an MPEG-7 document.
We aligned the schemas and can select some data about movies
like title, year, genres and directors. The sources use different
conventions for, e.g., naming directors, so these never match
exactly.

In theory, data sources can be integrated fully automatically
using our method. Data integration, however, quickly results
in an exploding number of theoretical possibilities if the
system contains too little semantical knowledge. Semantical
knowledge is given to "The Oracle" in terms of rules, which
make statements about when, with certainty, two elements
match or not. The rules need to be as simple as possible,
because the purpose of probabilistic integration is to signif-
icantly reduce manual effort, so rule specification overhead
should be minimal. The number of possibilities the system
needs to handle is related to the effectiveness of the rules to
make absolute decisions.

1549

Effective rules #nodes (xl100)
none 13958
Genre rule 6015
Movie title rule 243
Genre and movie title rule 154
Genre, movie title and year rule 29

1 e+09

1 e+08

a)
o
0

~0a)
Q0

TABLE I

EFFECT OF RULES ON UNCERTAINTY

1 e+07

1 e+06

100000

10000

We claim that in typical situations only simple rules suffice
for reduction to an acceptable level [3]. For example, inte-
grating 6 movies produced in 1995 from the MPEG-7 source

with 60 movies from the IMDB-source (of which two refer to
the same rwo), only on two occasions "The Oracle" could not
make an absolute decision. The integrated document of about
3500 nodes compactly stores the resulting 4 possible worlds.
The abovementioned rules can be divided into generic and

domain-specific rules. Examples of generic rules:
Two deep-equal elements refer to the same rwo.

No two siblings in one source refer to the same rwo.

Example of domain-specific rules:
Genre rule: no typos occur in genres

Title rule: two movies cannot match if their titles are not
sufficiently similar.
Year rule: movies of different years cannot match.

To put the integration system to the test, we also experi-
mented with confusing conditions such as integrating sources

that contain sequels. For example, taking 2 'Mission Impos-
sible' sequels, 2 'Die Hard' sequels, and 2 'Jaws' sequels for
which only 1 each refers to the same rwo as in the other
source, results in an integrated document of 14 million nodes
with only the generic rules. By adding the simple domain-
specific rules below, the amount of uncertainty, hence also the
number of nodes can be brought down to 29 thousand (see
Table I), which is good enough for querying.

The amount of uncertainty is often measured in terms of
the number of possible worlds. We find this a rather deceiv-
ing measure, because in the presence of many independent
possibilities, the measure grows exponentially. For obtaining
a good view on scalability, we prefer to look at the number of
nodes used to represent these possible worlds in the database.
In Figure 5, we show the results of integrating 6 movies
of our MPEG-7 source with a growing number of movies
from the IMDB-source. Again to put the integration method
to the test, we selected only sequels, TV-shows, etc. with
'Impossible Mission', 'Jaws', and 'Die Hard' in the title. In
such a confusing setting, the amount of uncertainty grows

quickly.
Note that the latter experiments are executed under very

confusing conditions, so confusing that even humans cannot
make absolute decisions. When comparing the integration of
6 with 60 movies under confusing and typical conditions, we

see that the size of the integration result jumps from 3500
nodes to 1,5 million, a significant increase of course, but still
manageable by our system. Note also that reduction should
not be pushed too far, because eliminating valid possibilities

1000
0 10 20 30 40

number of IMDB movies
50 60

Fig. 5. Influence of rules on scalability

reduces the quality of query answers. We are currently setting
up answer quality experiments.

VI. PROBABILISTIC QUERYING

Even in the presence of much uncertainty, a probabilistic
database can still be queried effectively. In theory, the seman-

tics of a query is the set of possible answers obtained by
evaluating the query in each of the possible worlds separately.
Although this ordinarily creates many possible answers, query

answers from different possible worlds are often the same. Be-
cause XQuery answers are always sequences, we can construct
an amalgamated answer by merging and ranking the elements
of all possible answers.

The effectiveness of our approach to querying a proba-
bilistic database can be shown with a few examples posed
to an integration result under confusing conditions, more

specifically a probabilistic database of 33856 possible worlds.
Our first example is a query asking for horror movies:
//movie[.//genre="Horror"]/title
Even though the integrated document contains thousands of

possible worlds, the ranked answer contains only two movies:
'Jaws' and 'Jaws 2' with an equal rank of 97%. These were

indeed the only two movies classified as 'Horror' in the data
sources. The 'missing' 3% are due to some worlds that are,

though very unlikely, still possible under the given set of rules.
Note that although there is much confusion between the two
movies, the query has a perfectly usable answer.

The second example exhibits stronger effects of uncertainty
during data integration. We query for movies directed by
somebody named 'John':

//movie[some $d in .//director
satisfies contains($d,"John")]/title

'Mission: Impossible II' is directed by 'John Woo' and 'Die
Hard: With a Vengeance' by 'John McTiernan'. Due to the
possibility that that the 'II' may be a typing mistake, the query

produces the answer below. The incorrect third answer has a

low probability though.
100% Die Hard: With a Vengeance
96% Mission: Impossible II

21% Mission: Impossible

1550

Only movie title rule
Movie title+year rule

VII. THE DEMONSTRATION

The IMPrECISE system is a probabilistic XML database
system which supports near-automatic integration of XML
documents. What is required of the user is to configure
the system with a few simple knowledge rules allowing the
system to sufficiently eliminate nonsense possibilities. We
demonstrate the integration process using varying degrees of
confusion and different sets of rules.
Even when an integrated document still contains much

uncertainty, it can be queried effectively. The system produces
a sequence of possible result elements ranked by likelihood.
User feedback on query results further reduces uncertainty
which in a sense continues the semantic integration process
incrementally. We demonstrate querying on integrated docu-
ments and measure answer quality with adapted precision and
recall measures [13]. The user feedback mechanism has not
been implemented, hence cannot be demonstrated yet.
IMPrECISE has been implemented as an XQuery module

for the XML DBMS MonetDB/XQuery. Therefore, the demo
also illustrates the power of this XML DBMS and of XQuery
as both a query and programming language.

REFERENCES
[1] A. Doan and A. Halevy, "Semantic integration research in the database

community: A brief survey," AI Magazine, 2005.
[2] M. v. Keulen, A. d. Keijzer, and W. Alink, "A probabilistic

XML approach to data integration," in Proceedings of
ICDE, Tokyo, Japan, 2005, pp. 459-470. [Online]. Available:
http: //db.cs. utwente nl/Publications/ aperStore/db-utwente-410 64AD3 .pdf

[3] A. de Keijzer, M. van Keulen, and Y. Li, "Taming data ex-
plosion in probabilistic information integration," in On-line Pre-
Proceedings ofIIDB, Munich, Germany, 2006, pp. 82-86, position paper.
http://ssi.umh.ac.be/iidb.

[4] A. de Keijzer and M. van Keulen, "User feedback in probabilistic xml,"
Centre for Telematics and Information Technology, Univ. of Twente,
Enschede, The Netherlands, Tech. Rep. TR-CTIT-07-25, March 2007,
iSSN 1381-3625.

[5] A. Halevy, M. Franklin, and D. Maier, "Principles of dataspace systems,"
in Proceedings of PODS, Chicago, IL, USA, 2006, pp. 1-9.

[6] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom, P. Agrawal,
0. Benjelloun, A. D. Sarma, R. Murthy, and T. Sugihara, "Trio-One:
Layering uncertainty and lineage on a conventional DBMS," in Pro-
ceedings of CIDR, Monterey, USA. Online publication: www.crdrdb.org,
2007, pp. 269-274.

[7] R. Cheng, S. Singh, and S. Prabhakar, "U-DBMS: A database system
for managing constantly-evolving data," in Proceedings of VLDB, Trond-
heim, Norway, 2005, pp. 1271-1274.

[8] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu,
"MYSTIQ: a system for finding more answers by using probabilities,"
in Proceedings ofSIGMOD, Baltimore, Maryland, USA, 2005, pp. 891-
893.

[9] S. Abiteboul and P. Senellart, "Querying and updating probabilistic
information in XML," in Proceedings ofEDBT, Munich, Germany, 2006,
pp. 1059-1068, lNCS 3896.

[10] E. Hung, L. Getoor, and V. Subrahmanian, "PXML: A probabilistic
semistructured data model and algebra," in Proceedings of ICDE, 2003.

[11] A. Nierman and H. Jagadish, "ProTDB: Probabilistic data in
XML," in Proceedings of VLDB, 2002. [Online]. Available:
citeseer.nj.nec.com/niermanO2protdb.htmI

[12] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner, "MonetDB/XQuery: a fast XQuery processor powered by
a relational engine," in Proceedings of SIGMOD, Chicago, IL, USA,
2006, pp. 479-490.

[13] A. de Keijzer and M. van Keulen, "Quality measures in uncertain
data management," in Proceedings of SUM, Washington, DC, USA, ser.
LNCS, vol. 4772, 2007, pp. 104-115.

1551

