
Computational Soundness of Formal Encryption

in Coq

Ricardo Corin

MSR-INRIA Joint Centre & University of Twente

Abstract

We formalize Abadi and Rogaway's computational soundness result in the Coq interac-

tive theorem prover. This requires to model notions of provable cryptography like indistin-

guishability between ensembles of probability distributions, PPT reductions, and security

notions for encryption schemes. Our formalization is the �rst computational soundness re-

sult to be mechanized, and it shows the feasibility of rigorous reasoning of computational

cryptography inside a generic interactive theorem prover.

1 Introduction

Usually, it is necessary to adopt an abstract view of cryptographic operations to make the

design and analysis of cryptographic protocols more manageable. Two different, but still

related abstract views of cryptographic operations �the formal and the computational� have

developed separately in the last years. In the former, the exchanged messages of the protocol

are modelled as formal expressions of a term algebra. The (cryptographic) operations, such

as message pairing and encryption, are modelled as term constructors. In this setting, an

adversary and its abilities can be modelled in terms of the messages the adversary knows. On

the other hand, in the computational model, messages are considered to be (more realistically)

bit-strings, while cryptographic operations are seen as functions over these bit-strings. Here,

an adversary is modelled as any ef�cient algorithm.

Both of the two above models have advantages and disadvantages. On the one hand, the

formal model allows to reason about cryptographic protocols more easily and generally. How-

ever, such bene�ts arise from the adoption of fairly strong assumptions (such as freeness of the

term algebra, and �xing the adversary model). On the other hand, the computational model,

by considering messages as bit-strings and modelling the adversary as any ef�cient algorithm,

provides a more realistic model and thus offers more convincing security guarantees. How-

ever, proving protocols correct in the computational model is more dif�cult and less general

than in the formal model.

In the seminal work of Abadi and Rogaway [4], it is shown that if two formal expres-

sions are similar to a formal adversary, then their corresponding computational interpreta-

tions, represented as bit-strings in the computational model, are also indistinguishable to any

computational adversary (computational soundness). This result comprises a very important

(�rst) step into relating the formal and computational model, and was followed by several

others [3, 6, 9, 10, 12, 11].

Computational soundness theorems are of great value because they simplify the analysis of

a given protocol, since we only need to ful�l the formal requirements (which can be handled

automatically in several cases) to obtain strong computational results. Moreover, computa-

tional soundness results can be proved once and for all, independently of the actual protocol

1

under analysis. However, this also means that soundness results are critical, and need to be not

only correct but also clear and precise, so that we can have full understanding and con�dence

on our protocol analysis. Hence, soundness results are particularly attractive for rigorous for-

malization in a prover. In this paper we provide such a formalization for Abadi and Rogaway's

computational soundness result in the Coq interactive theorem prover [2]. Our choice of proof

assistant is based on the fact that Coq is both quite suitable for (1) manipulating (inductive)

datatypes for terms and (�xpoint) functions that compute on them and (2) de�ning precisely

the computational model, including PPT reductions, indistinguishability, and security notions

for encryption schemes.

Related Work. Work on formalization in interactive theorem provers started in the sym-

bolic setting by Paulson [13]. Tarento et al. formalized in Coq models for the Generic and

Random Oracle models [5] (but did not focus on PPT reduction-based proofs). Recently,

Sprenger et al. developed a BPW model in Isabelle/HOL [14] (although this work does not

formalize BRSIM/UC cryptographic soundness).

In recent work [8], we considered a Probabilistic Hoare-style logic that can be used to

describe game-based cryptographic proofs, and illustrated our technique by proving semantic

security of ElGamal. The work presented in this paper can be seen as preparing the ground

for formalizing this kind of approaches, by exploring the formalization of core concepts of

provable cryptography inside a proof assistant like Coq.

In contrast to applying soundness results from formal to computational settings, Blanchet

has recently proposed a protocol veri�er called CryptoVerif [7] that directly works in a compu-

tational setting. In contrast to soundness settings where the security of operations is �built-in�

(e.g., type-0 for symmetric encryption in this paper), CryptoVerif is more �exible in that one

can �ne-tune the security notion that a given cryptographic operation has. Of course, this extra

control may not be always needed, and it does not come for free as CryptoVerif may in some

cases require manual guidance.

The paper is structured as follows. The formal view is presented in the next section.

Section 3 presents the computational model. Section 4 describes the soundness proof. We

conclude in Section 5, with some conclusions learnt by doing this proof and some hopes for

the future. A more detailed version of this paper, including Coq proofs, is available [1].

2 Formal View

In the following we illustrate our formalization using (straightforward) excerpts of Coq code.

We start with the de�nition of formal expressions, i.e. terms that are de�ned using the follow-

ing inductive datatype.

Inductive term : Type :=

j Bit : N ! term

j Key : N ! term

j Pair : term ! term ! term

j Enc : N ! term ! term

j Un : term.

Bits and keys use natural numbers as labels. We include the undecryptable �, here called Un.

For example, terms m0 = Pair (Key 1) (Enc 1 (Bit 1)) and m1 = Pair (Key 1) (Enc 2 (Bit 1))

represent the concatenation of key K1 with the encryption of bit 1 under key K1 and K2,

respectively.

We de�ne functions for obtaining the recoverable, hidden keys, and entailment, as usual.

Following [4], the p function inputs a term m and a sequence of keys ks and computes the

pattern, presented below. We also de�ne the equivalences � and � (called sequiv and equiv).

2

Fixpoint p (m:term) (ks: seq N) : term :=

match m with

j Un)Un

j Bit b)Bit b

j Key k)Key k

j Pair t1 t2)Pair (p t1 ks) (p t2 ks)

j Enc k1 t1) if mem ks k1 then Enc k1 (p t1 ks) else Un

end.

De�nition pattern (m: term) :term := p m (recoverable m).

De�nition sequiv (m0 m1 : term) : Prop := pattern m0 = pattern m1 .

De�nition equiv (m0 m1 : term) : Prop := 9 � , perm � ^ sequiv m0 (subst m1 �).

(Here, predicate mem ks k1 tests membership of k1 in ks, perm � holds iff � is a permutation

on keys, and subst applies a substitution to a term.) For example, for m0 and m1 above we

have pattern m0 = m0 and pattern m1 = (Key 1, Un), and hence we can prove they are not

equivalent. In the soundness proof, we assume given a permutation renaming : term ! term

that reindexes keys s.t. keys with greater indexes always encrypt keys with smaller indexes

(in [4] this is the `prime' renaming reindexing fromM;N toM 0; N 0). We also assume given a

function ki: term ! N ! N which returns the i-th indexed key in renaming m, and a function

ks: term ! N ! (seq N) which returns the sequence of keys indexed from 1 to i� 1.

3 Computational Model

In order to carry out the soundness proof, we �rst formalize some notions of provable cryp-

tography.

Basic notions Randomness is modelled by using coins, elements of a �nite type C1. Each

coin is in turn an in�nite stream that can be shifted to a new position (thus obtaining a

new coin, denoted cn for shifting c to position n) or projected (thus obtaining random-

ness that algorithms can use). We assume �xed an ensemble over coins (i.e., a family

of probability distributions) fPr�g, indexed by security parameters � 2 N, from coins

to the [0; 1] real interval. Using this ensemble, we de�ne in Coq a function that calcu-

lates the probability of a predicate P : C ! bool, denoted as Pr�[P], which sums the

probabilities Pr�(c) for each coin c s.t. P c holds.

Symmetric Encryption A scheme sch consists of a triple of algorithms G;E;D, for key

generation (of type N !C !BS, where BS are �nite sequences of bits), encryption

(C !BS !BS !BS), and decryption (BS ! BS ! BS). In addition, we model

a number of functional properties (e.g., that decryption inverses encryption), although

they are not required by the soundness proof.

Adversaries An adversary A is a Coq function of type TA := C !BS !BS. We assume

given a predicate testing whether an adversary is PPT, called PPT : TA ! bool.

PPT reductions Reductions in which an adversary A0 is built out of another A are common

in provable cryptography, where it is usually shown that if A is PPT then A0 is also

PPT. We rigorously model this as follows. Given a seed consisting of an adversary A, a

scheme sch, and oracles o1; o2 (all assumed to be PPT), we build a family of extended

adversaries F (A; sch; o1; o2), i.e. functions that compute on their own and may call A,

the oracles o1; o2 or the encryption scheme sch at some point. Extended adversaries

1The size of C can be made to depend on the security parameter � (e.g., polynomially large in �).

3

can be built out of �simpler� extended adversaries by using conditionals, sequential

composition, and term recursion (but not unbounded computations like using a `while'

command). Crucially, given a Coq proof of A0 2 F (A; sch; o1; o2), we can easily mea-

sure the number of execution steps done by A0 (using a simple function countSteps)

before it callsA or oi; we can then bound the steps ofA
0 by a polynomial in the security

parameter, establishing the reduction to be PPT2.

Indistinguishability & Type-0 We de�ne negligibility of functions as usual. Let zero denote

the empty bitstring. Given an ensemble over coins fPr�g, an adversary A, and a family

of functions fD�g from coins to bitstrings, we let functionPr�[A(cn; D�(c)) == zero]
denote the resulting probability ofA �recognizing� distributionD� (by outputting zero)

for security parameter �, starting at cn; for each c s.t. A(cn; D�(c)) returns zero, we
add the probability Pr�(c). Indistinguishability between two distributions D� and D0

� ,

given by predicate indistinguishable D D', holds when the difference function

Pr�[A(cn; D�(c)) = zero]� Pr�[A(cn; D
0

�(c)) = zero]

is a negligible function in � for every A s.t. PPT � A. Here, n � 0 is a `shift' parameter

telling in which position can A start using its randomness (i.e., at cn, but not before);

this allowsD to use private randomness (starting in c0 until cn�1) which is hidden from

A. In the soundness proof, for terms M and N we let D = [[M]], D0 = [[N]] and n is

the number of encryptions and keys inM and N (given by function shf N M).

Type-0 security is de�ned analogously, although now no input is directly given to the

attacker (in contrast to indistinguishability above in which A is given D�(c)). Rather,
oracles get instantiated differently in the left and right instances, and the role of A is

now to guess to which oracles it is speaking to. Given two extended adversaries A0,

A0
0
, we de�ne a Coq predicate �same up to oracles� which takes two proofs of A0 2

F (A; sch; o1; o2) and A
0

0
2 F (A; sch; o0

1
; o0

2
) that holds iff A0 is the exactly the same

adversary as A0
0
, except that when A0 calls oi, A

0

0
calls o0i. We can now de�ne type-0

security of a scheme sch of algorithms G;E;D, given by predicate type0scheme sch,

which holds when the difference function

Pr�[A0(cn; zero) = zero]� Pr�[A
0

0
(cn; zero) = zero]

is negligible in � for every A0 and A
0

0
same up to oracles, extensions of A using �real�

and �fake� oracles, respectively (formally,A0 2 F (A; sch;E(G�(c0); �); E�(G�(c1); �))
and A0

0
2 F (A; sch;E(G�(c0); zero); E(G�(c0); zero))), where G and E are the key

generation and encryption functions of scheme sch.

Note here that c0 is used to generate the left key of the oracles, and c1 is the right key of

only the left �real� oracle. Adversaries A0 and A
0

0
are given cn (for n � 2) to avoid the

attacker from knowing c0 and c1 trivially. Type-1, 2, and 3 can be de�ned analogously.

These notions are in fact generic in provable cryptography, and could be used in other

developments; they are not speci�c to the soundness proof, which we elaborate next.

4 Soundness

We de�ne a function from terms to bitstrings called convert. A call to convert index m, denoted

[[m]] index, returns a mapping that given a security parameter � and a coin c converts term m to

a bitstring, using the encryption scheme sch instantiated by the security parameter �, starting

from cindex. We are now ready to state the soundness theorem:

2In fact, since (the number of instructions of) extended adversaries do not depend on �, we could prove the whole

family to be PPT directly.

4

Theorem soundness : 8 (M N:term), M � N ! type0scheme sch !
indistinguishable ([[M]] (shf N M)) ([[N]] (shf N M)).

For any two formally equivalent terms M and N, if sch is type-0 then the bitstrings generated

by [[�]] on M and N (starting from randomness shf N M) are computationally indistinguishable.

In the proof, following [4], we reason by contradiction and assume an adversary A which

violates indistinguishability of M and N . We then build two extended adversaries A0 2
F (A; sch;E(G�(c0); �); E�(G�(c1); �)) andA

0

0
2 F (A; sch;E(G�(c0); zero); E�(G�(c0); zero))

and prove (1) they are the same up to oracles, and (2) they are PPT, if A is PPT. Then we �nd

a `large gap' i between [[Mi]] and [[Mi�1]], (where Mi denotes the term p M' fK1; : : : ;Kig,
for M' being (renaming M) andK1; : : : ;Ki given by ks M i), and prove

Pr�[A0(cn; zero) = zero] = Pr�[A(cn; [[Mi]](c))]
Pr�[A

0

0
(cn; zero) = zero] = Pr�[A(cn; [[Mi�1]](c))]

This crucial step is rigorously proved in our development by using two intermediate lemmas

proving that Pr�[�] commutes with (1) substitutions (of renaming) and with (2) patterns p.

These lemmas also help into understanding exactly when the property of `renaming' is used.

Finally, our formalized proof was also useful to detect some bad usages of the p function when

called with incomplete keys (e.g., as in M := (fK1gK2
; f58gK1

), where a call p M K2 =
(fK1gK2

;�) should be avoided) if one attempts to deviate from the original proof [4].

5 Conclusions

This development shows the feasibility of formalizing cryptographic soundness results in a

general purpose interactive theorem prover like Coq. Moreover, we obtained deep insight into

the original, soundness paper-based proof, as well as developed provable cryptographic con-

cepts that can be useful in other cryptographic formalizations, e.g. to build tools for checking

game-based cryptographic proofs [8].

Future Work. We already started developing the converse to the soundness theorem, i.e.

completeness [11]. In fact this theorem seems easier than the soundness one of this paper, as

it involves no reduction, only bitstrings computations and inductive proofs that can be easily

dealt with in Coq. Another goal is to model a richer language (in the lines of [3]), or to

formalize soundness in an active setting [12]. This would require us to model stateful oracles

(i.e. to model protocol participants). This can be done in the current setting e.g. encoding

the state as a value �piggybacked� to the attacker, which needs to return it in every oracle

invocation.

Coq statistics. Besides the soundness theorem, there are 98 de�nitions and 65 lemmas in

2853 lines of code. We use Coq 8.0 with ssre�ect from G. Gonthier.

Acknowledgements. M. Abadi, C. Fournet, A. Mahboubi, G. Gonthier, E. Tassi, G. Barthe,

S. Zanella, R. Janvier, B. Gregoire, J. den Hartog, and P. van Rossum provided useful remarks.

References

[1] Computational soundness of formal encryption in coq (long version). At http://www.

msr-inria.inria.fr/�corin/full.pdf.

[2] The Coq theorem prover. At coq.inria.fr.

[3] M. Abadi and J. Jurjens. Formal eavesdropping and its computational interpreta-

tion. In Fourth International Symposium on Theoretical Aspects of Computer Software

(TACS2001), LNCS. Springer-Verlag, 2001.

5

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). In Journal of Cryptology, number 15, pages 103�127.

Springer-Verlag, 2000.

[5] G. Barthe, J. Cederquist, and S. Tarento. A Machine-Checked Formalization of the

Generic Model and the Random Oracle Model. In D. Basin and M. Rusinowitch, editors,

Proceedings of IJCAR'04, volume 3097 of LNCS, pages 385�399, Cork, Ireland, July

2004. Springer-Verlag.

[6] M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equa-

tional theories against passive adversaries. In L. Caires, G. F. Italiano, L. Monteiro,

C. Palamidessi, and M. Yung, editors, Proceedings of the 32nd International Colloquium

on Automata, Languages and Programming (ICALP'05), volume 3580 of LNCS, pages

652�663, Lisboa, Portugal, July 2005. Springer.

[7] B. Blanchet. A computationally sound mechanized prover for security protocols. In

IEEE Symposium on Security and Privacy, pages 140�154, Oakland, California, May

2006.

[8] R. Corin and J. den Hartog. A probabilistic hoare-style logic for game-based crypto-

graphic proofs. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, 33rd

International Colloquium on Automata, Languages and Programming (ICALP), Venice,

Italy, Track C (Security), Part II, volume 4052 of LNCS, pages 252�263. Springer, July

10-14, 2006.

[9] F. D. Garcia and P. van Rossum. Sound computational interpretation of symbolic hashes

in the standard model. In H. Yoshiura, K. Sakurai, K. Rannenberg, Y. Murayama, and

S. ichi Kawamura, editors, IWSEC, volume 4266 of LNCS, pages 33�47. Springer, 2006.

[10] P. Laud and R. Corin. Sound computational interpretation of formal encryption with

composed keys. In J. I. Lim and D. H. Lee, editors, 6th Annual Int. Conf. on Information

Security and Cryptology (ICISC), volume LNCS 2971, pages 55�66, Seoul, Korea, Nov

2003. Springer-Verlag, Berlin.

[11] D. Micciancio and B. Warinschi. Completeness theorems of the Abadi-Rogaway logic

of encrypted expressions. Journal of Computer Security, 12(1):99�129, 2004.

[12] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of

active adversaries. In M. Naor, editor, Theory of Cryptography: First Theory of Cryp-

tography Conference (TCC '04), volume 2951 of LNCS, pages 133�151. Springer, 2004.

[13] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of

Computer Security, 6:85�128, 1998.

[14] C. Sprenger, M. Backes, D. Basin, B. P�tzmann, and M. Waidner. Cryptographically

sound theorem proving. In CSFW '06: Proceedings of the 19th IEEE Workshop on

Computer Security Foundations, pages 153�166, Washington, DC, USA, 2006. IEEE

Computer Society.

6

