
Reconfigurable Turbo/Viterbi Channel Decoder in
the Coarse-Grained Montium Architecture

Gerard K. Rauwerda, Gerard J.M. Smit, Casper R.W. van Benthem
University of Twente, department EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
g.k.rauwerda@utwente.nl

Paul M. Heysters
Recore Systems

P.O. Box 217, 7500 AE Enschede, The Netherlands
paul.heysters@recoresystems.com

Abstract— Mobile wireless communication systems become
multi-mode systems. These future mobile systems employ mul-
tiple wireless communication standards, which are different by
means of algorithms that are used to implement the baseband
processing and the channel decoding. Efficient implementation of
multiple wireless standards in mobile terminals requires energy-
efficient and flexible hardware. We propose to implement both the
baseband processing and channel decoding in a heterogeneous re-
configurable system-on-chip. The system-on-chip contains many
processing elements of different granularities, which includes
our coarse-grained reconfigurable MONTIUM architecture. We
already showed the feasibility to implement the baseband pro-
cessing of OFDM and WCDMA based communication systems
in the MONTIUM. In this paper we implemented two kinds of
channel decoders in the same MONTIUM architecture: Viterbi
and Turbo decoding.

Index Terms— Software Defined Radio, System-on-Chip,
Channel decoding, MONTIUM, Coarse-grained reconfigurable
hardware

I. INTRODUCTION

A complete hardware based radio system has limited utility
since parameters for each of the functional modules are fixed.
A radio system built using Software Defined Radio (SDR)
technology extends the utility of the system to a wide range
of applications using different link-layer protocols and mod-
ulation/demodulation techniques. SDR provides an efficient
and relatively inexpensive solution to the design of multi-
mode, multi-band, multi-functional wireless devices that can
be enhanced using software upgrades only.

SDR-enabled devices (i.e. mobile terminals) are designed
such that the characteristics of the device can be repro-
grammed. So, the same hardware can be adapted to perform
different functions at different points in time. This means that
in the same SDR framework, different communication stan-
dards can be supported, i.e. multi-standard communications.
Another advantage of the SDR template is the possibility to
implement real adaptive systems. Traditional algorithms in
wireless communications are rather static. The recent emer-
gence of new applications that require sophisticated adaptive,
dynamical algorithms based on signal and channel statistics to

achieve optimum performance has drawn renewed attention to
run-time reconfigurability.

Implementation of SDR requires a flexible hardware archi-
tecture. Since baseband processing in the wireless receiver
is computationally intensive, the processing power of the
terminal’s hardware architecture has to satisfy these demands.
Moreover, wireless terminals are battery-powered, which em-
phasizes the importance of energy-efficiency in wireless re-
ceivers.

Figures presented in [1], [2] show that error decoding in a
wireless receiver is as computationally intensive as baseband
processing. This means that both baseband processing and
error correction algorithms for multi-mode communication
systems can benefit from efficient implementations in hetero-
geneous reconfigurable hardware.

This paper presents the implementation of an adaptable
channel decoder, which is capable of both Viterbi and Turbo
decoding. The decoder has been implemented in the coarse-
grained reconfigurable MONTIUM architecture. Besides the
channel decoding algorithms, we already presented imple-
mentations of the baseband processing for receivers based on
OFDM and WCDMA techniques [3], [4].

In Section II we point to relevant research. Basic channel
coding theory is presented in Section III. Section IV describes
briefly the proposed heterogeneous reconfigurable system-on-
chip, including the MONTIUM. The implementation of an
adaptive Turbo and Viterbi decoder is done in Section V.
Utilization of the generic channel decoder is discussed in
Section VI. Conclusions are presented in Section VII.

II. BACKGROUND

Research in the Software Defined Radio (SDR) context
focuses strongly on multi-mode communication systems, as
for example in the MuMoR [5] project. Furthermore, energy-
efficiency becomes ever more important, since mobile termi-
nals are battery-operated. The EASY project [6], for instance,
aims at developing a power/cost-efficient System-on-Chip
(SoC) implementation, which handles the baseband processing



of wireless LAN systems. Their heterogeneous SoC consists
of an embedded FPGA and ARM processor.

Conventional reconfigurable processors are bit-level recon-
figurable and are far from energy-efficient. Pleiades at the
University of California, Berkeley, is exploring reconfiguration
of coarse-grained application-specific building blocks with
an emphasis on low-power computations [7]. Furthermore,
PACT [8] proposes an extreme processor platform (XPP)
based on clusters of coarse-grained processing array elements.
Silicon Hive [9] offers coarse-grained reconfigurable block
accelerators (e.g. Avispa and Moustique) and stream accel-
erators (e.g. Bresca) for high performance and low-power
applications.

Coarse-grained building blocks are considered in hetero-
geneous reconfigurable SoCs. These SoCs consist of mixed-
grained reconfigurable blocks, suitable for implementation of
multi-mode communication systems. The Smart chipS for
Smart Surroundings [10] and AMDREL [11] projects anticipate
these objectives.

In [2] it has been reported that 50% or more of the
computational complexity in the wireless receiver is due to
error coding algorithms, like Viterbi or Turbo decoding. This
complexity counts for about 60% of the energy consumption
in the digital processing part of a typical wireless receiver [1].
Consequently, power reduction should be achieved in the error
decoding part of the receiver. New physically oriented design
methodologies are proposed in ASIC design for Viterbi [12]
and Turbo decoders [13]. Power reduction by exploiting vari-
ations in system characteristics due to changing noise condi-
tions are the focus in [14], [15]. The latter can be achieved
using dynamic reconfiguration in reconfigurable hardware.

In [16] a channel decoder chip was proposed that is compli-
ant with the 3rd Generation wireless standard. However, this
chip is a dedicated solution for the 3rd Generation UMTS
system, which cannot be used in other wireless communica-
tion standards. In [17] another reconfigurable architecture for
Viterbi and Turbo decoding was reported. That architecture,
Viturbo, can be configured to decode convolutionally coded
data and Turbo coded data.

III. CHANNEL CODING

Shannon described in [18] that it is possible to reliably send
information over a communication channel with a transmission
rate, which is limited by the Shannon capacity (or Shannon
limit). The Shannon limit is the absolute limit, where no
improvement on the bit error rate (BER) can be made without
increasing the energy of the bits. Shannon described his
theorem, however he did not give a solution to reliably send
information. Many error-correction code schemes have been
proposed until now. Among others, convolutional codes are
widely used in communication systems as error-correction
codes. These error-correction codes enable reliable commu-
nication of information over a noisy, distorted communication
channel by adding redundant information [19].

A convolutional code is generated by passing the data
through a finite state shift register. The contents of the

shift register (i.e. the state of the shift register) determines
the output code. So, the encoding of information can be
represented with a state machine. As an example, Figure 1
shows a convolutional encoder and its state machine. The
rate of this encoder is R = 1/2. Three different bit-values
– the current value and two old values – are used in this
encoder to create the code. Hence, the constraint length of
the encoder is K = 3. The encoder in Figure 1 is called Non
Systematic Convolutional (NSC) because the input data bits
are not directly connected to the output code bits.

Fig. 1. Convolutional encoder (left) and its state machine (right).

Convolutional code decoding algorithms are used to es-
timate the encoded input information, using a method that
results in the minimum possible number of errors. In [20]
Viterbi originally described his maximum-likelihood sequence
estimation algorithm, commonly known as the Viterbi algo-
rithm. The job of the decoder is to estimate the path through
the trellis that was followed by the encoder. A trellis diagram
simply shows the progression of the state of the encoder for
different symbol times. Figure 2 depicts part of the trellis for
the NSC encoder of Figure 1. The trellis shows for each time
instant all possibles states of the encoder, and all possible state
transitions.

Fig. 2. Trellis diagram with 4 states.

Turbo codes, a new family of convolutional codes were pro-
posed in [21], [22]. These codes are built using concatenation
of two Recursive Systematic Convolutional (RSC) codes and
their performance is close to the Shannon limit. The recursive
codes have a feedback loop in the convolutional encoder,
which causes the state of the encoder to be dependent on the
state as well as the input. Figure 3 depicts the basic building



blocks of the turbo encoder. The Turbo encoder consists of
two RSC encoders and an interleaver. One encoder receives
the input data bits directly, while the second encoder receives
the input data bits in a shuffled way. The shuffling is performed
by the interleaver. The interleaver operates on input blocks of
a fixed length, which is specified by dedicated standards. For
UMTS the interleaver block size is specified between 40 and
5114 bits [23].

Fig. 3. Turbo encoder (left) and decoder (right).

The decoding of Turbo codes is performed in an iterative
way. The decoder consists of a de-interleaver and two decoder
blocks. These decoders are mostly referred to as Soft-Input-
Soft-Output (SISO) decoders. Each SISO decoder estimates
the Log-Likelihood Ratio (LLR), which denotes the logarithm
of the probability that a ’1’ is transmitted divided by the
probability that a ’0’ is transmitted, based on its input signals.
These input signals of the SISO decoder are the parity input
and systematic input, which is also called the intrinsic infor-
mation, and the feedback information derived by the previous
SISO decoder, which is called the extrinsic information. Each
iteration of Turbo decoding will add extra information to make
a better decision on the decoded bit stream.

IV. HETEROGENEOUS RECONFIGURABLE HARDWARE

Implementation of SDR requires a flexible hardware ar-
chitecture. Traditional SDR approaches are implemented on
homogeneous flexible architectures, like General Purpose Pro-
cessor (GPP) or Digital Signal Processor (DSP) [24]. Since
baseband processing in the wireless receiver is computation-
ally intensive, the terminal’s hardware architecture has to be
very powerful. Moreover, as wireless terminals are battery-
powered, the importance of energy-efficiency of the hardware
architecture is emphasized.

A common objection to the traditional homogeneous flex-
ible architecture is its relative energy in-efficiency. However,
heterogeneous reconfigurable hardware, consisting of process-
ing elements with different granularities, is designed with these
constraints – flexibility, performance and energy-efficiency –
in mind.

The idea of heterogeneous processing elements is that
one can match the granularity of the algorithms with the
granularity of the hardware. Four processor types can be
distinguished: general purpose, fine-grained (e.g. FPGA),

coarse-grained (e.g. MONTIUM [25], [26]) and dedicated
(e.g. ASIC). Figure 4 depicts a heterogeneous reconfigurable
hardware template, consisting of processing elements
with different granularities. Matching the granularity of
the reconfigurable hardware with the algorithm provides
flexibility at the right level:

• general purpose
The general purpose processor is the most flexible hard-
ware architecture. It can be programmed to perform
almost any algorithm. General purpose processors are
well suited for control-oriented functions. Due to the large
overhead in control, these processors are not very energy-
efficient.

• fine-grained
Fine-grained reconfigurable devices are bit-level pro-
grammable. Because of the configurability at bit-level,
the configuration overhead is large. Fine-grained recon-
figurable devices are perfectly suited for prototyping and
to implement encryption algorithms.

• coarse-grained
Coarse-grained reconfigurable devices are flexible at
word-level. Multipliers, adders, etc. are hardwired in
these devices. Because only coarse functional blocks have
to be configured, the configuration overhead is small.
These architectures are more suited for data-oriented
functions, like algorithms performed in the DSP domain.

GPP

GPP

FPGA

FPGA

FPGA

FPGA

ASIC

ASIC

Montium

DSP

DSP

Montium

Montium

Montium

Montium

Montium

Fig. 4. The Chameleon SoC template.

The proposed tiled System-on-Chip (SoC) template,
Chameleon [26], consists of the above mentioned processor
types (Figure 4). The tiles are interconnected by a Network-
on-Chip (NoC). Both SoC and NoC are dynamically recon-
figurable, which means that the programs (running on the
reconfigurable tiles) as well as the communication channels
are defined at run-time. The coarse-grained reconfigurable
tiles in the Chameleon SoC template are MONTIUM tile
processors [25], as depicted in Figure 5.

A. The MONTIUM reconfigurable architecture

The MONTIUM is a coarse-grained reconfigurable processor
and targets the 16-bit digital signal processing (DSP) algorithm
domain. At first glance the MONTIUM architecture bears
a resemblance to a VLIW processor. However, the control



Fig. 5. The MONTIUM tile processor.

structure of the MONTIUM is very different. For (energy-)
efficiency it is imperative to minimize the control overhead.
This can be accomplished by statically scheduling instructions
as much as possible at compile time.

The lower part of Figure 5 shows the Communication
and Configuration Unit (CCU) and the upper part shows the
reconfigurable Tile Processor (TP). The CCU implements the
interface for off-tile communication. The definition of the off-
tile interface depends on the NoC technology that is used in the
SoC. The CCU enables the MONTIUM to run in ’streaming’
as well as in ’block’ mode [27].

The TP is the computing part that can be configured to
implement a particular algorithm. Figure 5 reveals that the
hardware organization of the tile processor is very regular. The
five identical ALUs (ALU1 · · · ALU5) in a tile can exploit
spatial concurrency to enhance performance. This parallelism
demands a very high memory bandwidth, which is obtained
by having 10 local memories (M01 · · · M10) in parallel. The
small local memories are also motivated by the locality of
reference principle. A reconfigurable Address Generation Unit
(AGU) accompanies each memory. It is also possible to use
the memory as a look-up table for complicated functions that
cannot be calculated using an ALU, such as sine or division
(with one constant). The data path has a width of 16-bits
and the ALUs support both signed integer and signed fixed-
point arithmetic. The ALU input registers provide an even
more local level of storage. Locality of reference is one of
the guiding principles applied to obtain energy-efficiency in
the MONTIUM. A vertical segment that contains one ALU
together with its associated input register files, a part of the
interconnect and two local memories is called a Processing
Part (PP). The five Processing Parts together are called the
Processing Part Array (PPA). A relatively simple sequencer
controls the entire PPA. The sequencer selects configurable

PPA instructions that are stored in the decoders of Figure 5.
Development tools are essential for quick implementation

of applications in the MONTIUM architecture. The intention of
the MONTIUM development tools is to start with a high-level
description of an application (in C/C++ or Matlab) and trans-
late this description to a MONTIUM configuration. Until now,
majority of the applications are implemented in the MONTIUM
using a MONTIUM compiler. The configurations of the MON-
TIUM can manually be created/changed by entering the exact
configuration data bits in the configuration editor. The mapping
of applications at design time has been automated by using the
MONTIUM configuration description language. This language
enables structured application development using MONTIUM
and precompiler instructions.

V. ADAPTABLE DECODER IMPLEMENTATION

The Turbo and convolutional code schemes have been
adopted by many wireless communication standards. In the
3rd Generation UMTS system both coding schemes are em-
ployed. Turbo coding has been used for data channels and
convolutional coding for voice channels [23].

In [16] a channel decoder chip was proposed that is com-
pliant with the 3rd Generation wireless standard. However,
this chip is a dedicated solution for the 3rd Generation UMTS
system, which cannot be used in other wireless communication
standards. We implement both the Turbo and the Viterbi
decoder in our coarse-grained reconfigurable MONTIUM ar-
chitecture, which can also be used to implement the base-
band processing [3], [4]. The flexible coarse-grained recon-
figurable MONTIUM enables the implementation of flexible
baseband processing and flexible channel decoding in multi-
mode communication systems. The unified channel decoder
chip in [16] has been implemented in older CMOS technology,
therefore we cannot fairly compare the implementation with
the MONTIUM implementation. In [17] another reconfigurable
architecture for Viterbi and Turbo decoding was reported. That
architecture, Viturbo, can be configured to decode convolution-
ally coded data and Turbo coded data. The Viturbo decoder
is only aimed for channel decoding, whereas the MONTIUM
architecture is more flexible and suitable for baseband pro-
cessing as well. The area of the MONTIUM is slightly larger
than the Viturbo decoder (∼ 250 kGates vs. ∼ 200 kGates).

The configurations for the MONTIUM of the Viterbi and
the Turbo decoder are implemented using the MONTIUM
configuration description language.

A. Turbo decoder

The SISO decoders in the Turbo decoder can be imple-
mented using several algorithms [28]. We implemented the
Max-Log-MAP (MLM) algorithm in the MONTIUM. This
algorithm has a regular optimized structure and achieves near-
optimal Bit Error Rate (BER).

The MLM algorithm consists of three processing phases:
forward recursion, backward recursion and LLR calculation.
The information from the forward and backward recursion
are used to estimate the LLR information. Because the LLR



calculation can be done while the backward recursion is
performed, the backward estimations do not need to be stored
in memory. However, all the forward estimations have to be
stored in memory. Hence, in order to be compliant with the
3rd Generation UMTS standard, at most 5114 × 8 forward
estimates have to be stored for full block length. The required
memory to store the forward estimates can be reduced by
applying the sliding window approach [29]. This approach
divides the full block into smaller blocks, windows, on which
the algorithm is applied. The number of forward estimates that
needs to be stored is now equal to the window length.

In the forward recursion a branch metric is computed for
each possible state transition in the trellis. The branch metric,
γij [k], of the transition from state i to state j at time k is

γij [k] = Sij [k] · L[k − 1] + Qij [k] · P [k − 1] (1)

Sij [k] is the data bit and Qij [k] is the parity bit associated
with a transition from state i to state j at time k. L[k − 1]
denotes the intrinsic input, and P [k−1] gives the parity input.
(2) and (3) show the formulas to calculate the forward state and
backward state metrics, respectively. During forward recursion
the trellis is read in forward direction, while during backward
recursion the trellis is read in the opposite direction. Where
Ax[k] denotes the forward state metric of state x at time k,
and Bx[k] identifies the backward state metric of state x at
time k.

Aj [k] = max(Ai1 [k − 1] + γi1j , Ai2 [k − 1] + γi2j) (2)

Bi[k] = max(Bj1 [k + 1] + γij1 , Bj2 [k + 1] + γij2) (3)

λ[k] = max
i,j

(Ai[k] + Bj [k + 1] + γij [k])
∣∣∣∣
Sij [k]=1

− max
i,j

(Ai[k] + Bj [k + 1] + γij [k])
∣∣∣∣
Sij [k]=0

(4)

The LLR calculation is performed immediately after the
backward recursion. The LLR calculation is done according
to (4). The operations to be performed for the calculation
of (2), (3) and (4) can be done in a very regular way. So,
these operations are suitable to be performed in the MONTIUM
architecture.

1) Throughput: The Turbo codes used in the UMTS com-
munication system have constraint length k = 4, which means
that 8 states exist in the trellis of the Turbo code. Hence,
8 forward recursion and 8 backward recursion have to be
performed consecutively for each time instant of the trellis.
The parallelism of ALUs and memories in the MONTIUM
provides resources to calculate the forward and backward
recursion in 4 clock cycles for one time instant of the trellis.

The intermediate forward state metrics are stored in the local
memories of the MONTIUM. Immediately after the calculation
of the backward state metrics, the LLR is calculated. The LLR
calculation in the MONTIUM is performed in 4 clock cycles

per time instant of the trellis. Consequently, 8 clock cycles are
required to apply the MLM algorithm for one time instant of
the trellis.

Due to the limited size of the local memories in the
MONTIUM, the maximum block sizes that can be used for
Turbo decoding is also limited. However, the limited memory
in the MONTIUM is not problematic when using the sliding
window approach.

The maximum channel data rate of the UMTS communi-
cation system is 1.92 Mbps, which means the the maximum
Turbo frame of 5114 bits has to be processed in 2.66 ms.
In order to perform Turbo decoding with 10 iterations, the
MONTIUM should run at a speed of 110 MHz. The inner and
outer decoder are applied during one Turbo decoding iteration
without considering the interleaving process.

2) MONTIUM configuration: The total configuration size of
the MONTIUM Max-Log-MAP implementation is 1262 bytes.
This configuration can be loaded in the MONTIUM’s con-
figuration memory in 6.36 µs when the configuration clock
frequency is 100 MHz.

B. Viterbi decoder

We implemented a fully flexible Viterbi decoder in the
MONTIUM, based on a hybrid Register Exchange/Traceback
approach [30]. The rate, R, as well as the constraint length,
k, and the decision depth, d, of the decoder can be adapted
within certain boundaries. These boundaries depend on the
size of the local memories inside the MONTIUM. The results
in this paper are based on the DAB system, R = 1/4 and
k = 7 with a decision depth, d = 50.

1) Throughput: The implementation of the Viterbi algo-
rithm in the MONTIUM results in a decoder that processes
one stage of the trellis in 42 clock cycles for the DAB case.
The data processing of one stage consists of branch metric
calculation and path metric updating. Whenever 10 stages of
the trellis have been processed, the Viterbi decoder decides on
the decoded bit sequences of the foregoing stages.

In the implemented DAB decoder, always 10 bits are
generated during the survivor decision phase. On average 47
clock cycles are required to decode one output bit. The output
rate of the Viterbi decoder in the MONTIUM is 2.1 Mbit/s using
a clock frequency of 100 MHz. This is sufficient for DAB,
which requires an output rate of 1.8 Mbit/s. We also included
in Table I the number of clock cycles that are needed for the
Viterbi decoder in the general case with constraint length, k,
rate, R, and decision depth, d.

2) MONTIUM configuration: The total configuration size
of the MONTIUM Viterbi implementation is 1356 bytes. This
configuration can be loaded in the MONTIUM’s configuration
memory in 6.78 µs when the configuration clock frequency is
100 MHz.

Once the MONTIUM is configured as Viterbi decoder, only
partial reconfiguration has to be performed in order to adjust
the constraint length, decision depth or rate. Especially the
decision depth depends heavily on the conditions of the



TABLE I
CYCLE-COUNT OF THE VITERBI IMPLEMENTATION IN THE MONTIUM.

branch path survivor
metric metric decision

DAB decoder
d = 50, k = 7, R = 1/4 8 34 50
general decoder
d, k, R 1

2
2

1
R 2k−2 + 2 2k−2 + 2 + d

16−k−1
× 3

wireless channel. Thus, adjusting the decision depth can be
typically performed on run-time via dynamic reconfiguration.

VI. ADAPTIVE DECODER SYSTEM

Trends in wireless communication systems show that the
underlying DSP algorithms become more adaptive. Three
levels of adaptivity in the digital signal processing of wire-
less receivers can be identified: standards level, algorithm-
selection level and algorithm-parameter level.

The support of multiple wireless communication standards
introduces a first level of adaptivity in the wireless terminal
because the terminal can switch between wireless communica-
tion standards. For example when packet data transport is per-
formed over UMTS and a WLAN hotspot becomes available
the terminal can switch from UMTS to a WLAN standard.
This is referred to as standards level adaptivity. Standards
level adaptivity has an impact on the digital signal processing
in the wireless terminal because the wireless communication
standard defines the DSP functions that have to be performed
to implement the standard.

Although a wireless communication standard usually de-
fines the DSP functions, which have to be performed to
implement the standard, it usually does not define the algo-
rithms that have to be used to implement these functions. The
communication system can therefore select an algorithm from
a set of algorithms that implement the same DSP function.
Therefore, this second level of adaptivity is referred to as
algorithm-selection level adaptivity.

For a specific algorithm, there are also opportunities for
adaptivity by changing parameters of the algorithm. This
third level of adaptivity is called algorithm-parameter level
adaptivity.

The implemented Viterbi and Turbo decoder can be used
to make an adaptive channel decoder. The three levels of
adaptivity also apply for the adaptive channel decoder:

1) Standards level: Different channel decoders are used
for different wireless communication standards. In the
Digital Audio Broadcasting (DAB) standard or UMTS
standard convolutional coding is employed. But in the
UMTS standard Turbo coding is also applied. Con-
sequently, the usage of the Viterbi or Turbo decoder
depends on the requested communication standard.

2) Algorithm-selection level: Within the UMTS commu-
nication system both convolutional and Turbo coding
schemes are defined. For data channels the Turbo coding

schemes are used and for voice channels convolutional
coding schemes are applied. This means that in an
UMTS mobile terminal both the Viterbi and the Turbo
decoder need to be available. Another kind of algorithm-
selection adaptivity can be the usage of different algo-
rithms for the SISO decoders in the Turbo decoder. The
kind of algorithm that will be used, depends heavily
on the conditions of the wireless environment. Power
reduction by exploiting variations in system characteris-
tics due to changing noise conditions are also the focus
in [14], [15].

3) Algorithm-parameter level: The characteristics of the
decoders can be varied by changing implementation
parameters. The implemented Viterbi decoder on the
MONTIUM is universal in the sense that different rates,
constraint lengths and decision depths can be handled.
The Turbo decoder can also handle different rates and
constraint lengths. Moreover, the number of Turbo itera-
tions can be adjusted. The parameters rate and constraint
length are dictated by the different wireless communica-
tion standards. The decision depth and number of Turbo
iterations are however depending on the quality of the
wireless environment, where the communication system
is applied. Reducing the decision depth and the number
of iterations yield enormous energy reduction.

On one hand an adaptive channel decoder has to be utilized
because of multiple standards that are implemented in mobile
terminals. Hardware costs in the mobile terminal are reduced
by reusing reconfigurable hardware to implement multiple
decoding algorithms. An adaptive channel decoder also yields
large energy savings on the other hand. Thus, the decoding
algorithm that performs best in a given environment with
minimal effort can be applied by reconfiguring the hardware
to the desired functionality.

VII. CONCLUSION

Future mobile wireless communication systems will become
multi-mode communication systems. To realize these multi-
mode systems efficiently, the hardware should be reused for
different functionality. We showed the possibility to map the
Turbo decoder and the Viterbi decoder on the same coarse-
grained reconfigurable hardware architecture.

We showed that the coarse-grained reconfigurable MON-
TIUM is suitable for implementation of channel decoding
algorithms. We presented the implementation results of the



Viterbi algorithm as well as the Max-Log-MAP algorithm,
used in Turbo decoding, in the same MONTIUM.

The configuration overhead of the decoders is relatively
small, as the configuration files of both decoders are small.
Hence, changing the functionality of the channel decoder from
Turbo to Viterbi, or vice versa, can be done dynamically,
because of the short reconfiguration times. Depending on
the desired communication standard, one can configure the
hardware in the mobile terminal to implement the right channel
decoder. The reconfiguration time of the Viterbi or Turbo
decoder implementation is less than 7 µs.

The results, presented in this paper, show that the MON-
TIUM architecture is flexible. In earlier publications [3], [4]
the authors already showed that the MONTIUM is suitable
to efficiently implement the baseband processing of different
wireless communication standards. For future work we will
analyse the impact of the flexibility on the power consumption
of the adaptable channel decoder.

ACKNOWLEDGEMENT

This research is supported by the EU FP6 project ”Smart
chipS for Smart Surroundings” and the Freeband Knowledge
Impulse programme, a joint initiative of the Dutch Ministry
of Economic Affairs, knowledge institutions and industry.

REFERENCES

[1] B. Bougard, S. Pollin, G. Lenoir, W. Eberle, L. Van der Perre,
F. Catthoor, and W. Dehaene. Energy-Scalability Enhancement of Wire-
less Local Area Network Transceivers. In Proceedings of the Fifth IEEE
Workshop on Signal Processing Advances in Wireless Communication,
Lisboa, Portugal, July 2004.

[2] K. Masselos, S. Blionas, and T. Rautio. Reconfigurability requirements
of wireless communication systems. In Proceedings of the IEEE
Workshop on Heterogeneous Reconfigurable Systems on Chip, Hamburg,
Germany, April 2002.

[3] Paul M. Heysters, Gerard K. Rauwerda, and Gerard J. M. Smit. Imple-
mentation of a HiperLAN/2 Receiver on the Reconfigurable Montium
Architecture. In Proceedings of the 11th Reconfigurable Architectures
Workshop (RAW 2004), Santa Fé, New Mexico, USA, April 2004.

[4] Gerard K. Rauwerda and Gerard J. M. Smit. Implementation of a
Flexible RAKE Receiver in Heterogeneous Reconfigurable Hardware.
In Proceedings of the 2004 IEEE International Conference on Field-
Programmable Technology, pages 437–440, Brisbane, Australia, Decem-
ber 2004.

[5] MuMoR project. http://www.mumor.org.
[6] EASY project. http://easy.intranet.gr.
[7] Pleiades project. http://bwrc.eecs.berkeley.edu/

Research/Configurable_Architectures/.
[8] PACT XPP Technologies . http://www.pactcorp.com.
[9] Silicon Hive. http://www.siliconhive.com.

[10] Smart chipS for Smart Surroundings project. http://www.
smart-chips.net.

[11] AMDREL project. http://vlsi.ee.duth.gr/amdrel/.
[12] Tobias Gemmeke, Michael Gansen, and Tobias G. Noll. Implemen-

tation of Scalable Power and Area Efficient High-Throughput Viterbi
Decoders. IEEE Journal of Solid-State Circuits, 37(7):941–948, July
2002.

[13] Guido Masera, Gianluca Piccinini, Massimo Ruo Roch, and Maurizio
Zamboni. VLSI Architecture for Turbo Codes. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 7(3):369–379, September
1999.

[14] Russell Henning and Chaitali Chakrabarti. An Approach for Adaptively
Approximating the Viterbi Algorithm to Reduce Power Consumption
While Decoding Convolutional Codes. IEEE Transactions on Signal
Processing, 52(5):1443–1451, May 2004.

[15] Jagadeesh Kaza and Chaitali Chakrabarti. Design and Implementation of
Low-Energy Turbo Decoders. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 12(9):968–977, September 2004.

[16] Mark A. Bickerstaff, David Garrett, Thomas Prokop, Charles Thomas,
Benjamin Widdup, Gongyu Zhou, Linda M. Davis, Graeme Woodward,
Chris Nicol, and Ran-Hong Yan. A Unified Turbo/Viterbi Channel
Decoder for 3GPP Mobile Wireless in 0.18-µm CMOS. IEEE Journal
of Solid-State Circuits, 37(11):1555–1564, November 2002.

[17] Joseph R. Cavallaro and Mani Vaya. VITURBO: A Reconfigurable
Architecture for Viterbi and Turbo Decoding. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’03), volume II, pages 497–500, Hong Kong, China,
April 2003.

[18] C. E. Shannon. A Mathematical Theory of Communication. Bell Systems
Technical Journal, 27:379–423,623–656, 1948.

[19] Shu Lin and Daniel J. Costello. Error Control Coding: Fundamentals
and Applications. Prentice-Hall, 1983.

[20] Andrew J. Viterbi. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on
Information Theory, 13(2):260–269, April 1967.

[21] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near
Shannon limit error-correcting coding and decoding: Turbo-Codes. In
Proceedings of IEEE ICC’93, volume 2, pages 1064–1070, Geneva,
Switzerland, May 1993.

[22] Claude Berrou and Alain Glavieux. Near Optimum Error Correcting
Coding And Decoding: Turbo-Codes. IEEE Transactions on Communi-
cations, 44(10):1261–1271, October 1996.

[23] 3rd Generation Partnership Project. Technical Specification Group
Radio Access Network; Multiplexing and channel coding (FDD). 3GPP
TS 25.212 v4.3.0 (2001-12), January 2002.

[24] Roel Schiphorst. Software-Defined Radio for Wireless Local-Area
Networks. PhD thesis, University of Twente, Enschede, The Netherlands,
2004.

[25] Paul M. Heysters, Gerard J. M. Smit, and Egbert Molenkamp. A Flexible
and Energy-Efficient Coarse-Grained Reconfigurable Architecture for
Mobile Systems. Journal of Supercomputing, 26(3):283–308, November
2003.

[26] Paul M. Heysters. Coarse-Grained Reconfigurable Processors – Flexi-
bility meets Efficiency. PhD thesis, University of Twente, Enschede, The
Netherlands, September 2004.

[27] M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, and P.M. Heysters.
Hydra: an Energy-efficient and Reconfigurable Network Interface. In
Proceedings of the International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA’06), Las Vegas, Nevada, USA,
June 2006.

[28] Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher. A Compar-
ison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating
in the Log Domain. In Proceedings of IEEE ICC’95, volume 2, pages
1009–1013, Seatle, USA, June 1995.

[29] John Dielissen, Jef van Meerbergen, Marco Bekooij, Françoise Harmsze,
Sergej Sawitzki, Jos Huisken, and Albert van der Werf. Power-efficient
layered Turbo Decoder processor. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE), pages 246–251,
Munich, Germany, March 2001.

[30] Charles M. Rader. Memory Management in a Viterbi Decoder. IEEE
Transactions on Communications, 29(9):1399–1401, September 1981.


