ABSTRACT
In the cybersecurity community it is common to think of security as a design feature for systems and infrastructures that may be difficult to balance with other requirements. What is less studied is how security requirements come about, for which reasons, and what their influence is on the actions the system facilitates. Security is for example often used as an argument for or against granting access rights that are of importance to stakeholders, such as in the discussion on counterterrorism versus privacy. This paper argues that the ongoing politicization of security calls for a paradigm to study security as a Politikum: a matter of political concern, embedded in existing and future infrastructures. We summarize literature that inspired this paper, and explain the role of security arguments for infrastructure governance. Then we outline the new paradigm and its core concepts and contribution, including the notion of framing. Finally, we present discourse analysis and infrastructure ethnography as research methods, and discuss cases in which discourses (may) shape infrastructures, in particular smart cities.

CCS Concepts
- Security and privacy → Social aspects of security and privacy;
- Economics of security and privacy;

Keywords
discourse analysis, framing, infrastructure ethnography, security arguments, security politics, threat environment

1. INTRODUCTION
Cybersecurity is a vast field which far extends beyond the information security paradigm confined to confidentiality, integrity and availability (CIA). We have seen many challenges to the idea that securing information amounts to concealing and hiding it or to preventing unauthorized access. And there are different views on whether the protection of (personal) information should be the purpose of cybersecurity in the first place. Computer scientists often see privacy as equivalent to data confidentiality and hence as an instance of security. In law and political science on the other hand, privacy and security are many times put in opposition to each other. This view has support where security is understood to require surveillance and the collection of (personal) information in order to identify and mitigate potential ‘threats’.

Such ambiguity of what security means or implies might already be familiar to many readers. Based on the recognition of this ambiguity, we take one step further in this paper, and propose an analysis of how this ambiguity plays out within the political sphere of infrastructure decision making and governance. This idea is in line with the Dutch Council for Government Policy [40] which sees security problems not only as uncertain in terms of insufficient knowledge about the consequences of threats or the effectiveness of controls, but also as inherently ambiguous. This means there can be controversies about what ought to be defined as desirable and undesirable effects in the first place. In this paper we argue that security is a contested concept rather than a fixed goal; the way it is conveyed and understood (i.e. in terms of threat agents and trusted parties) shapes how technologies and technological infrastructures are designed and operated. For this reason, security considerations can be presented as arguments for technological practices and as tools for shaping the infrastructure, either unintentionally or as part of a strategic effort to secure other interests. Security arguments can be employed by stakeholders in order to shape the infrastructure according to their vision and interests or to facilitate access to and within it.

In the paper we outline a research paradigm for unraveling and understanding the political dimensions of security. We focus primarily on information and communication technology (ICT) infrastructures and on cybersecurity. But our paradigmatic way of thinking can be applied to more general concepts of security as well. With the term ‘ICT infrastructures’, we refer to large scale digital infrastructures built of information and communication technologies (ICTs). One prominent example for such an infrastructure would be the Internet, but there are also smaller scale ICT networks such as smart city data infrastructures, university networks or infrastructure for electronic voting systems.

We use the Latin/German term Politikum to denote that security as a meaningful concept is of political importance and interest. As we argue for in this paper, security as a concept is ambiguous and open to interpretation. Any existing
interpretation rests on a number of assumptions and has broader implications for the ICT infrastructure it is applied to. Hence, security is a concept with contested meanings that can be used as a means to safeguard goals and interests, also non-security related ones. This is what we mean by the political dimension of security. Studying cybersecurity as a Politikum creates an understanding of the political and value- or interest-laden use of security concerns, arguments and solutions. Making underlying assumptions and possible implications of security arguments explicit and visible makes security practices more transparent and facilitates better communication and interaction between different actors.

The outline of this paper is as follows. In Section 2 we summarize relevant work on the political dimension of security. In section 3 we present our paradigm’s framework and its core concepts and assumptions and we discuss its contributions. In Section 4 we put forward a research agenda to study cybersecurity politics and its mechanisms; we also outline several application areas where our new paradigm fits well. We give conclusions and final remarks in Section 5.

2. INSPIRATION FROM LITERATURE

While we believe our paradigm is novel with regard to cybersecurity, other authors have already addressed the political dimensions of security before, especially in the context of national security. In this section, we review existing work which analyzes the ambiguity, conceptualization and politicization of security.

2.1 The meanings of security

In this subsection we discuss security as an ambiguous concept that can have different meanings and imply different activities or measures. We draw from Helen Nissenbaum’s work on security and David A. Baldwin’s conceptual analysis. Further we present the concept of framing as a useful lens for investigating and articulating how this ambiguity works out within communication. This subsection provides the basis for understanding how security arguments function within governance processes and as a call for action.

2.1.1 Security as an ambiguous concept

One important example of differing conceptualizations of security can be found in the divide between national and computer security which Nissenbaum for instance has distinguished as a difference between “cyber-security” and “technical computer security” [28]. Technical computer security describes security concerns closely aligned to the cybersecurity framework of confidentiality, integrity and availability (CIA). In contrast, ‘cyber-security’ describes security concerns closely related to national security concerns. It is mainly concerned with attacks on critical infrastructures or with the use of ICT systems to facilitate behavior potentially dangerous to the stability of nation states. Technical computer security aims at securing “individual nodes” like people or companies; cyber-security focuses on collective goods or networks [28, p. 69].

These different understandings of security can have possibly contradicting implications for information and communication technologies (ICTs) and the implementation of technical security measures. ‘Cyber-security’ and national security might call for the weakening of encryption standards in order to enable surveillance or the opening of backdoors which law enforcement and intelligence can use. ‘Technical computer security’ on the other hand might call for stronger encryption or systems that prevent eavesdropping and system compromise. National security concerns may call for surveillance that infringes on privacy; computer security concerns may call for ensuring privacy and access control to information (confidentiality).

Focusing on security in the sense of national security within nation state politics, David A. Baldwin [4] already started a discussion on the conceptual foundations of security in 1998. Dissatisfied with the existing depth of conceptual analysis of the term, he identified a number of questions that seemed to him at the core of defining security and the cause of disparity with regard to its meaning. These questions are: security (1) for whom; (2) for which values; (3) how much; (4) from what threats; (5) by what means; (6) at what cost; and (7) in which time period [4, pp. 13-17]. The last three are aspects also well-known to the domains of risk management and economics of security, where for instance the question of “how much” is related to quantifying the amount of security.

Applying these conceptual questions to the example of “technical computer security vs cyber-security” can help us understand the difference between the two. Technical computer security protects personal computers/communications or as Nissenbaum says ‘individual nodes’ (1–for whom) from intrusions and eavesdropping (4–from which threats) by implementing technical measures such as encryption and authorization procedures (5–by what means) in order to preserve privacy or freedom of speech (2–for which values). Cyber-security protects a nation state, its public and infrastructure (1–for whom) from (cyber)attacks, organized crime/violence or anti-social behavior (4–from which threats) by means of surveillance and intelligence/military work (5–by what means) in order to ensure nation state stability, military strength or public safety (2–for which values). If we engaged in a discussion on how to address the two types of security and deal with their contradictions, we would have to answer Baldwin’s other questions of ‘how much’ of the specific type of security we want (possibly making a trade-off) and at what costs.

In his paper, Baldwin also starts a discussion on the value of security. Is security a value that is the most fundamental to the functioning of a system? Is it one of several core values we cherish? Or is something that we should just have enough of and think about rather as a problem of resource allocation? [4, pp. 18-21] How our perception of the kind of value we think security to be influences our security practices would be another important question for research, but goes beyond the scope of this paper.

2.1.2 Framing

The notion of framing was first introduced by Gregory Bateson in the 80’s [6]. It provides a useful framework for investigating and articulating the political potential inherent to security and mediated by its ambiguity [24, 26, 27]. Framing describes “the process by which people develop a particular conceptualization of an issue or reorient their thinking about an issue” [14, p. 104]. In this process they “select some aspects of a perceived reality and make them more salient in a communicating text, in such a way as to promote a particular problem definition, causal interpretation, moral evaluation, and/or treatment recommendation” [18]. Framing describes a meaning-making process where individ-
The diversity of security definitions and the controversies around security’s meaning and value are interesting when we look at how the term is used to justify or motivate specific actions. When something is presented as a security issue and in a certain way, this is often coupled with some notion of how we ought to attend to this issue and which kind of solutions we should find. In this way, different security approaches motivate certain activities or actions; these have ‘real world’ impacts. Security utterances can be understood as calls for action that entail certain (technological) activities. These depend on the framing of the security issue and its solutions. Different security issues and approaches can be presented as security arguments that motivate certain activities. Such a security argument takes the form of “security requires us to do XYZ”. One way to communicate a security argument and its threat model is the use of incident scenarios — bad things that could happen. Each such security argument either explicitly or implicitly includes definitions (what (cyber)security is) and arguments (what we should do about it), it includes reference to a threat model and certain system presupposition, assumptions and boundaries.

The political role of framing becomes clearer when we look at the function of security arguments within (infrastructure) governance. On the one hand, framing a security issue in a certain way is a feasible tool to justify certain activities. On the other hand, framing something as a security issue can justify extraordinary measures that would otherwise be deemed undesirable. What partly constitutes the power of security arguments is the fact that they are often posed as counter-factuals. Incident scenarios often show possible attacks that could happen, not attacks that have happened, and they show how these could be mitigated. In order to test the scenario, an attack and a security breach would actually need to happen which is in some sense contradictory to (functioning) security. Herley and Pieters discuss the use of counterfactuals or what-if statements as security arguments as well as conditions under which this is or isn’t appropriate. The point they make is that what-ifs are typically easily used to argue that something should not happen and therefore that security (of a certain type) is needed, with associated access rights.
2.2.2 Infrastructure governance

It is the way in which security arguments mobilize stakeholders and justify certain technological activities and infrastructural practices which makes cybersecurity a Politikum. Security arguments and the framing of issues as matters of security present motivations for creating certain realities and for implementing certain measures. This makes cybersecurity political, because its openness and vagueness makes it prone to argumentation and debate. It enables it to be used in a political discourse where decisions are made as a result of negotiations and possibly power plays between different actors.

Any emerging agreement on or dominant understanding of cybersecurity and the practices put into place are the outcome of a negotiation or other decision making process between different actors. This process is shaped by the existing power relations between the actors involved. In governance processes, cybersecurity can provide arguments and justifications for certain actions and practices which have effects on the overall infrastructure. These effects can both further and counter other interests and values connected to the ICT infrastructure. This is how security frames become political tools. The exact way in which security issues and responses are framed shapes what happens and which measures are put into place. When something is framed as a cybersecurity issue, it can justify and motivate actions which have structural impacts on an ICT infrastructure.

Cybersecurity as a Politikum is interesting for the field of infrastructure governance. Infrastructure governance is concerned with shaping the structural norms and conventions of an infrastructure’s implementation, operation and interfaces [22, 38]. It expands beyond the work of official bodies such as the Internet Cooperation for Assigned Names and Numbers (ICANN) and includes the practices of for instance companies and users which shape the infrastructure. Standards and (technological) practices embed values in technologies/technological infrastructures. When designing what would emerge to become the world wide web, Tim Berners-Lee had in mind to create a non-hierarchical, egalitarian way for people to share, access and add to information [7]. Anybody should be able to participate without being controlled or authorized by a central authority. This vision was translated to the technological structure of the Internet’s Hypertext Markup Language (HTML) and its distributive protocol structure.

Within infrastructure governance, cybersecurity is often considered a subcategory or confined area of application [12]. The approach we put forward however conceives of cybersecurity a leverage point for effectuating broader structural interests within governance processes.

Ongoing conflicts between cybersecurity and surveillance efforts show how security arguments and frames play out in structuring decisions. At the end of the 1990’s for example, the Internet Engineering Task Force deliberated over whether or not it would include wiretapping loopholes for intelligence purposes in its technological standards [13]. It decided that it would not do so, as such loopholes presented too great a threat to information security. In the corresponding Requests For Comments, the organization justified its decision based on what they saw as their area of responsibility, namely providing information security. They stated they would not take a moral position on whether or not wiretapping was evil or necessary in society [13 p. 79].

This is interesting for our paradigm, because it shows how framing something as a security issue (i.e. ‘our responsibility to provide information security requires to refrain from implementing possibilities for surveillance’) justifies technological practices and decisions. Security arguments can replace (obvious) value judgments by making decisions appear as logical consequences of straight forward security requirements. Nevertheless, the IETF had to make a certain decision that incorporated at least a politically relevant value judgment. By not adhering to requests to design wiretapping features into Internet protocols, they decided to prioritize information security in the sense of data protection over the interests of intelligence agencies and potential merits met by governmental surveillance efforts.

A more general conflict of this kind are the crypto wars which describe conflicts between a public’s right to encrypt data and law enforcement and intelligence agencies’ proclaimed need to access all communications and outlaw (unbreakable) encryption. Crypto wars are an example of how value conflicts and different stakeholder interests play out with regard to ICTs [19, 31] and of how different definitions of cybersecurity are mobilized to motivate the legitimacy of different positions.

2.3 Analyzing security paradigms

In order to relate to ongoing discussions, we also reviewed recent editions of the New Security Paradigms Workshop (NSPW) for related work. In a panel at the 2009 NSPW [30], a simulation and discussion took place on how to analyze security paradigms, including the confusion caused by differing paradigms, as well as benefits of being aware of the differences and the ability to step outside one’s security paradigm. This has similarities with the frames we discuss in this paper, but there is a difference. Our approach goes beyond the study of security paradigms as research perspectives shared by a larger community in order to reflect on how to study security or how to design solutions. We are interested in the political or strategic function of such perspectives and the role they play within infrastructures (and their governance).

2.4 Summary

In this section we presented relevant ideas from literature on the ambiguity and political dimension of security, which we summarize as follows:

1. Stakeholders can frame security problems in different ways, including what to secure against whom;
2. Security arguments support frames in a discourse, for example by means of incident scenarios;
3. Discourses can become materialised in the form of infrastructures, standards, and regulations;
4. Infrastructure designs have associated access possibilities and impossibilities;
5. Access possibilities influence the possible actions of stakeholders, as well as future security discourses;
6. Infrastructure designs can be traced back to underlying norms.
We thus see that we do have the necessary ingredients for research on cybersecurity politics. However, an overarching paradigm for studying cybersecurity as a Politikum is lacking. In the next section, we outline our vision for this paradigm.

3. THE NEW PARADIGM

The starting point for developing the new paradigm of ‘security as a Politikum’ is the hypothesis that security, rather than being a well-defined term, is an (essentially) ambiguous and at times contested concept. Depending on how it is used, by whom and in which context, security may mean very different things and imply very different activities or practices. Beneath every use of the term security and the practices or activities related to or implied by it, there are a number of assumptions or decisions which need to be made. Many of these assumptions can be described within the threat model that characterizes a particular security approach. This contingency and ambiguity of security opens it up to political debate, as security measures do not follow from straightforward security challenges but are the result of contestable decisions with potentially impactful consequences for how the network or infrastructure is governed and operated.

In this section, we present the core concepts and main arguments upon which our new paradigm is built and we discuss its main contributions to cybersecurity research, policy and practice.

3.1 Foundations for a new paradigm

In this subsection we discuss the is-ought divide and its importance for security arguments and discourses, the role the framing of security plays in our paradigm and the significance of the threat models which underlie security approaches. These assumptions and core concepts build the foundations for the new paradigm.

3.1.1 Separating the “is” from the “ought”

A distinction important for understanding the political dimension of cybersecurity is the distinction between the “is” and the “ought”. “Is” statements refer to descriptive statements about present state of affairs or circumstances; “ought” statements refer to prescriptive statements about how things should be (in the future). Sometimes it can be challenging to unambiguously articulate whether one will be studying the “is”, so for example how security stakeholders actually make decisions, or the “ought”, so how they for example should make these decisions. When researching the effectiveness of security controls for instance, does one want to study effectiveness of measures and decisions based on the actually applied risk metrics (the “is”)? Or is one interested in how security controls should be set up and in how a possibly ‘better’ risk metrics could be created (the “ought”)?

Many security arguments are about future events we would like to prevent from happening. Most descriptive statements in the field of security are then about existing threats or about past security failures; at times, they might also be about unsuccessful or mitigated ‘attacks’. Apart from these clearly descriptive statements, so these statements which describe what can be or has actually been observed, there are also those statements which describe potential threats. These statements are especially intriguing for our paradigm, because they are presented as hypotheticals [21]. This means they describe the potential behavior that could be carried out by a conceived adversary. In reaction to such a potential threat, security measures aim to create architectures and practices which prevent the potential adversary from (successfully) carrying out its anticipated behavior.

Testing the validity of the threat model which is proposed in a hypothetical security statement is empirically easy only where the security measure fails and a proposed adversary succeeds in its behavior. But where security measures appear as ‘successful’, nothing can be observed and hence it can be difficult to validate the threat model against empirical data. When in case of success we cannot empirically or factually test the (threat) assumptions upon which security decisions rest, we are required to have a special kind of trust in decision makers.

This can make security arguments vulnerable to political exploitation. When we think about the case of electronic voting for instance, the electoral advantage lies in facilitating the electorate that supports one’s own party. So if there would be a reason to support extra security measures in districts that support a different party, which in turn would require from the voters more effort, security could be an interesting argument to try and tilt the vote. In the US there has been a vivid discussion on which identification voters are required to provide. It has been argued that requiring a photo ID discriminates against minorities and poor people as hundreds of thousands lack adequate identification [41]. In North Dakota, a stricter law for voter identification-cards has been barred on the grounds that it would exclude many Native Americans, traditionally Democratic voters, from exercising their right to vote [42].

When security measures are proposed and appear successful, this requires us to trust that these were really necessary and proposed out of genuine security interest. The voting example illustrates how, within the context of cybersecurity as a Politikum, the question of who puts forward a security argument can appear of interest.

Our paradigm focuses on studying the is, so how security is actually being discussed and by whom, and how security decisions are (presently) made. While we do not provide answers for how this should be done, the insights generated by the paradigm provide a knowledge basis for making more informed and transparent security decisions in the future. Nevertheless, as any other security paradigm or approach, our paradigm rests on the assumptions explicated in this paper and is liable to the process of framing necessarily occurring in communication. Also within our own paradigm, we cannot step out of the discourse onto an objective viewpoint (as such an objective position does not exist).

3.1.2 Framing of security

For security as a Politikum, framing is relevant in two intertwined ways. On the one hand, there is the question of how security is framed: there, security is the content that is situated within a certain frame. On the other hand, there is the question of framing something as a security issue: here, different content is positioned within a security frame.

Our paradigm studies both aspects: how security is being discussed and put forward and how security decisions are structured as a consequence of framing. We investigate the effects of how security concerns are presented and how certain actions or issues are framed as matters of security.
Our paradigm accepts that there is no one clear definition of security, or right approach to security, or a unique feature that makes something a security issue. Rather the term security can refer to “a set of family resemblances” in the same way that it has been argued to be the case with privacy [34 p. 756]. This means what gets conceptualized or framed as a security issue relates to other security issues through a myriad of complicated relationships or shares certain features with certain other security issues but others with others. Security issues resemble each other in their structure as they are about systems, threats and prevention. But they can differ in their underlying assumptions and threat models as well as their implications for technological or infrastructural practices. Such a difference can be seen in the case of national security versus information security.

3.1.3 Threat models

The assumption that there is no one definition or feature of “security” opens up a reading of security issues as being proposed within certain frames. Frames describe a particular conception of reality which is accompanied by underlying system assumptions and threat models. Different actors or stakeholders can mean different things when referring to security, because they view issues through their own frame that is shaped by their expertise, concerns and interests.

The questions Baldwin identifies can be transferred to cybersecurity. They present an interesting conceptual foundation for further specifying framing in the security Politikum. It is significant to look at who is interested in the protection of something, what is it they want to protect and against whom. For example, who should (not) have access to which data or systems and for what reasons? Within the field of cybersecurity we understand the process of answering such questions as threat modeling (in conjunction with other processes such as modeling attack scenarios). For any security issue we aim to tackle, we need to, either implicitly or explicitly, decide on a number of questions, namely who is going to attack which system, for what reasons and how. The way we devise our threat models has implications for how we respond to a perceived security threat.

The defined way of responding to a perceived security threat has implications for how an ICT infrastructure is governed and operated. Therefore, looking at the underlying threat models of different security approaches is a good starting point for studying cybersecurity as a Politikum. To illustrate we can once again consider the dichotomy between computer security and national security. A major difference between the two approaches can be found in their different threat models. Computer and network security aim to protect an ICT network and its devices from cyber-intrusions from the outside; national security aims to exploit weakness of computer and network security in order to surveil and infiltrate target devices for its mission to protect the stability of a state. The two securities have different meanings, protect against different threats and their means require opposing features of technology.

3.2 Security shapes infrastructures

In this subsection we discuss how specific cybersecurity frames and arguments can play a prominent role in infrastructure governance, because they can shape the way the infrastructure is operated. Proposed security arguments and solutions can define a specific infrastructure and its operational practices. In many cases, these practices impact on other non-security related aspects of the infrastructure. This makes security arguments exploitable for strategic use. For example, they can offer reasons for accessing data and performing surveillance, or for advocating both open and closed source software.

3.2.1 Security and the operation of infrastructures

When we consider the infrastructural implications of different security arguments and the activities they warrant, we can develop an understanding of how security arguments can interfere with or impact on other values and infrastructural aspects and how they could even be used to achieve other non-security related interests. Cybersecurity arguments can shape material and technological realities by proposing a specific type of infrastructure or by proposing specific activities and measures which impact the regulation and operation of the infrastructure. Understanding the structural function of cybersecurity arguments for shaping an infrastructure and its operation offers us insights into the political dimension of cybersecurity and supports us in navigating a politicized field.

Any specific understanding and framing of cybersecurity proposes certain structures and measures as necessary security requirements. These measures shape the infrastructure and its standards of implementation and operation. And they can further or restrain certain interests and values. It is the way in which cybersecurity arguments shape material infrastructures, which makes cybersecurity a matter of political interest and prone to framing.

Since there are many different approaches to security and many different kinds of solutions, any actual infrastructure put in place and any specific measures that address cybersecurity appear as the outcome of negotiations between different stakeholders and points of view. This negotiation can be carried out through discourse but also through technological means. Potentially, negotiation processes could be used for shaping an infrastructure by putting forward specific arguments or framing security in a specific way. Therefore, the security discourse can play an important role in creating, governing and maintaining ICT infrastructures. This is unlikely to happen in a vacuum but in interplay with other values, conditions and interests.

3.2.2 Security and the regulation of access

Security frames provide arguments for structuring technological practices in a specific way; these practices can then also have an impact on other non-security related aspects or interests. In explicating this thought, we build on one particular facet of security: that security is about “regulating access to assets” [22]. Security involves views on who or what a threat is and how it might operate; it also involves (implicit) views on which actions are sanctioned, allowed or tolerated and on which kind of access needs to be provided to certain authorized parties. While security is about preventing or regulating access, as the other side of the same coin, it is also about enabling access. Distributions of advantage and disadvantage or of cost and benefit – in a non-security related sense as well – can often crucially depend on how access is mediated.

Gaining or restricting access can be interesting for different parties or actors, also for non-security related reasons.
For example, if one has access to network data, one can mine it for potentially interesting patterns and make decisions based on those. Security arguments can promote technological practices that enable or restrict access in a way that coincides with non-security related aspects or interests. For example, once a centralized infrastructural design has been chosen due to security considerations, its architecture enables authorized parties to easily obtain full access to data and collect information through a central point.

Two illustrating examples of how such security arguments can connect to enabling or prohibiting access potentially useful for non-security related reasons are the debates about security & privacy and open & closed source (software). When security is framed within the field of national security, intelligence agencies are assigned the responsibility to identify and mitigate threats through mass surveillance. They are then granted unrestricted access to information that can be of advantage in non-security related contexts, see for instance [39].

By making a case for security by design, security can present an argument for advocating open source software. When we have the possibility to analyze, test and debug the software code, we can evaluate the effectiveness of security measures and collectively find eventual backdoors or vulnerabilities. We can check whether promises or statements made actually hold true. However, as the Heartbleed example shows [25], there is no guarantee that even the most motivated open source community will necessarily find all vulnerabilities or potential exploits. The limited possibilities for making revenue pose a major obstacle for open source; much of the work of the open source community is voluntary. Companies which profit from closed source products on the other hand have the financial means and interests to employ full-time security professionals. Depending on the way they are framed, security arguments can potentially advocate both for open and for closed source while there are other financial or political interests involved.

3.3 Contributions

Based on the core concepts discussed above, the paradigm of cybersecurity as a Politikum can contribute to better governance of security and infrastructures. In particular, increasing the knowledge of the politics that is conducted with the help of security, the associated practices could be improved, in particular by increasing the possibilities for democratic control. By shedding light on the political use of security, the paradigm can help in devising security practices with awareness of how security framing impacts on infrastructure and interacts with other values.

3.3.1 Refining the security discourse

Our first contribution is to broaden and refine the security discourse. Firstly, we raise awareness for security professionals and others about how their approach to security and their understanding of it are situated within a particular frame. This frame is mediated by a conception of reality that has underlying assumptions about the system and potential adversaries and it adheres to a particular threat model. Our paradigm helps security stakeholders, researchers and practitioners to carefully examine how they articulate their approach and what its underlying assumptions and threat model are. To an extent, it also requires the justification of security choices. Explicit articulation helps to reflect upon our views and decisions concerning security. Consequently we can refine those, especially when encountering difficulties or possible problems that had been formerly hidden.

Articulating frames and assumptions encourages reflection upon decisions and point of views taken. It also enables better communication between researchers and/or practitioners and policy makers from different disciplinary fields and backgrounds and with different interests or opinions. When misunderstandings or dispute occur, their cause can be traced back to differing assumptions, threat models and interests. In the best case, this resolves controversies. As one can get a clearer picture of what is at the core of each security argument, a solution might be found that can satisfy everyone’s concerns or at least present an acceptable compromise.

3.3.2 Increased transparency

A refined and better articulated security discourse can increase transparency and precision of security decision making. It allows us to a) reflect on our threat model and the underlying assumptions, b) to examine on other non-security related implications and c) to confront and make sense of other (opposing) opinions. This makes it more difficult to make decisions ‘under the table’ and present decided-upon measures as necessary consequences of a straightforward account of security (remember the is-ought divide here). Instead it is now possible to analyze how a security argument is framed and to trace back (implemented) security measures and their consequences to conceptual and political decisions made.

Transparency and traceability of security decisions also enhances public debate and supports democratization of decision making on security matters. By being conscious and articulate about security and its framing, more nuanced views on security issues and arguments can be developed and strongly biased frames can be identified and counterbalanced. The assumptions made and the threat models promoted are checked upon and debated, and citizens get the chance to figure out whether they agree support those. Finally, possible consequences of security decisions are better explicated and evaluated, especially in terms of their effects on non-security related aspects and interests.

3.3.3 Responsibility & traceability

Our paradigm allows us to better understand how security decisions relate to or impact on other values or responsibilities, such as privacy, openness or decentralization. By looking at the assumptions and implications of different security approaches, we can identify potential conflicts or negative interference and trace them back to their point of origin. For instance, issues of cybersecurity might conflict with values such as interchangeability, openness and efficiency. In our paradigm this conflict can be traced back to the assumptions that underlie a security concern or solution. We can then discover new ways to think about security or open up choices to deal with conflicts in a constructive manner. Considering the broader infrastructural context and the non-security related implications of security concerns and solutions provides a basis for figuring out early on where things could ‘go wrong’ or have undesired consequences.

Making assumptions, choices and implications more explicit and systematic creates a more complete understanding of the implications of security decisions, allowing us to trace the effects of such decisions. When researching the contex-
tual function of security as a Politikum, it is important to look at the broader discourse, to look not only at what is said, but also by whom and how and in which context and to analyze thoroughly the technologies, technological systems and practices referred to, created and sustained. This helps us to document how different actors and their use of security arguments shape infrastructures in order to attribute responsibility.

3.3.4 Out-of-the-box security thinking

Finally, our paradigm facilitates out-of-the-box security thinking and innovative approaches to security. By thinking in frames and understanding their implications, threat models and system presuppositions, we become more fully aware of the range of possible approaches to security. To reflect on one’s assumptions and enter a constructive negotiation with differing or opposing views challenges one’s own perspective or paradigm and may create new security perspectives or solutions. By studying different views, we become more flexible and adaptive in our solutions, in particular when it comes to accommodating different stakeholder values. This helps to switch paradigms when encountering (unsolvable) problems in one paradigm and/or to find solutions on another system level.

This is interesting when attempting to change the security properties of existing infrastructures, for example enabling more access for intelligence agencies or when trying to reduce those instead. In such cases, an understanding of the different framings of security and the corresponding threat models, embedded both in the arguments and infrastructural practices, provides a basis for better or more inclusive solutions where the interests of more diverse stakeholders can be heard and understood.

When aiming to reconcile privacy and (national) security for example, we can contrast the different framings and threat models and observe the paradox that a commonly proposed solution to enable mass surveillance, i.e. backdoors, may also decrease security/privacy against knowledgeable adversaries. In recognizing the way the (national) security issue is framed, we can open up new possibilities of tackling these security issues that are not confined to the scope of mass surveillance. In the future, it will be exciting to find out how our paradigm and its research agenda can help uncover such new possibilities.

3.4 Summary

In this section, we outlined a research paradigm for studying cybersecurity as a Politikum. This paradigm focuses on tracing back the frames and arguments made within security discourses and on assessing their impact for infrastructures and access possibilities. Key aspects studied under the paradigm are:

1. security frames and their underlying threat models;
2. the construction and function of security arguments;
3. the impact of security arguments and security discourses on infrastructures and the access possibilities they offer.

Main contributions of the paradigm are to:

1. refine security discourse and improve communication;
2. increase transparency in decision making;
3. make traceability of arguments possible and enhance responsibility;
4. facilitate out-of-the-box security thinking and innovative approaches.

4. A RESEARCH AGENDA

Based on the observations discussed before, we propose a new research agenda for studying cybersecurity politics and its mechanisms. First, we discuss the kinds of topics that can be studied. Second, we outline useful research methods, and finally we suggest interesting cases.

4.1 Topics

The topics that can be studied follow from the starting points of the paradigm and the variables we identified. Aspects we propose to investigate under this paradigm are:

- how different views on cybersecurity manifest themselves in ICT infrastructures;
- how they interact with other values such as interoperability;
- what role cybersecurity plays in the broader field of infrastructure governance;
- how different stakeholders frame cybersecurity differently, possibly in accordance with their other interests.

These topics call for methods that focus on uncovering security frames both from arguments in the discourse and from the design of the infrastructures themselves.

4.2 Research methodology

In order to study the new paradigm of security as a Politikum, we propose to make use of the methodological variety provided by the social sciences which have been grappling with similar types of questions for a long time. In particular, we suggest the methods provided by discourse analysis and infrastructure ethnography as suitable tools for studying the socio-political dimensions of cybersecurity, for studying cybersecurity as a Politikum.

4.2.1 Discourse analysis

Discourse analysis is a powerful tool for looking at how which arguments are put forward and responded to within the security discourse and for identifying different actors’ definitions and descriptions of cybersecurity. Generally, the methodology can be used to investigate how realities are constructed by language and communication (“in 2020, 60 billion devices will be online”, or “Moore’s law predicts that...”), how they are judged (“complete surveillance is dangerous”), or how notions of causality are created (“security threats require that”). It studies how “language is recruited ‘on site’ to enact specific social activities and social identities” [18, p. 4].

All three examples given in the first part of this section indicate certain actions in the world in a more or less direct way. Even ostensibly descriptive sentences such as “security will be a major issue” or normative sentences such as “security is an important issue to consider” indirectly entail an appeal to certain actions (“we should not adopt these systems as they are too insecure” or “we should create and
exercise certain security measures”, etc.). By creating realities that incite certain actions and inhibit others, such language can have a performative function [5].

This applies to security arguments that postulated what ought to be done based on an evaluation of what is. This performative function makes it interesting to frame something as a security issue and to frame it in a specific way – framing has an influence on actions that shape worldly realities.

With discourse analysis, we develop an understanding of the meaning-making process of security arguments and frames and their performative functions. We identify how security arguments are phrased and put forward, which perspective they take and which courses of action they incite that then result in infrastructures with certain properties.

Next to looking at the content of what is said, it is important to look at contextual factors, to look for example at how something is said and by whom. This creates insights into how different actors use security arguments within the context of infrastructure governance. Discourse analysis enables us to analyze security arguments that establish truths about is and ought and to make security measures traceable back to arguments and contextual decisions.

4.2.2 Infrastructure ethnography

But not all aspects important for cybersecurity (practices) might be articulated in a documented discourse. Many assumptions are implicit or invisible, materiality and technology pose practical constraints, and some implications are not presented or foreseen. In order to study aspects of cybersecurity which play a role in infrastructural practices but are hidden in discourse, we propose to employ the methodological toolkit of infrastructure ethnography. This method applies ethnographic tools such as document analysis, interviews and participatory observation to technological infrastructures. It aims to uncover norms, conventions and standards that structure and guide practices.

It was first proposed by Susan Leigh Star, who applied ethnographic methods to understudied information infrastructures. Her goal was to "read the invisible layers of control and access, to understand the changes in the social orderings that are brought about by information technology” [35] and to reveal underlying organizational practices [36, p. 107] and to reveal underlying organizational practices [5].

The ethnographic perspective we propose unravels the infrastructural ordering brought about by the definition and consequent application of cybersecurity measures. It allows us to research cybersecurity perspectives and approaches in a hands-on manner. How do different assumptions of how the infrastructure ought to work, of who carries what responsibility, of who adversaries and who the in- and outsiders are, play out in the way an ICT infrastructure is governed and operated? Looking at standards and practices of operation and organization helps us to understand the broader implications of security perspectives on, for instance, values like openness, interoperability or user empowerment. The infrastructure ethnography we propose is the careful observation and analysis of infrastructural practices and norms. These include rules and norms of sharing data, operating the infrastructure and addressing cybersecurity. They can be embedded more implicitly within conventional practices and modes of conduct as well as more formally in standards and regulations.

The goal of applying infrastructure ethnography to the study of cybersecurity is to study and understand the significance of cybersecurity perspectives within the practical operation of infrastructures. For example, how are cybersecurity measures decided upon and what do they imply for how the infrastructure is operated? Different aspects to be investigated include rights of access and restrictions to access, security standards and requirements for new devices, data collection, distribution, storage and processing, control over infrastructural operation and its parts, and distributions of responsibility.

4.2.3 Challenges

Although we think the combination of these methods provides an excellent starting point for studying cybersecurity politics, research will by no means be trivial. In particular, we see the following challenges and limits (and there are probably more):

- **Identifying discourses and security arguments & frames within them.** A first challenge is to identify the discourses which are important for studying cybersecurity as a Politikum and to find valuable resources for their analysis. When discourses and suitable sources are identified, a lot of the methodological work will have to be done on how to identify and define different security arguments and frames within them.

- **Gaining access to valuable information.** Especially for carrying out infrastructure ethnography, it might be difficult to gain access to the needed information, as stakeholders might not be willing to share certain things or because decisions are made behind closed doors for strategic and economic reasons.

- **Identifying and attributing interests.** When we recover arguments from the discourse in texts and interviews, this does not necessarily reveal the interests behind those arguments. It can be investigated whether arguments are in line with stated or expected interests, but this does not show whether arguments are used with any particular purpose. Therefore, strategic use of security arguments is hard to define.

- **Limits to traceability and attribution.** It may not always be possible to trace features of the infrastructure back or attribute them to security arguments. There are many reasons for infrastructural features; whether a reason contributed to a decision may not always be explicit. Additionally, some features may have emerged by chance rather than by strategy.

Tackling these challenges and defining the limits of the paradigm should be part of the maturation of the study of cybersecurity politics.

4.3 Cases

In the following we present interesting areas for exploring the potential of our new security paradigm. Apart from the contributions outlined in the previous section, studying challenging cases is useful for sharpening the paradigm in terms of topics, methods and limitations. We focus on smart cities as a main case and briefly outline others.
4.3.1 Smart cities

Smart cities aim to utilize big data, crowd-sourcing and information and communication technologies to improve processes of living together in the city or of for instance energy production, distribution and consumption. There are many initiatives which aim to use new technologies for improving coordination, sustainability and user experience in the city. These projects apply so-called “Internet of Things” technology to their respective urban context. For example the Amsterdam Smart City initiative is an umbrella project for a diverse range of applications within the Amsterdam area such as elderly care, transportation, energy consumption, heating, water management, innovation and more. In Chicago, the Array of Things initiative is setting up sensors around the city which are meant for improving sustainability and safety. And in South Korea, the Songdo International Business District is the first city built ‘smart’ completely from scratch. Everything in the district is equipped with sensors and processed and coordinated by ICT systems; everyone’s movements and activities are tracked via their phone.

Cybersecurity challenges for smart cities.

The security issues smart city structures pose are manifold. There are issues of fraud and theft which can be directed against companies by the users manipulating data. There is also a risk of criminals being able to read data and interfere useful information for burglaries, such as whether the inhabitants of a house are on holiday. There are security issues concerning public and national security as such new systems offer a new surface for cyberwarfare and cyberattacks against critical infrastructures. Moreover, newly connected devices and technologies can pose dangers to individual people’s safety. A recent smart car hack has made us conscious of the security risks smart devices pose, especially when limited security safeguards are implemented.

Cybersecurity arguments in smart city governance.

How issues of cybersecurity will be framed within the smart city context and which measures will be implemented depends on the specific security issues addressed and on the solutions proposed. The protection against fraud and energy theft could present an argument for more access to data (infrastructures) for companies and other third parties such as law enforcement and for a centralized data infrastructure. On the other hand, the protection against privacy invasions, surveillance and other hacks could present an argument for encrypting and protecting data from third parties or for installing a decentralized/distributed data infrastructure.

When studying smart cities from the Politics paradigm, the framing of cybersecurity within the smart city context and the different security arguments used can be investigated via an analysis of the discourse. An example of how a security discourse may shape an infrastructure, in this case a smart grid infrastructure, is the ongoing discussion regarding the storage and management of smart meter data. Within data-centered smart grid services and business models, having a central role in the storage of and access management to smart meter data provides additional leverage with respect to other stakeholders. So there exists an incentive for stakeholders to demand control over/access to this data. A recent argument which was put forward within a security frame for example advocated for a more prominent role of Distribution System Operators (DSOs) in smart meter data management and storage: “third parties may not be completely reliable when it comes to privacy and security issues”). Here it is interesting to notice that while the proposed solution is presented as a (necessary) security requirement, there could also be different options to consider such as a third party central data hub or (decentralized) third party data access managers.

On the flip side, how a smart infrastructure is configured technologically also influences how security is framed. In their article on Device Democracy, Brody and Pureswaran for example envision a decentralized future for the Internet of Things, mediated by blockchain technology. When the authors formulate their security concerns, their arguments and solutions are shaped by their infrastructural vision: “Current security models based on closed source approaches (often described as “security through obscurity”) are obsolete and must be replaced by a newer approach – security through transparency. For this, a shift to open source is required. And while open source systems may still be vulnerable to accidents and exploitable weaknesses, they are less susceptible to government and other targeted intrusion, for which home automation, connected cars and the plethora of other connected devices present plenty of opportunities.”

4.3.2 Other cases

Next to smart cities, we find several other instances of cybersecurity politics would be worthy to study as well.

E-democracy.

The realm of voting technologies has been extensively politicized. Although the democratic goal of organizing elections appears to be that any citizen can vote, attempts to make some more equal than others are widespread. Stakeholders (such as political parties) have tried to get their interests embedded in technologies and regulations, advantaging their own supporters by all possible means. This means that, inevitably, security arguments have been used for such purposes as well. Even the discussion around the introduction of the secret ballot (a technology to replace oral voting) was fraught with security arguments.

It can therefore be expected that in future initiatives to organize democracy technologically, cybersecurity politics will play a role. Discussions will take place on who gets access to which services, who might misuse such services and therefore needs to be excluded, which discussions need to be moderated, etc.

In particular, e-democracy initiatives provide a good case study for cybersecurity as a Politics, because the interests of certain stakeholders are rather obvious (the parties or candidates). Therefore, if previous voting patterns are known, it is rather easy to link security arguments of these stakeholders to their (objective, public) interests. This makes it possible to connect not only infrastructures with arguments, but also arguments with interests.
Open data.
More and more initiatives pop up to make data of governments and companies publicly available. Rather than keeping the data for oneself, the idea is that in the end the benefit will be higher if the data is freely available for research and innovative services. At the same time, worries arise about what persons with bad intentions might do with such data. Even anonymized data could be traced back to individual persons, violating privacy and enabling the profiling of these individuals. Potentially sensitive map data may provide additional information to terrorists for planning attacks. Again, different framings of the contribution of open data to security are possible. At the same time, there are possibilities for making the data less “open”, thereby excluding access possibilities if the associated framings of security are successful. We therefore expect some security politics happening in this domain. Again, the paradigm outlined here can enable tracing of the final infrastructures to the arguments put forward in the discourse.

Privacy of free services.
There is already significant debate over the extent to which free online services do or do not do sufficiently to safeguard user privacy. As the business model of such services involves use of data, for advertisements or otherwise, the service providers clearly have intentions to protect their own access. At the same time, the public demands security and privacy protection. It is interesting to study the response of the service providers to such demands. For example, to what extent do service providers respond to requests for more security/privacy with proposals that leave their own access untouched? To what extent are those arguments accepted by other stakeholders?

5. CONCLUSION
In this paper we have outlined the importance of research on the political dimension of security. We discussed security as an ambiguous and contested concept that is prone to framing. Processes of security framing play a role in infrastructure governance and security arguments can be used to embed interests in infrastructures, also non-security related ones. We have presented relevant conceptual work on this dimension and drafted a paradigm for studying security as a Politikum. We proposed a research agenda for systematic study under this paradigm. The paradigm is of importance, particularly with regard to ongoing and reoccurring discussions on who needs what access to which infrastructures (for security purposes) and who shouldn’t have what access for the same (so security-related) reasons.

In the future, we will investigate cybersecurity under the paradigm more extensively with regard to smart cities and plan on extending our research to other infrastructures. We are interested in hearing about parallel studies on other cases.

Acknowledgments
The authors wish to thank Elizabeth Stobert for helpful comments. This research has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement ICT-31803 (TRePASS). This publication reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained herein.

6. REFERENCES
[19] Andy Greenberg. The father of online anonymity has a plan to end the crypto war. Available online at: https://www.wired.com/2016/01/david-chaum-father-
of online anonymity plan to end the crypto wars. Accessed on 29 April 2016.

