
Achieving business process flexibility with business rules

Tim van Eijndhoven
University of Twente

t.e.vaneijndhoven@alumnus.ut
wente.nl

Maria-Eugenia Iacob
University of Twente

m.e.iacob@utwente.nl

María Laura Ponisio
University of Twente

m.l.ponisio@utwente.nl

Abstract

Business processes used in networked business are
often large and complex, which makes them difficult to
manage and change. In this paper we address this lack
of flexibility by proposing a solution that uses business
rules and workflow patterns to model the variable
parts of process flow, thus facilitating dynamic pattern
composition in these areas. We argue that the increase
in flexibility is justified by the fact that changes in a
business process can be confined to the variable
isolated parts of the process.

Keywords: business rules, business processes,

networked business, service oriented architecture

1 Introduction

Business networks and their impact on business
processes have gained a lot of attention lately. With the
adoption of networked business, automation and
flexibility of business processes in organizations have
become critical. This is confirmed by the list of
requirements for successful adoption of networked
business proposed in [18], in which organizational and
operational flexibility and transformation of the
organization into a process-centric one are indicated as
being necessary. In particular, the dynamic character of
networked business requires organizations to quickly
respond to the rapidly changing business structures and
multitude of upcoming technologies. This
demonstrates that business processes flexibility is an
important factor influencing networked business
success. In this context, business rules are rapidly
gaining popularity as a means to separate the business
logic from the operational processes and applications.
They allow the specification of business knowledge in
a way that is understandable by ‘the business’, but also
executable by rule engines, thus bridging the gap
between business and technology. Although rule-based
systems and rule engines have been in existence for a

long time, their application at the business level is of a
much later date.

In the context of the above-mentioned
developments, we propose a rule-based approach to
support the specification of variable parts of service
oriented business processes. Hence, our aim is to
develop a method and technical solution that facilitates
the customization of a business process to a particular
usage context by isolating the variable parts from the
reusable parts of business process models and
combining the reusable parts with business rules that
model the variable parts. Such an approach is likely to
be of direct relevance and applicability for Dutch
governmental organisations since they aim to integrate
their processes and deliver together a variety of
services for citizens and since their existing business
processes have proved to be too rigid and inflexible to
support new services. This application area supplied us
with the case used throughout the paper to illustrate our
approach.

The paper is organised as follows: in Section 2 we
give a brief introduction to some basic theoretical
concepts used throughout the paper. In Section 3 we
present our solution in a nutshell. In Section 4 we
illustrate the application of our method in detail and
provide a brief description of the implementation of a
prototype (Section 4.3). We discuss related work in
Section 5 and we draw conclusions and discuss
directions for future research in Section 6.

2 Preliminaries

In this section we give a brief introduction to
process flexibility, workflow patterns and business
rules. Furthermore the running example we use in the
remainder of the paper is introduced and motivated.

2.1 Process flexibility

Although business process flexibility is abundantly
mentioned in the literature, it is difficult to express in
concrete quantifiable terms what the flexibility of a

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.23

95

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.23

95

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.23

95

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.23

95

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

business process entails. There are few explicit criteria
that can be used to measure process flexibility.

Kasi and Tang [9] proposed a framework for the
comparison of business processes in which they
express the flexibility according to three dimensions:
• Time – the process should adapt to change more

quickly;
• Cost – the process should adapt to change with

less cost;
• Ease – the process should adapt to change with

maximum ease.
This suggests that an increase in flexibility can be

achieved when a process can be changed in shorter
time, with less costs and easily. While time and cost
can be measured relatively easy the ‘ease’ dimension is
not easy to quantify. In this research we assume that
ease is expressed in terms of:
• less items to change,
• having the items that have to be changed in one

place and
• being able to make the translation from the new

requirements for process change to executable
workflow in less stages (e.g., specifying new
requirements in a manner that is closely related to
the executable workflow).

2.2 Variability

Variability is the property of an object of being
changeable. The capacity of systems to be tailored
(commonly known as ‘system variability’) has been
extensively researched in relation with software
engineering [26], [27] and ERP systems [19]. In
contrast, limited attention has been paid to variability
in relation with behavioural aspects of process-oriented
systems (see [12], [7], [14]). However, in [26] an
analogy is established between the product family
engineering paradigm (also known as software product
line engineering [27]) and a Process Family
Engineering approach. In [26] the variability in the
process family is modelled by means of variation
points to which variants can be bound by means of
variability mechanisms. Furthermore, the following
four types of basic variability mechanisms are
identified:
• encapsulation of varying sub-processes;
• parameterization;
• addition, omission and replacement of single

elements and
• data type variability.

[7] also suggests a general - variable relation
between process parts, in which the differences
between alternative specialized process parts are made
explicit at the so-called points of variability where

parts that are likely to change will be externalized. We
adhere to this line of thinking motivated by the
argument that by the use of this approach the number
of different business processes can be significantly
reduced since it is no longer necessary to create a
whole new process flow for each of the variants of the
variability points.

2.3 Workflow patterns

A second analogy between software design and
process design, which is of relevance in the context of
this paper, is the parallel drawn between design
patterns (as defined by Gamma et al. [6]) and
workflow patterns [23]. The idea is that complex code
structures can be broken into pieces for which certain
design patterns are reused throughout the code. This
can also be done for business processes. Research by
Van der Aalst et al. [1] supplied us with a set of
workflow patterns which provide common flow
functionality for workflows. These flows also occur in
the business processes, which makes them applicable
in the context of this research as well.

2.4 Business rules

A business rule is “a statement that defines or
constrains some aspect of the business. It is intended to
assert business structure or to control or influence the
behaviour of the business” [2].
Business rules can often be specified by using near
natural language. Thus they allow specifying business
knowledge in a way that is understandable by ‘the
business’, but also executable by rule engines, thus
bridging the gap between business and technology. The
above definition of business rules is general enough to
cover a wide range of business rule types. We identify
two main categories:
• Rules that influence the operational process:

Derivation rules (such as deduction rules and
computation rules) that are used to establish
information that is used in a process and Action
rules that establish when certain activities should
take place. Two variants of action rules can be
distinguished: condition-action rules (production
rules) and event-condition-action (ECA) rules.

• Constraints, which impose certain limitations to
the structure, behaviour or information of an
organisation or system (i.e., deontic assertions,
state constraints, process constraints).

The focus in this paper is on action rules.
Work is currently done to finalise standards for

business rule specification languages in all MDA
layers [14] of models (e.g., SBVR [16], PRR [15]).

96969696

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

Also results have been reported with respect to the
definition of model transformations between business
rule specification languages positioned in the different
MDA abstraction layers (e.g., [12]).

2.5 Problem statement

The general problem addressed in this paper is the
need to develop a rule-based technique to improve the
change management and maintainability of business
processes. A number of requirements that had to be
met by a possible solution have been identified at the
beginning of this research. Such a method should
allow process architects to predict and mange the
impact of change, while diminishing the time needed to
implement changes. In other words, in the event of a
change such a method should allow us to isolate the
parts of the process that are likely to be changed and,
thus, maximize the process parts that are stable.
Because business rules change at a different speed than
the implementation part of the process, a desirable
characteristic is that the method will explicitly keep
business rules separated from the implementation of
process. Finally, the method has to be realizable with
tools and platforms that are currently available.

3 Our solution in a nutshell

The method we propose comprises three steps:
Step 1. Identify the variable and non-variable

segments in a process. Such an analysis must result in
a generally stable high-level process flow that contains
a number of variation points (i.e., one for each variable
part of the process) that can thus be isolated from the
rest of the process. Henceforth we assume that possible
changes will only affect the variable parts.

Step 2. Identify an appropriate (combination of)
workflow pattern(s) that model the behaviour of each
variant in a variation point. In this step we use a
dynamic composition of workflow pattern instances.
Experts link the parts of the process flow to general
instances of patterns. Our solution does not constrain
the choice for a specification language used to describe
the patterns. Consequently, any specification language
can be used.

Step 3. Implement workflow patterns using
business rules. In this step experts select a business
rule specification formalism and use it in a structured
way to implement the workflow patterns. For each
variant, all the identified variation points in the overall
process model must be resolved. In addition this step
may include the testing, deployment and execution of
the resulting process.

3.1 Example

Step 1. An example could be a process in which
applications can be accepted or rejected, when an
application is accepted this should be published via
various channels. The decision on which of these
channels the decision should be published varies for
each application. In this process the variation point is
the point where the publication activities are to be
invoked.

Step 2. We implemented a number of simple
workflow patterns from the work of Russell et al. [23]
using Event-Condition-Action (ECA) rules [10]. For
the example from step 1 we use the “choice” pattern.
An informal description of this pattern is “the selection
of branches in which the preceding branch can diverge,
based on logical expressions associated with each of
the branches. According to its refinement the thread of
control is transferred to a single or multiple branches.”

We model this pattern using Business Process
Modelling Notation (BPMN). Figure 1 depicts the
choice pattern.

Figure 1. The choice pattern

Step 3. This pattern can be expressed by means of
business rules, using the business rule notation
proposed in [10], as follows:

Listing 1.Choice pattern: step 1
(Rule 1)
ON application accepted
DO prepare publication
RAISE publication ready

Listing 2.Choice pattern: step 2a
(Rule 2)
ON publication ready
IF publication for website
DO publish to website
RAISE publication finished

Listing 3. Choice pattern: step 2b
(Rule 3)
ON publication ready
IF publication for newspaper
DO publish to newspaper
RAISE publication finished

97979797

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

The rule in Listing 1 raises an event ‘publication
ready’ when it is finished. This event triggers the rules
in Listing 2 and Listing 3 in no particular order. These
rules fire only if their respective conditions are
satisfied. In terms of business rules, a new parallel
branch corresponds to adding another rule that links
the fired ‘publication ready’ event with the desired
conditions.

3.2 Results

We implemented a prototype to support our method
and to demonstrate its feasibility. Using our method in
practice revealed some advantages for the
maintainability of the process.

First, changes were isolated. Business rules were
stored and maintained separately from process models,
facilitating the detection of the parts of the process that
had to change. A smaller part of the process had to be
changed, namely the workflow patterns related to
certain rules.

Moreover, the process was easier to comprehend
than with traditional methods because activities were
more easily readable and writable. Business process
diagrams are very suitable for giving the overall view
of the process and for seeing where in the process a
specific activity is used but not when looking at the
level of individual activities. In general, many process
changes revolve around the conditions in which a
certain activity has to be carried out. Using business
rules for expressing the conditions under which
specific activities occur makes them easier to
comprehend. Moreover, when the rule that corresponds
with a given activity has to be retrieved from a library
of rules and altered according to the required change,
the main process and the other rules remain
unchanged. Furthermore, business rules can be written
in a nearly natural language, which makes them
comprehensible for business people, which actually
have the business knowledge required to write and
maintain them.

Finally, business rules can be stored and maintained
separately from process models. When using business
process diagrams, the same activity occurring in
different processes is often duplicated amongst those
processes, allowing for little reuse and requiring
changes to be made in various places when that activity
is modified; which in turn increases the risk of adding
an inconsistent change. Using business rules, processes
may invoke/retrieve (and reuse) rules controlling
specific activities from a central repository. In fact,
most business rule management systems are actually
aimed at organizing large sets of business rules and at
enhancing their reuse. As such they fulfil the role of

such a repository, thus making rules available and
consistent across different systems and organisations.

To summarise, we argue that our approach has two
major advantages: it facilitates the reuse of the general
part of the process and it allows us to isolate and
externalise those parts of the process that are likely to
change, thus limiting the impact of such changes. This
will reduce the time and cost required for incorporating
and carrying out changes and will increase the business
process flexibility [24].

4 Method in detail

We applied the method described in the previous
section to an example. Our running example (which we
call “The environmental permit request” case)
describes the process to get an environmental permit.
This process is currently under development in the
Dutch Ministry of Housing, Spatial Planning and
Environment. The example is interesting because it
describes a real and complex process requiring high
process flexibility under change. The following
subsection describes our running example in detail.

4.1 The environmental permit

The new process of requesting an environmental
permit combines numerous separate permit requests
into one all-embracing permit request. For each of the
request parts different advisory parties are involved
and expected to assess whether the permit should be
granted. As these advisers differ for each municipality
the number of different advisers is very large. In
addition to this, the fact that a large number of
combinations of permit request parts are possible leads
to an even larger number of possible activity
combinations in an instance of such a permit request
process. This makes the detailed process model very
large and complex, while the basic high-level process
is relatively simple and always having the same three
steps:
1. receive permit application;
2. request advice on the permit application;
3. inform the requestor on the permit request

outcome.
The complexity of this business process is mainly

caused by the multitude of possible implementations of
the “request advice” step in the process. Using
“traditional” modelling techniques for each of the
possible process flows in step 2 will result in a very
large and complex diagram or set of diagrams that are
difficult to comprehend. This means that if a change of
the process is necessary it will take a lot of time/money
to incorporate the change into all the possible

98989898

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

alternative flows. Also in terms of “ease”, it is very
likely that carrying out such changes will not only
require having the overview of the whole process with
all its possible alternatives and exceptions but also
knowing how and where they have been implemented
in the supporting applications. Especially in such an
environment in which regulations and laws regarding
this type of requests may change quite often, the above
considerations show that using classical diagramming
techniques will very quickly result in difficult, time
consuming and expensive business process
maintenance. Furthermore, a supplementary argument
for choosing this application area is the fact that
especially such regulations are very suitable to be
modelled as business rules.

4.2 Applying the method

We assume that a business process execution engine
and a business rules engine are available such that the
specification and execution of both processes and rules
is possible. Consequently, at each variation point the
process engine is invoking the business rules engine,
which in turn executes the part of the workflow
specified by means of business rules before returning
its result to the business process. Thus, the process
engine and the business rules engine are independent
but communicate directly with each other and the
control of the execution is shared between the process
engine (when the main process flow is active) and the
business rules engine (when its service is invoked).

In order to demonstrate the feasibility of the
approach a prototype (briefly described in Section 4.3)
implementing this interoperable architecture has been
built, using the Aqualogic BPM Studio (BEA systems)
process engine and the ILOG business rules engine.

Step 1. We refine the first step by dividing it into

the following sub-activities:
The identification of the high level process. In

this first step a ‘generic’ high-level process description
has to be defined. At this level the process parts that
are likely to be variable must be encapsulated into
individual activities.

For the simplified Environmental Permit Request
this consists of the following abstract activities (see the
model below):
1. Receive a permit request,
2. Request a number (x) of advice on the permit
request,
3. Inform the requestor with respect to the decision.

The identification of variability points in the

process. After creating the generic process the points
of variability in the process have to be identified.
These points have to be made explicit in order to be
able to isolate them from the parts of the process that
are static and further specify them. These are usually
those activities in the generic process that can not
directly be operationalised.

In our generic process example the ‘receive request’
and the ‘provide answer’ activities are stable and can
directly be made executable, for example by invoking
appropriate supporting software services. The ‘request
advice’ is an activity that can not directly be converted
into an executable workflow. This activity is built up
from other activities and flows that vary according to
the contents of the permit request. Therefore the
variability point of this generic process is the ‘Request
advice’ activity.

Estimate the level of variability. For all of the

identified points of variability an estimation of the
frequency of changes that may occur in the future at
that point in the process has to be made. Based on
these estimations decisions have to be made on which
variability points will be modelled using business rules
and which will be treated as ‘static’ parts of the
process. For example in the case of a variability point
that has a small number of small variants that are
unlikely to change in the future it might be overkill to
model them in business rules.

For the ‘Request advice’ activity the actors involved
may vary according to the contents of the request and
according to the location. Also the flow of the advice
activities depends on the contents of the permit request.
This means that there is a large number of different
process flows possible. Also it might be very well
possible that due to new or modified regulations in the
future new elements will be added to the permit
request, possibly requiring new advisers. This makes
the estimated level of change high and justifies the
workflow specification using of business rules.

Step 2. Identify the workflow patterns of the

variability points. For all of the variability points that
were chosen to be modelled using business rules, first
the workflow patterns used to model the possible
variants have to be identified.

To illustrate this step for our example we choose to
use the following three patterns for a particular variant:
• Parallel flow (Advice can be given in parallel)
• Sequential flow (Advice can be given in sequence)
• Synchronization (Since there can only be one

decision the parallel advice will have to be re-

99999999

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

joined using synchronization)
At an abstract level the following process is used

for the advice activity.

Step 3. We refine the third step by dividing it into

the following sub-activities:
Write rules to implement the workflow patterns.

When the workflow patterns have been identified rule-
sets will have to be written that implement them. In
this step decisions have to be made on the events and
conditions used to structure the flow of the business
rules. The choice on what events to use is important
because it determines the impact that a future change
of business rules has on the whole set of business rules.
When for example introducing an intermediate step in
a sequence flow this will have impact on either the
events that subsequent business rules react on, or on
the events that previous business rules trigger.

The advice activities that have to be performed are
determined by the contents of the permit request so it is
important to know how this request is defined. In this
case study the permit request is a simple string using
XML-like tags to delimit the various elements. As an
example the following elements are used:
<city> The city in which the activities will take place,
<soil> Request part for soil activities,
<cutting> Request part for cutting activities,
<building> Request part of building activities,
<province> Request part used for organizations that
have a special status requiring the province to advice
on a permit request.

All of these elements contain descriptions of their
respective request part. Based on the existence of a
<soil>, <cutting> or <building> element, activities
for requesting advice to the responsible advisers will
be inserted into the flow. For the <city> and
<province> element the adviser is selected based on
the name of the city or province that is contained in the
element.
The <province> element is considered to have the
highest priority and therefore province-related advice
activities will be executed before other advice, if
present. The other elements are equally important and
therefore the corresponding necessary advice activities
will be executed in parallel.
Due to space limitations we only give here one
example of rule specification written in the intellirule

syntax of iLOG:

Model the concrete process. Now that the business

rules sets have been defined, the parts of the high-level
process that are not modelled using business rules have
to be modelled using a business process language. This
includes the modelling of the interaction points
between the business process engine and the business
rules engine.

In this case the process is modelled as indicated
below:

In this process the ‘request advice’ is a collapsed
sub-process activity that is modelled in a separate sub-
process model. In this sub-process the process engine
first executes an activity ‘Request advice set’ in which
it performs a request to the business rule engine
providing the permit request. The business rule engine
in turn executes its business rules based on the
provided permit request and context and constructs the
next ‘RequestSet’ containing the information for the
invocation of the required advice services. The
business process engine now checks if there are more
requests to perform and if so calls the required advice
services. After the answers are received the process
loops back and requests the next request set. If there
are no more requests to perform the result is checked
and registered after which the process ends.
Graphically the process looks like:

100100100100

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

These processes are also modelled in the business
process software that is used for the prototype. Those
models contain some implementation specific elements
such as intermediate activities linking to sets of screens
that a user has to go through to fill in or view data.

Most commercial business rules management
systems offer templates and editing support
functionality that makes business rule writing even
easier. In addition, the translation step from rules
specified in nearly natural specification languages to
executable specifications can be automated by means
of model transformations.

Test, Deploy and Execute the process. When the
process is fully modelled it will have to be tested and
debugged to ensure the correct working. After this
phase the process can be deployed to the business
process engine and the business rule engine such that it
can be used.

In the case of the prototype the business process
models have been modelled, tested and deployed in the
Aqualogic software and the business rules have been
modelled, tested and deployed in the iLOG JRules
software. After their deployment they can be used to
execute the permit request process.

Update process. During the lifetime of the business
process changes will occur at the variability points that
were identified. In order to support these changes the
business rule sets will have to be updated such that
they can reflect the new requirements regarding the
process flows. If changes may affect a part of the
workflow that is currently modelled using business
process models careful consideration has to go into
deciding whether to alter only the process model or to
consider from now on that part of the process as a point
of variability that has to be modelled using business
rules.

There are two major scenarios for change in the
environmental permit case:
• A change of adviser for a specific element
• An additional element in the permit request
These can easily be solved by changing the specific
business rule for the adviser or adding a business rule

that is triggered by the new element. With the rule
structure used in the prototype this would require
changing the appropriate variables in the case of a
change of adviser or filling in the various variables for
a new rule (based on a specific rule template) in the
case of an additional element.
Using this method careful consideration goes into the
possible changes to the business process in the future.
Based on this the process is set up in such a way that
most changes can be made faster, cheaper and easier
compared to traditional methods.

With the application of the method in the case it can
be seen that using this method allows for easier
specification of all the business process variances. This
offers a more flexible process specification. It can also
be seen that the functionality that is offered by our
solution is similar to using business process diagrams,
the same business process and its variances can be
expressed using business rules.

4.3 Prototype

In order to demonstrate the feasibility of the
approach a prototype has been built. In this prototype
the Aqualogic BPM Studio (BEA systems) process
engine interoperates with the ILOG business rules
engine. The Aqualogic software is also used to
generate the user interface for the end user interaction
in the case. The ILOG business rules engine is used to
model and execute the business rules that provide the
flow for the variable parts of the business processes
from the case. Although the JRules engine is not a
specialized ECA rules engine, it can execute such rules
using the Rete algorithm. Thus, ECA rules can be
modelled by using a number of variables as events.
When these variables change (i.e., when an event is
triggered) the engine will re-evaluate the conditions of
the rules that involve these variables (the rule is fired).

The Aqualogic process engine runs within the
Aqualogic studio environment. The ILOG business
rules engine runs in a JBOSS application server
environment. The interaction between the two engines
takes place using web services.

When developing the prototype it became evident
that the software that was used has not been designed
for the way in which the prototype for this research
tries to use them (e.g., the business process engine
could not use complex type arguments for the web
services and failed on parameters with an underscore in
their name). These limitations have also influenced the
design of the interaction between the process engine
and rule engine described below:
1. The process engine invokes the rule service with

the data of the request. The input data for the

101101101101

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

business process is passed on to the rule engine for
evaluation.

2. The rule engine creates an empty context object. A
“RequestContext” object is created which contains
the current event and a sequence of “RequestSet”
objects which basically is the next set of parallel
actions to execute, the RequestSet in turn contains
“RequestItem” objects which contain the specific
data for each action and the event that is to be
triggered after its execution.

3. The rule engine evaluates its rules based on the
data. Based on the input data and the current
context the rule engine evaluates its business rules.
In the actions of the business rules the various
“RequestItem” objects are created and a new
“RequestSet” is added to the context.

4. The rule engine returns the updated
“RequestContext”. The context is serialized into a
JSON string for the exchange and then returned to
the business process engine.

5. The business process engine deserializes the
context and executes the “RequestSet” The
business process reconstructs the
“RequestContext” object from the serialized
representation it received from the rule engine.
The current “RequestSet” is divided into its
“RequestItem” objects, thus creating new
execution threads for each item and allowing for
parallel execution. The request is performed and
the results are recorded into the “RequestItem”.
When all items are executed the updated
“RequestItem” objects are saved to the
“RequestSet” which in turn is saved to the
“RequestContext”. The current event property of
the “RequestContext” is updated according to the
event that the items have triggered.

6. The business process engine re-invokes the rule
service with the new context. The business process
engine serializes the “RequestContext” again and
sends it to the rule service.

7. The business rules engine deserializes the
“Request-Context” and re-evaluates. The business
rules engine reconstructs the “RequestContext”
and evaluates its rules again to construct the next
“RequestSet”.

8. Steps 3 through 7 are repeated until there is no
next “RequestSet” When the evaluation of the
business rules leads to the conclusion that there are
no new actions to execute the context object is
returned to the business process engine as is.

9. The business process engine processes the result
and notices that no request set have to be executed.
It will therefore query the “RequestContext” for
the results of the variability part of the process.

5 Related work

Charfi and Mezini [4] offer a comparable solution
by using a BPEL dialect: AO4BPEL. In this dialect
BPEL is extended to support aspect oriented constructs
like before, after and around advice [3]. The business
rules actions and results are translated to business
process constructs and to so-called “point-cuts”
(statements to relate the aspect to specific points in the
code such as every assign activity). This requires a
modified BPEL engine to be able to cope with the
additional aspects. This differs from our approach
which makes use only of existing software and does
not need a specialised engine.

In research by Cibran and Verheecke [5] the idea of
using aspects to relate business rules to business
processes is presented in a more generic way. They do
not limit their approach to BPEL and consider the
activities in the process description as points to place
point-cuts. The business rules are translated to aspects,
which in turn contain business process constructs to
change behaviour at the place of a point-cut. This
approach differs from our approach because it uses
business rules as a means to alter business process
models, while our approach replaces the models in the
variable parts with business rule specifications
implementing the corresponding workflows.

Rosenberg and Dustdar use a business rules service
to intercept all incoming and outgoing messages and to
apply business rules on them [19]. In addition they
implemented a business rules broker to enable the use
of different rules engines with a pluggable interface
[21]. This approach is different because the business
rules do not directly alter the business process, they
function more like a filter while our approach allows
for interaction between the business process and the
business rules.

Orriëns et al. [17] generate process specifications by
using a composition engine that takes the process
elements from a component element repository and the
business rules from a composition rule repository. The
rules contain facts on the process elements and their
required flows, based on which the composition engine
is able to construct the flows and the elements into a
process description that can be then executed.

In research by Lee et al. [11] a method is proposed
without a direct implementation. Similar to the solution
proposed by Orriens et al. [17], Lee et al. [11] consider
the activities as process elements and construct flows
based on ECA rule constructs. By chaining these rules
a flow is constructed that can be translated to an
executable process specification.

In research by Knolmayer et al. [10] business rules
are related to workflow patterns with the use of ECA

102102102102

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

rules. With these relations they show that a business
process can be expressed in terms of business rules. In
their approach they still use a generator to actually
generate the process specification. These approaches
differ from our approach because they are used for
generating process specifications while our approach
composes the process at runtime.

Research by Rosenberg and Dustdar [22] suggests
an approach using distributed rules engines that
communicate with each other in order to handover
work between the different systems. This is done by
using a rules engine wrapper called ViDRE [13]. This
solution addresses the distribution of the control flow
over different actors. In this approach the execution of
the business rules forms the actual process flow.

The same issue of distributed flow execution is also
addressed by Schmidt [25], which uses the structure of
SOAP messages to execute business rules at different
locations. This is done by recording the business rules
in the SOAP headers and then sending this message
through a set of intermediaries. These intermediaries
then execute the rules applicable to them. This allows
for distributed execution of the business rules [25].
These approaches base the whole process on business
rules where our approach uses a mix between business
process models and business rule specifications.

6 Conclusions and future work

In this paper we have proposed a solution to
increase the flexibility of service oriented business
processes by using ECA rules to execute parts of the
process at variability points. By explicitly identifying
and isolating the variability points in the business
process the ease of incorporating changes in the
process increases since changes are localized.

ECA rules can be used to model the flow in a
business process because they can implement the same
workflow patterns as “traditional” business process
languages. Furthermore they have the advantage of
being modelled using near natural language, thus
allowing non-IT people to maintain them.

We have also demonstrated that this approach is
practically feasible by implementing a prototype that
was used for method testing purposes. The selected
case shows that incorporating the changes that are most
likely to occur become easy when using the approach
suggested in this research. Furthermore, although the
prototype implementation was tuned to the selected
software platforms, the concepts are generic enough to
be applied in combination with other software
packages.

This research also raised a number of questions that
could be researched in the future. In particular we

believe more methodological support is needed for the
identification of variability points in business processes
and for finding the right balance between the use of
business rules and business processes. Another issue
open to research is the maturity of the tools. It has been
suggested that current tools can be used to implement
the solution presented in this paper. However, during
the development of our prototype, the selected
platforms have proved to have certain limitations.
Therefore, it has to be investigated to what extent
business rules engines must be transformed from
decision support tools into business process composers
to allow a better integration with process engines.
Finally we mention the issue of business rule
performance and manageability in relation with large
scale business rule sets. More precisely, we are of the
opinion that more research is necessary concerning the
impact the size of rule collection has on manageability
and on performance. Especially when this solution
must be implemented in large scale complex business
processes this might become an issue.

Acknowledgments

We would like to thank TNO, and in particular
Menno Holtkamp and Wout Hofman for supporting
this research. The work presented in this paper was
also supported by:
• the Freeband A-MUSE project

(http://a-muse.freeband.nl), which is sponsored by
the Dutch government under contract BSIK
03025.

• the project Quality-Driven Requirements
Engineering and Architectural Design
(QuadREAD), which is part of the Dutch Jacquard
program.

References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.

Kiepuszewski, A.P. Barros, “Workflow patterns”,
Distributed and Parallel Databases 14(3) (2003) 5-51.

[2] BRG, “Defining business rules what are they really?”
White paper, July 2000,
http://www.businessrulesgroup.org/first_paper/br01c0.h
tm.

[3] A. Charfi and M. Mezini, “Aspect-oriented web service
composition with AO4BPEL”. In Proceedings of the
2nd European Conference on Web Services (ECOWS),
volume 3250 of LNCS, pages 168–182, September
2004.

[4] A. Charfi and M. Mezini, “Hybrid web service
composition: business processes meet business rules”.
In ICSOC ’04: Proceedings of the 2nd international

103103103103

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

conference on Service oriented computing, pages 30–38,
New York, NY, USA, 2004. ACM Press.

[5] M. A. Cibrán and B. Verheecke, “Dynamic business
rules for web service composition”. In R. E. Filman, M.
Haupt, and R. Hirschfeld (eds), Proc. of the Second
Dynamic Aspects Workshop (DAW05), p. 13–18, 2005.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Element of Reusable Object-Oriented
Software. Published by Addison-Wesley, 1995. ISBN
0201633612. 27th printing, November 2003.

[7] G. Goldszmidt and C. Osipov, “Make composite
business services adaptable with points of variability,
part 1: Choosing the right implementation”. IBM
developerWorks, April 2007.

[8] W.J. van den Heuvel and M. Jeusfeld, “Model
tranformation with Reference Models”, in Proc. 3rd
International Conference Interoperability for Enterprise
Software and Applications, Funchal, Portugal, March
2007, pp. 63-75.

[9] V. Kasi and X. Tang, “Design attributes and
performance outcomes: A framework for comparing
business processes”. In Proceedings of the Eighth
Annual Conference of the Southern Association of
Information Systems (SAIS), pages 226 – 232,
Savannah, Georgia, USA, 02 2005.

[10] G. Knolmayer, R. Endl, and M. Pfahrer, “Modelling
processes and workflows by business rules”. In Business
Process Management, pages 16–29, 2000.

[11] S. Lee, T.-Y. Kim, D. Kang, K. Kim, and J. Y. Lee,
“Composition of executable business process models by
combining business rules and process flows”. Expert
Syst. Appl., 33(1):221–229, 2007.

[12] M.H. Linehan, Semantics in model-driven business
design, IBM T.J. Watson Research Center, 2006.

[13] C. Nagl,, F. Rosenberg, and S. Dustdar, “Vidre - a
distributed service-oriented business rule engine based
on ruleml”. In Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing
Conference (EDOC’06), pages 35–44, Washington, DC,
USA, 2006. IEEE Computer Society.

[14] Object Management Group, MDA Guide version 1.0.1,
Document Nr: omg/2003-06-01, June 2003.

[15] Object Management Group, Production Rule
Representation: Request for Proposal, br/2003-09-03,
Sept. 2003. http://www.omg.org/docs/br/03-09-03.pdf.

[16] Object Management Group, Semantics of Business
Vocabulary and Business Rules Specification, OMG
Adopted Specification, 2006.

[17] B. Orriëns, J. Yang, and M.P. Papazoglou, “A
framework for business rule driven service
composition”. In TES, pages 14–27, 2003.

[18] M.P. Papazoglou and P.M. Ribbers, e-Business:
organizational and technical foundations. John Wiley &
Sons Ltd, Chichester, 2006.

[19] M. Rosemann and W.M.P. van der Aalst, “A
configurable reference modelling language”,
Information Systems, vol. 32, no. 1, 2006, pp. 1-23.

[20] F. Rosenberg and S. Dustdar, “Business rules
integration in bpel -a service-oriented approach”. In
CEC ’05: Proceedings of the Seventh IEEE
International Conference on E-Commerce Technology

(CEC’05), pages 476–479, Washington, DC, USA,
2005. IEEE Computer Society.

[21] F. Rosenberg and S. Dustdar, “Design and
implementation of a service-oriented business rules
broker”. In CECW ’05: Proceedings of the Seventh
IEEE International Conference on E-Commerce
Technology Workshops, pages 55–63, Washington, DC,
USA, 2005. IEEE Computer Society.

[22] F. Rosenberg and S. Dustdar, “Towards a distributed
service-oriented business rules system”. In ECOWS ’05:
Proceedings of the Third European Conference on Web
Services, page 14, Washington, DC, USA, 2005. IEEE
Computer Society.

[23] N. Russell, A. ter Hofstede, W. M. P. van der Aalst, and
N. Mulyar, “Workflow control-flow patterns: A revised
view”. Technical report, BPMcenter.org, 2006.

[24] S. W. Sadiq, W. Sadiq, and M. E. Orlowska, “Pockets
of flexibility in workflow specification”. In ER ’01:
Proceedings of the 20th International Conference on
Conceptual Modelling, pages 513–526, London, UK,
2001. Springer-Verlag.

[25] R. Schmidt, “Web services based execution of business
rules”. In RuleML, 2002.

[26] A. Schnieders and F. Puhlmann, “Variability
mechanisms in e-business process families”, in
Abramowicz & Mayr (eds.), Proc. 9th International
Conference on Business Information Systems (BIS
2006), volume P-85 of LNI, Bonn, Gesellschaft für
Informatik, 2006, pp. 583 601.

[27] T. Ziadi and J.M. Jézéquel, “Software product line
engineering with the UML: Deriving products”, In
Software Product Lines, LNCS, 2006, p. 557-588.

104104104104

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 5, 2008 at 04:35 from IEEE Xplore. Restrictions apply.

