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Abstract 
We address the problem of specifring co-operative, dis- 
tributed transactions in a manner that can be subject to ver- 

specification language requirements for this field. Prelimi- 
nary work was described in 171. The goals that we have in 
mind in performins this work are the following: 

ification and testing. Our approach combines the process- 
algebraic language LOTOS and the object-oriented data- 
base modelling language TM to obtain a clear and f o m l  
protocol for distributed database transactions meant to de- 
scribe co-operation scenarios. We argue that a separation 
of concerns, namely interaction of database applications 
on the one hand and data modelling on the other hand, re- 
sults in a practical, modular approach that is f o m l l y  well- 
founded. An advantage of this is that we may vary over 
transaction models to support the language combination. 

1 Introduction 
In application areas like computer-supported co-operative 
work (CSCW) there is a strong need for primitives to de- 
scribe high-level co-operation scenarios that can be imple- 
mented in a verifiable way. These scenarios share a set of 
characteristics that make them intrinsically complex to de- 
scribe and implement. 'Qpically, the area is identified by a 
high level of interaction between agents, combining com- 
plex data communication with both local and shared data re- 
sources. It is our firm belief that such scenarios can only be 
described by paying due attention both to process behaviour 
and data modelling. 

In the Transcoop project (ESPRIT BRA 801 2) we are in- 
vestigating the combination of LOTOS as a process mod- 
elling language with Th4 as an object-oriented data mod- 
elling language. Within Transcoop, we also study how 
specifications obtained in this language combination can 
be mapped onto database platforms that feature advanced 
transaction models, like the advanced transaction models 
of [ 1-61. We are studying co-operative work applications 
found in industrial environments with the aim of identifying 
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0 orthogonality of the LOTOS/TM language combina- 
tion. The integration will be one of co-existence, with 
the two languages used to describe different aspects of 
a co-operative scenario. 

0 orthogonality of database functionality and inter- 
database communication protocols as a result of the 
above. This requires explicit synchronization with the 
DBMS to obtain query results and perform database 
updates. 

0 genericity of the system structure description such that 
the database functionality remains modular, and one 
may vary over used transaction models. 

0 abstraction away from implementational details with 
which applications should not deal. 

would identify classes of co-operation scenarios. 
0 parameterizability over architectural features that 

In this short paper, we present an overview of our initial 
results towards a specification framework which addresses 
the above goals. Section 2 discusses how we go about com- 
bining LOTOS and Th4, and discusses their use in a three 
step method. We then briefly discuss the two languages 
in more detail in Section 3. Section 4 describes an essen- 
tial primitive for co-operation scenario definition, called the 
LTM event. The full paper [SI gives example specifications 
and provides a formal semantics of LTM events. Section 5 
summarizes the novelties of OUT approach and identifies fur- 
ther issues that we want to address in this area. 

2 The specification framework 
The essence and intention of combining LOTOS and TM 
is to arrive at a pleasing 'new' specification language for 
distributed information systems that is both process-based 
and state-based. We view the definition of a network of dis- 
tributed information systems as an interconnected network 
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Figure 1: The specification framework. 

of LOTOS processes which each have their local database. 
There are three steps in the complete specification of such 
a network, as illustrated in Figure 1. The behaviour of the 
network itself can be completely described in Full LOTOS 
(see Figure 1 A). The bullets indicate event gates that the in- 
formation systems offer; the lines indicate which communi- 
cation is possible. 

A second step in the complete description is to define the 
requested functionality for each database system. This is il- 
lustrated in Figure 1B. We use the data model TM to pro- 
vide method definitions that will in the next step be matched 
against event gates. 

The interesting part of the language combination is where 
the interface between the two formalisms lies. In terms of 
completing the system definition, we have to identify how 
network events are matched to local database methods, thus 
essentially defining the interface between the database and 
the communication network. This is the really new part of 
the language combination, and it is illustrated in Figure 1C. 
The specification is discussed in Section 4. 

3 Language descriptions 
In this section, we summarize the important features of TM 
and LOTOS . 
3.1 TM 
TM is an object-oriented (and type-theoretic) data model 
that is theoretically well-founded, and capable of express- 
ing many, if not all, features of data models currently in use 
[9,101. It is formally founded in a typed lambda calculus 
allowing for subtyping and multiple inheritance, based on 
the ideas of [ll]. We use it here for the description of the 
communicated data structures of the network, and for the 
description of the local database schemata. 

Characteristic features of Th4 are the distinctionbetween 
types and classes; support for object identity and complex 
objects; a three level method and constraint specification fa- 
cility (object, class and database); and multiple inheritance 
of data structure, methods and constraints. A TM database 
is defined by its (typed) attributes and a set of methods that 

can be invoked on the database. s p e s  of attributes may be 
arbitrarily complex: the type constructors supported are tu- 
ple ((. . .)). variant (1 - -. p). set (P.. .), and list (I,. . .). Be- 
sides basic types, class names may be used in type specifica- 
tions. Specialization between classes is denoted by the ISA- 
clause, which may identify several superclasses. A class 
inherits the attributes, constraints, and methods of its su- 
perclasses. In class specifications, constraints and methods 
may be specified at two different levels: the object level and 
the class level. 

A TM database specification is organized in terms of 
class and sort definitions. Each class (sort) definition iden- 
tifies the type of its instances, rules that the instances have 
to obey, and methods to which they respond. The language 
for method definition is a full-fledged functional language 
that incorporates simple arithmetic and first-order boolean 
operators, as well as an extensive range of set operators for 
database queries in the style of complex object SQL. This is 
opposed to the common practice in industry where methods 
are directly defined in procedural languages like C H ,  which 
we believe is an obvious (and unfortunate) obstacle to veri- 
fiable software code. 

Together with a collection of class and sort definitions 
comes a database definition, which closely resembles a class 
definition. In the database definition, a list of persistent vari- 
ables is presented together with their type. (A common type 
for such a variable is PC, where C is some defined class. 
The variable will then represent the class's so-called exten- 
sion.) These variables constitute the database state. This is 
achieved formally by viewing the variables as attribute la- 
bels of a record, which is the database object. Besides per- 
sistent variable declarations, the database definition also in- 
cludes rules that the database state has to obey, and defini- 
tions of methods that operate on the database state. 

Database methods have an implicit self argument, which 
stands for the database object as a whole. For our discus- 
sion, it is important to know that methods come in two 
flavours: retrieval methods and update methods. Retrieval 
methods (or queries) take the database and retrieve some in- 
formation from it. Update methods (or transactions) take 
the database and change its state. Obviously, both forms of 
methods may require parameters. 

A tool-set for TM, including graphical interface, type 
checker, prototype generator and compiler is under devel- 
opment in the ESPRIT project IMPRESS (6355). 
3.2 BasicLOTOS 
LOTOS is a specification language that was designed for the 
formal description of distributed, concurrent systems [ 12- 
141. LOTOS is an IS0 standard (IS0 8807), which makes 
it a more than viable candidate for the use we give it here. 
LOTOS is based on process-algebraic ideas. The core of 
the language, so-called Basic LOTOS, is formed by a pure 
process algebra. (Full LOTOS is Basic LOTOS extended 
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with guards, value expressions and variable declarations- 
see Section 3.3.) 

A LOTOS process definition is a hierarchical structure 
identifying subprocesses, their synchronization and data 
communication. A process is viewed as a ‘black-box com- 
puting agent’ capable of performing unobservable, intemal 
actions, and interactions with its environment via so-called 
gates that it is said to offer. Such an interaction is called an 
event. (Sub)processes are defined in terms of behaviour ex- 
pressions; behaviour expressions bottom out in event names 
(or gates). 

Possible forms of Basic LOTOS behaviour expressions 
B are given in Table 2, which we have adopted from 
[12]. The stop process is the process incapable of any (in- 
ter)action. Action prefix allows to express that an action oc- 
curs before some behaviour. The general case parallel com- 
position identifies n gates on which the behaviours B1 and 
E2 have to synchronize. Pure interleaving is a special case, 
namely where n = 0. Likewise, full synchronization is the 
case where the set of gates { 91,. . . , g, } is the union of 
the sets of gates offered by B1 and B2. Hiding allows to 
turn actions at the mentioned gates into intemal actions of 
the process. Behaviour expressions can be parameterized by 
gate names to obtain process definitions. Process instantia- 
tion assigns actual gate names to the gate parameters. The 
exit action is the only way to successfully terminate a pro- 
cess. Enabling is like action prefix: it allows to express or- 
dering of events, but is meant for general behaviour expres- 
sions. Disabling, finally, allows to express that a normal be- 
haviour B1 may, at any moment, be disrupted by another 
behaviour B2. 

A good introduction to the operational semantics of LO- 
TOS is found in [12]. A LOTOS tool-set environment 
for simulation, compilation and prototype generation is de- 
scribed in [ 151. 

3.3 Full LOTOS with TM 

Full LOTOS introduces value communication and data 
types to the process-algebraic concepts of Basic LOTOS. 
The original data language for Full LOTOS is based on the 
ACT-ONE theory of abstract data types; here, we will in- 
stead use TM as the data language. This section looks at 
constructs of Full LOTOS which involve value expressions 
and therefore will be at the core of the LOTOSiTM language 
combination. 

In Full LOTOS, an event name may be followed by 
value and variable declarations, together also called event 
attributes. An event name together with its attributes is usu- 
ally referred to as a structured event. A value declaration 
looks like !e, where e is an allowed value expression in the 
data language. A variable declaration takes the form ?z : U, 
where z is a variable identifier and U is a data type. An ex- 

ample LOTOS structured event schema is: 

gate !el . . . !e, ?z1: ~1 . . . ?zm: U,,, [cond] 

where cond is an expression of type bool, el up to e, are 
arbitrary TM value expressions (queries, as we shall see in 
Section 4), and zl: ~1 up to z,,,: U~ are typed variable dec- 
larations. A condition may be used to constrain possible val- 
ues for data synchronization. 

There are other possible occurrences of TM expressions 
in Full LOTOS which are not part of structured events. 
These are: actual parameters to process instantiations other 
than actual gate names, guards as conditions on possible be- 
haviour, and the let-construct. Each of these, we will briefly 
describe. 

A process instantiation takes the form 

P[gi, ... , gn] (el,..-,em) 
where the gi are actual gate names and the e, stand for actual 
values provided to the process. A guard is a condition (i.e., 
a boolean TM expression) that needs to be fulfilled to make 
a behaviour possible; if the guard is not fulfilled the follow- 
ing guarded behaviour expression is equivalent to the stop 
process: 

[guard] 4 B 

Finally, the let construct introduces (typed) abbreviations 
for value expressions in a behaviour expression: 

let 21: n1 = el, . . . , z,: U, = e, in B 

In each of the above cases, TM method invocations may be 
part of the expression. Such invocations will be taken to be 
retrieval metha3 against the process’s local TM database. 
LOTOS imposes no evaluation order on el to e,, and 
favourably, TM retrieval methods have no side-effects on 
the database. 

4 Co-operative transaction events 
Section 3.3 highlighted the value-based constructs of Full 
LOTOS where integration with TM will arise-i.e., those 
places where the two languages will meet. The most in- 
teresting of these constructs is the structured event, as this 
is the point where the idea of co-operative transactions be- 
comes apparent. Intuitively, a LOTOSiTM event describes 
a complex communication event in which local database up- 
dates are dependent on the results of queries against remote 
databases. The event might be triggered by an application 
process and will usually depend upon synchronization with 
other agents. In this section, we outline the semantics of a 
LOTOS/TM event. 
4.1 LOTOWM events for co-operative updates 
A LOTOS/TM event (LTM event for short) describes 
the behaviour that occurs at the interface between a TM 
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expression name syntax B ::= I expressionname syntax B ::= 
inaction stop 

- unobservable (intemal) i; B 
- observable 9; B 

action prefix 

choice BlUB2 
process instantiation 
successful termination exit 

p[gl, . . . gn] 

parallel composition 

- pure interleaving 
- full synchronization 

- general case B1 I[g1, * * 1 grill B2 
B1 I I I B2 
B1 I I B2 

hiding hidegl, . . . , g  ,in B 
enabling B 1 > >  B2 
disabling B 1 [ >  B2 

Figure 2 Basic LOTOS behaviour expression syntax. 

database and its encapsulating LOTOS process. We want 
to rigourously define what event occurrence at the inter- 
face means. An LTM event either happens or does not 
happen-in other words it is atomic. If it does not hap- 
pen, no pure LOTOS event has occurred and no TM up- 
dates have been issued. Locally, we view an LTM event 
as a triple (U,,, E, Upoat) where E is a LOTOS event. 
The motivation for this view stems from the observation 
that an event occurrence typically coincides with a state 
change of the process. But to cover situations of triggering 
and non-triggering behaviour, we identify two optional state 
changes: one immediately before, and one immediately af- 
ter the actual event occurrence. 

Intuitively, U,, will be used for setting up any local 
workspace involved in the event; Upoat happens after the 
LOTOS structured event. Methods U,, and Upoat are 
called the event’s pre- and post-update. Both are in fact op- 
tional, and this may be indicated by the identity update. (If 
there is no database associated with the process in which 
the event expression occurs, then both U,, and Upat will 
be the identity.) Although TM has no formal transaction 
notion-updates are just state transitions of the database- 
we define it to be as follows. An update commits if and 
only if all database constraints are valid for the post-state of 
the database; otherwise it aborts. We assume the availabil- 
ity of a method dbcons that functions as a test on database 
constraint integrity 191. After commit of a TM update, the 
database state has usually changed. 

Figure 3 captures the intuitive meaning of an LTM event. 
The transactional aspects of an LTM event are summa- 

rized as follows: 

Any TM method invocation occurring in the condition 
or in a value expression is interpreted as a retn’eval 
method. 

The U,,., update method associated to the event is in- 
voked. If it aborts, the complete LOTOS/TM event 
does not occur. Otherwise, 

A synchronization attempt on the LOTOS event may 

4. 

take place, evaluating any value expressions against 
the newly obtained database state, i.e. the post-state of 
U,, . If the attempt does not succeed, the U,, update 
is rolled back, and the overall LOTOS/TM event does 
not occur. Otherwise, 

The Upoat update method associated to the event is in- 
voked. If it commits, we obtain another new database 
state and the overall event succeeds. If Upoat aborts, 
U,, is rolled back and the overall event does not oc- 
cur. 

From the more abstract point of view of application spec- 
ification, a LOTOS/TM event is an atomic primitive. Sev- 
eral forms of such events can be identified, and their imple- 
mentation is discussed in the full paper [SI. 
4.2 LOTOSRM event declaration 
The relationship between LOTOS/TM events and possible 
pre- and post- TM database update methods will be pro- 
vided by user-specified event declarations with the follow- 
ing form: 

LTM-event process-gate is 
gate !el ?zl: 71 . . . !en ?zn: T~ 

[triggered by upel 
[with update Upoat (c1, . . . , CL)] 

The declaration includes the LOTOS event specification, to- 
gether with expressions for its optional pre- and post- TM 
method invocations. An LTM event environment binding 
LTM event names to LTM event declarations will be used 
in the evaluation of the top-level LOTOS network specifi- 
cation. 

The naming convention for an LTM event will be to jux- 
tapose its gate name with the process name in which the 
event is found (i.e., its context). Although a process name 
is unique for a specification, it does not uniquely determine 
a context for the gate name: a gate name may appear multi- 
ple times within the process body, and each use may be syn- 
tactically different in terms of the number, type and form 
(whether ! or ?) of its attributes. We will distinguish such 
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LU IUS/ I M event 

1 

TM update invocation 
abort 

\ commit , 
f i \ 

- 
LOT- event 

a variable declaration xi 

1. is bound to a value communicated as a result of 

2. this value may be used as actual parameter in the 
the synchronization, and 

optional post-update method invocation. 

Evaluation of an LTM event imposes the following de- 
pendencies on value communication and synchronization. 
U,, happens before the LOTOS structured event; it does 
not require as input any values communicated during the 
event. U,,, might, however, update the database such that 
it affects the retrieval methods invoked during the evalua- 
tion of TM expressions that appear as value declarations on 
gate. After synchronization takes place, prior to the evalu- 
ation of Upoat, any variable declarations on gate will have 
been bound to values. These values can in turn serve as in- 
put arguments to method Upoat. All required input values to 
the Upoat update method must have been obtained prior to 
its evaluation, either as a result of the synchronization event 
gate, or as a result of TM queries on the local database. 

It follows from our approach that synchronization be- 
comes dependent on the state of the process’s local database, 
simply because retrieval method invocations may be used. 
Additionally, values communicated as a result of synchro- 
nization affect subsequent database updates, and thus these 
updates become synchronization-dependent on the states of 
other databases. But there is a catch here: the event(s) with 
which our original event synchronizes may or may not be- 
long to the same process (and hence database). We shall as- 
sume process and database descriptions to be decomposed 
in such a way that a process does not require synchroniza- 
tion with itself. 

5 Conclusions and Further work 
In the paper, we have illustrated how a combination of the 
LOTOS and TM languages can be used to describe dis- 
tributed object services. It turns out that a number of advan- 
tageous characteristics are inherent in our approach: 

1. the languages can be combined in a purely orthogonal 
manner, requiring no syntax changes to either, but only 
some minute additional interface definitions that can be 
kept separate from the specifications; 

2. specifications in the language combination nicely dis- 
tinguish between database network behaviour and 
monolithic database functionality; 

3. the languages accommodate generic system structure 
definitions, and this allows us to localize DBMS func- 
tionality and let it vary with specific choices for ad- 
vanced transaction models; this set-up is just one- 
albeit important--example of an architectural choice 
made parameterisable; 

TM update invocation 

- 
doesn’t happen 

+ 
doesn’t happen 

- 
doesn‘t happen 

Figure 3: Transactional aspects of an LTM event. 

multiple occurrences of the same gate within a process by a 
numerical index when needed. 

The signature associated with Upat in the TM database 
schema may differ significantly from the sequence of TM 
types on the gate listed above. We must therefore provide 
a mapping from the gate attributes to the actual parameters 
of the TM method invocation. This is done schematically by 
the above syntax. Expressions c1 up to ct can include any of 
the expressions and variable declarations that appear as gate 
attributes, possibly as subexpressions. The attributes to be 
used as method parameters are simply written as they appear 
in the event specification, for example, as in the expression 
Upst (e3, z5, e2). We require that c1 through ct contain no 
free identifiers other than z1 through zn. Results of queries 
on other, non-local databases involved in the LOTOS/TM 
event may thus serve as input to Upoat. 
4.3 LOTOSA’M event evaluation 
Consider the following structured event schema: 

gate !el  . . . ! e, ?zl: 6 1  . . . ?zm: nm 

The r6les of the different kinds of gate attributes in the com- 
putation can be understood as follows: 

0 a value declaration ei 

1. may invoke retrieval methods, 
2. may impose constraints on which processes can 

3. may be used as an actual parameter in the op- 
synchronize with the current one, and 

tional post-update method invocation. 
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4. the language combination allows abstract specifica- 
tions of systems as well as primitives (macros) for 
high-level modelling of co-operation scenarios; the pa- 
per identifies a first elementary primitive, the LTM 
event, and the full paper gives its semantics in LOTOS. 

Our continuing work will investigate other co-operation 
scenario requirements which we did not address here; such 
as time and space keeping agents, and database support for 
partial aborts or commits. The latter requirement will be 
studied in the context of an open nested transaction model. 
In line with this, we will attempt to provide more concur- 
rency in the database functionality, for instance by decom- 
posing the dbcons function into functions that take into ac- 
count the nature of the updates (cf. semantic concurrency 
control). 

We have demonstrated the possibility of meeting some of 
the goals that we identified in the introduction with our pro- 
posed specification framework. We hope to discover modu- 
lar primitives along the lines of the LTM event, which can be 
composed to achieve the same results in a more general way. 
Our future work will unfold in the direction of a complete 
language definition for the combined language, tool support 
for the language, and implementation mapping to advanced 
database transaction models. 
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