
Functionally Specified Distributed lkansactions
in Co-operative Scenarios*

Rolf A. de By Susan J. Even Peter A. C. Verkoulent

Centre of Telematics and Information Technology-University of Twente
P.O. Box 217,7500 AE Enschede, The Netherlands

Abstract
We address the problem of specifring co-operative, dis-
tributed transactions in a manner that can be subject to ver-

specification language requirements for this field. Prelimi-
nary work was described in 171. The goals that we have in
mind in performins this work are the following:

ification and testing. Our approach combines the process-
algebraic language LOTOS and the object-oriented data-
base modelling language TM to obtain a clear and f o m l
protocol for distributed database transactions meant to de-
scribe co-operation scenarios. We argue that a separation
of concerns, namely interaction of database applications
on the one hand and data modelling on the other hand, re-
sults in a practical, modular approach that is f o m l l y well-
founded. An advantage of this is that we may vary over
transaction models to support the language combination.

1 Introduction
In application areas like computer-supported co-operative
work (CSCW) there is a strong need for primitives to de-
scribe high-level co-operation scenarios that can be imple-
mented in a verifiable way. These scenarios share a set of
characteristics that make them intrinsically complex to de-
scribe and implement. 'Qpically, the area is identified by a
high level of interaction between agents, combining com-
plex data communication with both local and shared data re-
sources. It is our firm belief that such scenarios can only be
described by paying due attention both to process behaviour
and data modelling.

In the Transcoop project (ESPRIT BRA 801 2) we are in-
vestigating the combination of LOTOS as a process mod-
elling language with Th4 as an object-oriented data mod-
elling language. Within Transcoop, we also study how
specifications obtained in this language combination can
be mapped onto database platforms that feature advanced
transaction models, like the advanced transaction models
of [1-61. We are studying co-operative work applications
found in industrial environments with the aim of identifying

'Thisworkis Canid outin theESP~projectTRANSCooP(EP8012)
which is partially funded by the Commission of the European Communi-
ties. The partners in the TRANSCOOP project are GMD (Germany), Uni-
versity of Rente (The Netherlands), and VTT (Finland).

tour respective email addresses are [deby, seven,
verkoulel@cs.utwente.nl

0 orthogonality of the LOTOS/TM language combina-
tion. The integration will be one of co-existence, with
the two languages used to describe different aspects of
a co-operative scenario.

0 orthogonality of database functionality and inter-
database communication protocols as a result of the
above. This requires explicit synchronization with the
DBMS to obtain query results and perform database
updates.

0 genericity of the system structure description such that
the database functionality remains modular, and one
may vary over used transaction models.

0 abstraction away from implementational details with
which applications should not deal.

would identify classes of co-operation scenarios.
0 parameterizability over architectural features that

In this short paper, we present an overview of our initial
results towards a specification framework which addresses
the above goals. Section 2 discusses how we go about com-
bining LOTOS and Th4, and discusses their use in a three
step method. We then briefly discuss the two languages
in more detail in Section 3. Section 4 describes an essen-
tial primitive for co-operation scenario definition, called the
LTM event. The full paper [SI gives example specifications
and provides a formal semantics of LTM events. Section 5
summarizes the novelties of OUT approach and identifies fur-
ther issues that we want to address in this area.

2 The specification framework
The essence and intention of combining LOTOS and TM
is to arrive at a pleasing 'new' specification language for
distributed information systems that is both process-based
and state-based. We view the definition of a network of dis-
tributed information systems as an interconnected network

116
0-8186-7056-8195 $04.00 0 1995 IEEE

..*

B AdatabaseasaTMobjj
encapsubtcdinTMmethods.

..

A A network of interacting databee c EaIabasemethod+nhvork
p'oceasa, offering eventa (de-
in Full LOTOS). m / w .

event nutching (defined in

Figure 1: The specification framework.

of LOTOS processes which each have their local database.
There are three steps in the complete specification of such
a network, as illustrated in Figure 1. The behaviour of the
network itself can be completely described in Full LOTOS
(see Figure 1 A). The bullets indicate event gates that the in-
formation systems offer; the lines indicate which communi-
cation is possible.

A second step in the complete description is to define the
requested functionality for each database system. This is il-
lustrated in Figure 1B. We use the data model TM to pro-
vide method definitions that will in the next step be matched
against event gates.

The interesting part of the language combination is where
the interface between the two formalisms lies. In terms of
completing the system definition, we have to identify how
network events are matched to local database methods, thus
essentially defining the interface between the database and
the communication network. This is the really new part of
the language combination, and it is illustrated in Figure 1C.
The specification is discussed in Section 4.

3 Language descriptions
In this section, we summarize the important features of TM
and LOTOS .
3.1 TM
TM is an object-oriented (and type-theoretic) data model
that is theoretically well-founded, and capable of express-
ing many, if not all, features of data models currently in use
[9,101. It is formally founded in a typed lambda calculus
allowing for subtyping and multiple inheritance, based on
the ideas of [ll]. We use it here for the description of the
communicated data structures of the network, and for the
description of the local database schemata.

Characteristic features of Th4 are the distinctionbetween
types and classes; support for object identity and complex
objects; a three level method and constraint specification fa-
cility (object, class and database); and multiple inheritance
of data structure, methods and constraints. A TM database
is defined by its (typed) attributes and a set of methods that

can be invoked on the database. s p e s of attributes may be
arbitrarily complex: the type constructors supported are tu-
ple ((. . .)). variant (1 - -. p). set (P.. .), and list (I,. . .). Be-
sides basic types, class names may be used in type specifica-
tions. Specialization between classes is denoted by the ISA-
clause, which may identify several superclasses. A class
inherits the attributes, constraints, and methods of its su-
perclasses. In class specifications, constraints and methods
may be specified at two different levels: the object level and
the class level.

A TM database specification is organized in terms of
class and sort definitions. Each class (sort) definition iden-
tifies the type of its instances, rules that the instances have
to obey, and methods to which they respond. The language
for method definition is a full-fledged functional language
that incorporates simple arithmetic and first-order boolean
operators, as well as an extensive range of set operators for
database queries in the style of complex object SQL. This is
opposed to the common practice in industry where methods
are directly defined in procedural languages like C H , which
we believe is an obvious (and unfortunate) obstacle to veri-
fiable software code.

Together with a collection of class and sort definitions
comes a database definition, which closely resembles a class
definition. In the database definition, a list of persistent vari-
ables is presented together with their type. (A common type
for such a variable is PC, where C is some defined class.
The variable will then represent the class's so-called exten-
sion.) These variables constitute the database state. This is
achieved formally by viewing the variables as attribute la-
bels of a record, which is the database object. Besides per-
sistent variable declarations, the database definition also in-
cludes rules that the database state has to obey, and defini-
tions of methods that operate on the database state.

Database methods have an implicit self argument, which
stands for the database object as a whole. For our discus-
sion, it is important to know that methods come in two
flavours: retrieval methods and update methods. Retrieval
methods (or queries) take the database and retrieve some in-
formation from it. Update methods (or transactions) take
the database and change its state. Obviously, both forms of
methods may require parameters.

A tool-set for TM, including graphical interface, type
checker, prototype generator and compiler is under devel-
opment in the ESPRIT project IMPRESS (6355).
3.2 BasicLOTOS
LOTOS is a specification language that was designed for the
formal description of distributed, concurrent systems [12-
141. LOTOS is an IS0 standard (IS0 8807), which makes
it a more than viable candidate for the use we give it here.
LOTOS is based on process-algebraic ideas. The core of
the language, so-called Basic LOTOS, is formed by a pure
process algebra. (Full LOTOS is Basic LOTOS extended

117

with guards, value expressions and variable declarations-
see Section 3.3.)

A LOTOS process definition is a hierarchical structure
identifying subprocesses, their synchronization and data
communication. A process is viewed as a ‘black-box com-
puting agent’ capable of performing unobservable, intemal
actions, and interactions with its environment via so-called
gates that it is said to offer. Such an interaction is called an
event. (Sub)processes are defined in terms of behaviour ex-
pressions; behaviour expressions bottom out in event names
(or gates).

Possible forms of Basic LOTOS behaviour expressions
B are given in Table 2, which we have adopted from
[12]. The stop process is the process incapable of any (in-
ter)action. Action prefix allows to express that an action oc-
curs before some behaviour. The general case parallel com-
position identifies n gates on which the behaviours B1 and
E2 have to synchronize. Pure interleaving is a special case,
namely where n = 0. Likewise, full synchronization is the
case where the set of gates { 91,. . . , g, } is the union of
the sets of gates offered by B1 and B2. Hiding allows to
turn actions at the mentioned gates into intemal actions of
the process. Behaviour expressions can be parameterized by
gate names to obtain process definitions. Process instantia-
tion assigns actual gate names to the gate parameters. The
exit action is the only way to successfully terminate a pro-
cess. Enabling is like action prefix: it allows to express or-
dering of events, but is meant for general behaviour expres-
sions. Disabling, finally, allows to express that a normal be-
haviour B1 may, at any moment, be disrupted by another
behaviour B2.

A good introduction to the operational semantics of LO-
TOS is found in [12]. A LOTOS tool-set environment
for simulation, compilation and prototype generation is de-
scribed in [151.

3.3 Full LOTOS with TM

Full LOTOS introduces value communication and data
types to the process-algebraic concepts of Basic LOTOS.
The original data language for Full LOTOS is based on the
ACT-ONE theory of abstract data types; here, we will in-
stead use TM as the data language. This section looks at
constructs of Full LOTOS which involve value expressions
and therefore will be at the core of the LOTOSiTM language
combination.

In Full LOTOS, an event name may be followed by
value and variable declarations, together also called event
attributes. An event name together with its attributes is usu-
ally referred to as a structured event. A value declaration
looks like !e, where e is an allowed value expression in the
data language. A variable declaration takes the form ?z : U,
where z is a variable identifier and U is a data type. An ex-

ample LOTOS structured event schema is:

gate !el . . . !e, ?z1: ~1 . . . ?zm: U,,, [cond]

where cond is an expression of type bool, el up to e, are
arbitrary TM value expressions (queries, as we shall see in
Section 4), and zl: ~1 up to z,,,: U~ are typed variable dec-
larations. A condition may be used to constrain possible val-
ues for data synchronization.

There are other possible occurrences of TM expressions
in Full LOTOS which are not part of structured events.
These are: actual parameters to process instantiations other
than actual gate names, guards as conditions on possible be-
haviour, and the let-construct. Each of these, we will briefly
describe.

A process instantiation takes the form

P[gi, ... , gn] (el,..-,em)
where the gi are actual gate names and the e, stand for actual
values provided to the process. A guard is a condition (i.e.,
a boolean TM expression) that needs to be fulfilled to make
a behaviour possible; if the guard is not fulfilled the follow-
ing guarded behaviour expression is equivalent to the stop
process:

[guard] 4 B

Finally, the let construct introduces (typed) abbreviations
for value expressions in a behaviour expression:

let 21: n1 = el, . . . , z,: U, = e, in B

In each of the above cases, TM method invocations may be
part of the expression. Such invocations will be taken to be
retrieval metha3 against the process’s local TM database.
LOTOS imposes no evaluation order on el to e,, and
favourably, TM retrieval methods have no side-effects on
the database.

4 Co-operative transaction events
Section 3.3 highlighted the value-based constructs of Full
LOTOS where integration with TM will arise-i.e., those
places where the two languages will meet. The most in-
teresting of these constructs is the structured event, as this
is the point where the idea of co-operative transactions be-
comes apparent. Intuitively, a LOTOSiTM event describes
a complex communication event in which local database up-
dates are dependent on the results of queries against remote
databases. The event might be triggered by an application
process and will usually depend upon synchronization with
other agents. In this section, we outline the semantics of a
LOTOS/TM event.
4.1 LOTOWM events for co-operative updates
A LOTOS/TM event (LTM event for short) describes
the behaviour that occurs at the interface between a TM

118

expression name syntax B ::= I expressionname syntax B ::=
inaction stop

- unobservable (intemal) i; B
- observable 9; B

action prefix

choice BlUB2
process instantiation
successful termination exit

p[gl, . . . gn]

parallel composition

- pure interleaving
- full synchronization

- general case B1 I[g1, * * 1 grill B2
B1 I I I B2
B1 I I B2

hiding hidegl, . . . , g ,in B
enabling B 1 > > B2
disabling B 1 [> B2

Figure 2 Basic LOTOS behaviour expression syntax.

database and its encapsulating LOTOS process. We want
to rigourously define what event occurrence at the inter-
face means. An LTM event either happens or does not
happen-in other words it is atomic. If it does not hap-
pen, no pure LOTOS event has occurred and no TM up-
dates have been issued. Locally, we view an LTM event
as a triple (U,,, E, Upoat) where E is a LOTOS event.
The motivation for this view stems from the observation
that an event occurrence typically coincides with a state
change of the process. But to cover situations of triggering
and non-triggering behaviour, we identify two optional state
changes: one immediately before, and one immediately af-
ter the actual event occurrence.

Intuitively, U,, will be used for setting up any local
workspace involved in the event; Upoat happens after the
LOTOS structured event. Methods U,, and Upoat are
called the event’s pre- and post-update. Both are in fact op-
tional, and this may be indicated by the identity update. (If
there is no database associated with the process in which
the event expression occurs, then both U,, and Upat will
be the identity.) Although TM has no formal transaction
notion-updates are just state transitions of the database-
we define it to be as follows. An update commits if and
only if all database constraints are valid for the post-state of
the database; otherwise it aborts. We assume the availabil-
ity of a method dbcons that functions as a test on database
constraint integrity 191. After commit of a TM update, the
database state has usually changed.

Figure 3 captures the intuitive meaning of an LTM event.
The transactional aspects of an LTM event are summa-

rized as follows:

Any TM method invocation occurring in the condition
or in a value expression is interpreted as a retn’eval
method.

The U,,., update method associated to the event is in-
voked. If it aborts, the complete LOTOS/TM event
does not occur. Otherwise,

A synchronization attempt on the LOTOS event may

4.

take place, evaluating any value expressions against
the newly obtained database state, i.e. the post-state of
U,, . If the attempt does not succeed, the U,, update
is rolled back, and the overall LOTOS/TM event does
not occur. Otherwise,

The Upoat update method associated to the event is in-
voked. If it commits, we obtain another new database
state and the overall event succeeds. If Upoat aborts,
U,, is rolled back and the overall event does not oc-
cur.

From the more abstract point of view of application spec-
ification, a LOTOS/TM event is an atomic primitive. Sev-
eral forms of such events can be identified, and their imple-
mentation is discussed in the full paper [SI.
4.2 LOTOSRM event declaration
The relationship between LOTOS/TM events and possible
pre- and post- TM database update methods will be pro-
vided by user-specified event declarations with the follow-
ing form:

LTM-event process-gate is
gate !el ?zl: 71 . . . !en ?zn: T~

[triggered by upel
[with update Upoat (c1, . . . , CL)]

The declaration includes the LOTOS event specification, to-
gether with expressions for its optional pre- and post- TM
method invocations. An LTM event environment binding
LTM event names to LTM event declarations will be used
in the evaluation of the top-level LOTOS network specifi-
cation.

The naming convention for an LTM event will be to jux-
tapose its gate name with the process name in which the
event is found (i.e., its context). Although a process name
is unique for a specification, it does not uniquely determine
a context for the gate name: a gate name may appear multi-
ple times within the process body, and each use may be syn-
tactically different in terms of the number, type and form
(whether ! or ?) of its attributes. We will distinguish such

119

LU IUS/ I M event

1

TM update invocation
abort

\ commit ,
f i \

-
LOT- event

a variable declaration xi

1. is bound to a value communicated as a result of

2. this value may be used as actual parameter in the
the synchronization, and

optional post-update method invocation.

Evaluation of an LTM event imposes the following de-
pendencies on value communication and synchronization.
U,, happens before the LOTOS structured event; it does
not require as input any values communicated during the
event. U,,, might, however, update the database such that
it affects the retrieval methods invoked during the evalua-
tion of TM expressions that appear as value declarations on
gate. After synchronization takes place, prior to the evalu-
ation of Upoat, any variable declarations on gate will have
been bound to values. These values can in turn serve as in-
put arguments to method Upoat. All required input values to
the Upoat update method must have been obtained prior to
its evaluation, either as a result of the synchronization event
gate, or as a result of TM queries on the local database.

It follows from our approach that synchronization be-
comes dependent on the state of the process’s local database,
simply because retrieval method invocations may be used.
Additionally, values communicated as a result of synchro-
nization affect subsequent database updates, and thus these
updates become synchronization-dependent on the states of
other databases. But there is a catch here: the event(s) with
which our original event synchronizes may or may not be-
long to the same process (and hence database). We shall as-
sume process and database descriptions to be decomposed
in such a way that a process does not require synchroniza-
tion with itself.

5 Conclusions and Further work
In the paper, we have illustrated how a combination of the
LOTOS and TM languages can be used to describe dis-
tributed object services. It turns out that a number of advan-
tageous characteristics are inherent in our approach:

1. the languages can be combined in a purely orthogonal
manner, requiring no syntax changes to either, but only
some minute additional interface definitions that can be
kept separate from the specifications;

2. specifications in the language combination nicely dis-
tinguish between database network behaviour and
monolithic database functionality;

3. the languages accommodate generic system structure
definitions, and this allows us to localize DBMS func-
tionality and let it vary with specific choices for ad-
vanced transaction models; this set-up is just one-
albeit important--example of an architectural choice
made parameterisable;

TM update invocation

-
doesn’t happen

+
doesn’t happen

-
doesn‘t happen

Figure 3: Transactional aspects of an LTM event.

multiple occurrences of the same gate within a process by a
numerical index when needed.

The signature associated with Upat in the TM database
schema may differ significantly from the sequence of TM
types on the gate listed above. We must therefore provide
a mapping from the gate attributes to the actual parameters
of the TM method invocation. This is done schematically by
the above syntax. Expressions c1 up to ct can include any of
the expressions and variable declarations that appear as gate
attributes, possibly as subexpressions. The attributes to be
used as method parameters are simply written as they appear
in the event specification, for example, as in the expression
Upst (e3, z5, e2). We require that c1 through ct contain no
free identifiers other than z1 through zn. Results of queries
on other, non-local databases involved in the LOTOS/TM
event may thus serve as input to Upoat.
4.3 LOTOSA’M event evaluation
Consider the following structured event schema:

gate !el . . . ! e, ?zl: 6 1 . . . ?zm: nm

The r6les of the different kinds of gate attributes in the com-
putation can be understood as follows:

0 a value declaration ei

1. may invoke retrieval methods,
2. may impose constraints on which processes can

3. may be used as an actual parameter in the op-
synchronize with the current one, and

tional post-update method invocation.

120

4. the language combination allows abstract specifica-
tions of systems as well as primitives (macros) for
high-level modelling of co-operation scenarios; the pa-
per identifies a first elementary primitive, the LTM
event, and the full paper gives its semantics in LOTOS.

Our continuing work will investigate other co-operation
scenario requirements which we did not address here; such
as time and space keeping agents, and database support for
partial aborts or commits. The latter requirement will be
studied in the context of an open nested transaction model.
In line with this, we will attempt to provide more concur-
rency in the database functionality, for instance by decom-
posing the dbcons function into functions that take into ac-
count the nature of the updates (cf. semantic concurrency
control).

We have demonstrated the possibility of meeting some of
the goals that we identified in the introduction with our pro-
posed specification framework. We hope to discover modu-
lar primitives along the lines of the LTM event, which can be
composed to achieve the same results in a more general way.
Our future work will unfold in the direction of a complete
language definition for the combined language, tool support
for the language, and implementation mapping to advanced
database transaction models.

6 Acknowledgements
We thank Pieter Oude Egberink for canying out a prelimi-
nary case study, and thank Frans Faase and Jan Vis for dis-
cussing with us the ideas presented in this paper.

References
[l] Gerhard Weikum, Andrew Deacon, Werner Schaad &

Hans Schek, “Open nested transactions in federated
database systems,” IEEE Bulletin on Data Engineer-
ing 1 (June 1993), 4-7.

[2] Omran Bukhres, Ahmed Elmagarmid & Eva Kuhn,
“Implementation of the Flex transaction model,” IEEE
Bulletin on Data Engineering 1 (June 1993), 28-31.

[3] Peter Muth, Thomas C. Rakow, Wolfgang Klas & Erich
J. Neuhold, “A transaction model for an open publica-
tion environment,” in Database Transaction Models for
Advanced Applications, Ahmed K. Elmagarmid, ed.,
Morgan Kaufmann Publishers, San Mateo, CA, 1992,

[4] Jari Veijalainen, Frank Eliassen & Bernhard Holtkamp,
“The S-transaction model,” in Database Transaction
Models for Advanced Applications, Ahmed K. Elma-
garmid, ed., Morgan Kaufmann Publishers, San Mateo,

1 59-2 1 8.

CA, 1992,468-513.

121

[5] Helmut Wachter & Andreas Reuter, “The ConTract
model,” in Database Transaction Models for Advanced
Applications, Ahmed K. Elmagarmid, ed., Morgan
Kaufmann Publishers, San Mateo, CA, 1992,219-264.

[6] Panos K. Chrysanthis & Krithi Ramamritham, “ACTA.
The SAGA continues,” in Database Transaction Mod-
els for Advanced Applications, Ahmed K. Elmagarmid,
ed., Morgan Kaufmann Publishers, San Mateo, CA,

[7] Rolf A. de By & Hennie J. Steenhagen, “Interfacing
Heterogeneous Systems through Functionally specified
Transactions,” in IEIP DS-5 Conference on Seman-
tics of Interoperable Database Systems, Lome, Victoria,
Australia, November 1 C20, 1992 #2, David K. Hsiao,
Erich J. Neuhold & Ron Sacks-Davis, eds., IFIP &

[SI R. A. de By, Susan J. Even & Peter A.C. Verkoulen,
“Functionally specified distributed transactions in co-
operative scenarios,” University of Twente, Memoran-
dum INF-94-72, Enschede, 1994,18 pp.

[9] H. Balsters, R. A. de By & R. Zicari, ‘‘Vped sets as a
basis for object-oriented database schemas,” in Proceed-
ings Seventh European Conference on Object-Oriented
Programming, July 26-30, 1993, Kaiserslautern, Ger-
many, LNCS #707, Oscar M. Nierstrasz, ed., Springer-
Verlag, New York-Heidelberg-Berlin, 1993, 161-1 84.

[lo] RenC Bal, Herman Balsters, Rolf A. de By, Alexan-
der Bosschaart. Jan Flokstra, Maurice van Keulen, Jacek
Skowronek & Bart Termorshuizen, “The TM Manual,”
Universiteit Twente, Technical report IMF’RESSKJT-
TECH-T79-001 -R2, Enschede, The Netherlands, 1993.

[111 Luca Cardelli, “A semantics of multiple inheritance,”
Information and Computation 76 (1988), 138-164.

[12] Tommaso Bolognesi & Ed Brinksma, “Introduction
to the IS0 Specification Language LOTOS,” Computer
Networks and ISDN Systems 14 (1 987), 25-59.

[13] Chris A. Vissers, Giuseppe Scollo, Marten van Sin-
deren & Ed Brinksma, “Specification styles in dis-
tributed systems design and verification,” Theoretical
Computer Science 89 (1 99 l), 179-206.

[141 ISO-Information Processing Systems-Open Systems
Interconnection, LOTOS-A Formal Description Tecb-
nique Based on the Temporal Ordering of Observational
Behaviour, DIS 8807,1987.

[151 Maurizio Caneve & Elena Salvatori, eds., “Lite User
Manual,” LOTOSPHERE consortium, Lotosphere de-
liverable Lo/wwNoo34/V08, ESPRIT 2304, March
30, 1992.

1992,349-398.

CITRI, 1992,38-45.

