
Integrating Evolutionary Computation with Neural Networks

E. Vonk *, L.C. Jain **, L.P.J. Veelenturf *. and R. Hibbs *

*Control, Systems and Computer Engineering
Group (BSC).
Laboratory for Network Theory,
Department of Electrical Engineenng,
IJniversiry of Twente, Postbus 21 7 ,
7500 AE Enschede,
The Netherlands.
Tel. : +61 8 302 3084
Fax : +61 X 302 3384
Iimail: Y40021.1@ iux 1evels.unisa.edu.au

Keywords - evolutionary computation, genetic
algorithms, evolutionary algorithms, evolutionary
strategies. evolutionary programming, genetic
programming, neural networks

A bstrac t

There is a tremendous interest in the development of
the evolutionary computation techniques as they are
well suited 10 deal with optimization of functions
containing a large number of variables. This paper
presents a brief review of evolutionary computing
techniqucs. It also discusses briefly the hybridization
of evolutionary computation and neural networks and
presents ;I solution of a classical problem using neural
computing and evolutionary computing techniques.

1. Introduction

This paper presents ;I brief review of evolutionary
computation techniques, hybridization of these
techniques and neural computing techniques and the
application of evolutionary computing techniques to
a classical exclusive-OR problem. Section 2
inuoduces briefly the evolutionary computation
techniques incorporating genetic algorithms (GAS),
genetic programming (GP) and evoluuonary
algorithms E A) . Section 3 presents a brief summary
of the possible hybridizations of evolutionary
computation and neural networks. Section 4 presents
some experimenrs on the application of <an
evolutionary computlng technique to a classical
exclusive-OR problem. Section 5 present5 die
conclusion and the future direction.

2. Evolutionary Computation

Evolutionary computation is the name given IO a
collection of algorithms based on the evolubon of a
population toward.. a solut~orr to 21 ceniin probiem

0-8186-7085-1/95 $114.00 0 1995 IEEE
137

**Knowledge-based Engineering Systems Group,
School of Electronic Engineering,
University of South Australia,
Adelaide, The Levels, 5095,
Australia.
Tel. : 4 1 8 302 3315
Fax : +61 8 302 3384
Email: etlcj @ 1v.leve 1s.unisa.edu.au

These techniques are successfully used in many
applications including the automatic generation of a
neural network architecture. The population of
possible solutions evolves from one generation to the
next, ultimately arriving at a satisfactory solution to
the problem. The algorithms differ in the way a new
pipulation is generated from the present one and in
the way the members are represented within h e
algorithm.

There is much confusion about the grouping and
naming of the vanous kinds of evolutionary
computations. In this paper we distinguish between
three kinds of evoluuonary computations: Genetic
Algorithms (GAS), Genetic Programming (GP) and
Evolutionary Algorithms @As). The latter can be
divided into Evoluuonary Strategies (ES) and
Evolutionary Programming (EP).

2.11. Genetic Algorithms (GAS)

Genetic algorithms were developed by John Holland
in the 1970’s and they rely on a linear representabon
of the genetic material. In GAS the members of the
population are called chromosomes and are often
coded as fixed-length binary strings although variable
length strings have been used as well. Chromosomes
are made up of a set of genes. In the case of binary
stnngs they are just bit,.

2.1.1. The algorithm

Fig. 1 shows the flowchart of the standard genetic
algorithm. The reproduction operator that is most
commonly used is the fitness propomonate or
roulette wheel method, where members of a
population are extracted using 3 probabilistic Monte
Carlo procedure based on their average fitness. 1,or
example, a chromosome with :i fitness of 20% of the

total fitness will on average make up 20% of the
intermediate generation.

The heurisucs of GAS are mainly based on this
reproduction and on the crossover operator, and only
on a very small scale on the mutation operator. The
crossover operator exchanges parts of the
chromosomes (strings) of two randomly chosen
members in the intermediate population and the
newly created chromosomes are placed into the new
population. Sonietimes instead of two, only one
newly created chromosome is put into the new
population; the other one is discarded. The mutation
operator works only on a single chromosome and
randomly alters some part of the representation
smng. Both operators (and sometimes more) are
applied withi a certain probability

population

Fig. I: Flowchan fcw ihe srandard
genetic algonthnt

'I'he stopping criteria is when there is a chromosome
in the current population that gives an adequate
solution or when a .set number of generations have
been completed. Many variations on the above
aJgorithm are possible. For example, the mutation is
very often performed after a new population has been
made; i.e. sequentially. Also, instead of selecting a
genetic operator pmbabalistically, ofien a certain
exact percentage of the new population is made using
this operator.

2.1.2. Genotypes and phenotypes

GAS rely on two separate representational spaces.
One is the recombination space, where the actual
i:enetic operations are performed on the (binary)
auings or genotypes. The other space is the
evaluation space where the actual problem-structures
or phenotypes are evaluated on their ability to
perform the task and where their fitness is calculated.
An interpretation or mapping function is necessary
between the two. The coding of the genetic material
plays an important role in the performance of the
(;As. The genetic operators perform their task on the
genotypes without any knowledge of their
interpretation in the evaluation space. This works fine
as long as the interpretation function is such that the
application of the genetic operators in the
recombination space leads to good points in the
evolution space. Problems occur when a smcture (or
several very similar structures) in the evaluation
space can be represented by very different genes in
the recombination space. Schaffer et al. [9] calls chis
"competing conventions", but it is also referred to as
the phenomenon of different structural mappings
(genotypes) coding the same or very similar
functional mappings (phenotypes) [171. Basically it
means that a unimcdal error landscape becomes
multimodal where each peak represents a
representation (convention) of the structure. It is very
unlikely that crossover between two different
chromosomes having the same convention will result
in a useful offspring.

2.1.3. The Steady State Genetic Algorithm (SSGA)

Sometimes instead of first making an intermediate
population and then applying the genetic operators
another approach is used where the operators are
applied directly to members of the current
population. These members are chosen based on their
fitness. The newly made chromosome is then merged
into the current population taking the place crf a
chromosome that was chosen based on its inversed
fitness. For a single generation step, this proces\ is
rcpeated until the number of removed chromosoines
equals the number of members in the population.
This approach is called a Steady State Genctic

138

Algorithm (SSGA) as opposed to the standard Batch
Genetic Algorithm. It requires much less memory
storage as only one population instead of two needs
to be stored. A certain notion of age can be built into
the system where for a certain number of iterations
these newly made members c m not be reselected to
create i i new offspring.

Apart from the roulette whecl method another
reproduction mechanism called tournament selection
is often used. Here a certain number of chromosomes
(the to~irn~ment sir,e) are selected randomly from the
population and [lie best inember of this group
replaces [he worsl

2.2. Genetic Programming (GP)

Genetic programming is a technique derived from
genetic algorithms and was developed by John Kola
(1) De (;an\ [17] uscs the same name tor his work,
hut there is JIO relation between the two except that
bolh x c b;ised 011 genetic algorithm> Getretic
programming can be seen a\ a spccial kind of genetic
algonthms bul differ\ in that it uses hierarchical
peneuc rn;iteri;il [hat I \ noit lonited in s i x The
members of a ppulauon or c l ~ r o m o ~ ~ n i c ~ arc tree
structured progranis and the genetic operator\ work
on the branchcs of &lese tree<. Onginally grnetic
programming wa\ implementod in the LISP
programniing language, becausv of its build-in tree
like &tAa structurec (,‘l-expresrionb), but it has been
implemt:nteti i n vmous languages since The main
advantage of (3’ over GA is that the size and shape
of the final wlution doe$ not necd to be known in

advance 431 CoursL GP is only ativantageou\ over (;A
if the chromosome^ can be reprewnted adequate11 by
hierarchical tree struciures. Kescarch has 4iov.m thal
C P can bc ~uccesstullr applied Lo many problems i n

the fields ot artificial intel1igeni.e. mac hine learning
and symbolic promusiirg [I] .

I n GP thi: chromosome\ are made up of a set of
junctions arid terminal5 connected to each other by a
iree structure Iyplcally the set of funcuons include
arithmetic operations, logical operations and problem
specific operations ?he terminal set is made up of
the dat:~ input\ t o the system and the numencal
constant:, Functions can geiicrally have hoth other

\hell as terminals ns Lheir argumenb itnd
mu\t therk9ore he well-defined to hantllc any input
~ombiniitii)~~ ‘I‘lte iiumber ot arguments ,I lunction
has mu\t he defined beforehand GP incorporates
‘banable election’ so that it I \ not needed to het a
priori wliich data-inputs are going to bc used. 1 hesc
are selected on the run This can be a useful concept
when it IS not known in advance exactly which data-
inputs are ncedetl in order to solve Ore problem

A \ in the standard genetic algorithm paradigm,
genetic programming relies mainly on the
reproduction mechanism and the crossover operator.
7he flowchart for the standard genetic algorithm (fig.
1) also applies for genetic programming and the same
reproduction mechanisms apply. Crossover is
performed on branches of trees, which means that
entire branches or subtrees are swapped between iwo
chromosomes.

As in the genetic algorithm paradigm, there exists a
steady state approach to genetic programming.
Steady State Genetic Programming (SSGP) has
proven to be advantageous over the standard, or batch
GI’ paradigm in certain applications [2].

An interesting feature within the GP paradigm which
accounts for modularity is the possibility to include
the so called Automatically Defined Functions
(ADFs) [l]. These ADFs perform a subtask of Ihe
problem and can be called upon more than once. An
AI)F does not have particular fixed terminals as rts
inputs, but instead i:; parameterized by dummy
variables. When an ADF: is called upon from witliin
thr main program (Koza calls this the result
prtducing branch), the dummy variables itre
irislantiated with specitic values or terminals. ?‘lie
A13Fs are defined in the so called function-defining
branch. The complete genetic tree that represents a
certain solution therefore consists of a result-
producing and a function-defining branch. 7 he
genetic operators work on both branches. The idea is
that GP will dynamically evolve functions that are
useful to the problem (ADFs) as well as a main
program that calls upon these functions. A parallel
can be drawn here to the field of neural networks
where ;I certain part of the network performs a
function that can be seen as :I subtask for the
complete problem. The difference is that its position
within the neural network is fixed and that it is of no
use to the network if its needs this same function
somewhere else but with other actual inputs.

2.3. Evolutionary Algorithms (EAs)

Evolutionary algorithms I221 are another form of
evcilutioirary computation but instead of GAS (and
GPI, they focus on phenotypes and not on genotypes.
Thcrc is no necd for a separation between a
recombination and an evaluation space. Thc genetic
operators work directly on lhe :ictu;il structure or
phcnotype. Thc structures used in evolutionary
algorithms are representations that are problern
dependent and more natural for the task than Uie
general representations used for GA. Originally
evolutionary algorithms focused on a single paretic
only. but extensions have been made Cor a population

139

consisting of more members. Evolutionary algorithms
can be divided into Evolutionary Strategies 0 3)
which focus on the behaviour of individuals, while
Evolutionary Programming (EP) focus on the
behaviour of entire species.

In EP, the only genetic operator that is used is the
representation-dependent mutation operator, although
several different mutation operators can be used in
the Same algorithm. A commonly used mutation
operator just adds a Gaussian random variable to each
component of a chromosome. Because ES deal with
individuals instead of entire species sexual operators
(crossover) are possible as well and extensions have
been made to include these.

is used to fine-tune a near-optimal solution found by
GA, has proved to be successful [3].

The members of the population are the weights of the
network which are coded as strings. When real
valued weights are used, they are usually coded into a
binary string using a binary or a Gray coding
mechanism. The fitness measure is normally
calculated as the performance error of the network on
test data and the genetic algorithm can in such a case
be classified as a supervised learning algorithm.

In [4] a GA is used to evolve ecological neural
networks that can adapt to their changing
environment. This is done by letting the fitness
function, which in this case is seen as individual for

3. Hybridization of Evolutjonary every gene, co-evolve with the weights of the
Computation and Neural Networks network. A special feature Of this research is that

there is no reinforcement for ‘good’ behaviour of the

Evolutionary computation can be used in neural
network design in several ways. For example, it can
be used :

0 on a fixed neural network structure to train the
network; i.e. to determine the weights

to generate the architecture of the neural network
to be trained by a separate learning algorithm
(usually back propagation)

network; the network just tries to model or adapt to
the world in which it lives.

De Garis [13] uses a method which is based on fully
self-connected neural network modules. It is shown
that using this approach a network can be taught a
certain task even though the time-dependent input
varies so fast that the network never settles down.
The system does not use a crossover operator (it
could therefore be called evolutionary programming)
and is used to teach a pair of sticks to walk.

to analyse a neural network In [15] and [19], a genetic algorithm is used on a
fixed three layer feedforward network to find the

In the evaluation phase the weights from the hidden
to the output layer are adjusted using a simple

3.1. Evolutionary computation as a supervised delta rule. The fitness measure again is
learning algorithm for a NN just the performance error on the training set.

to generate both the neural network architecture optimal mapping from the input to the hidden layer.
and the weights

In the first application above, the genetic algorithm
provides a good alternative to a learning algorithm
such as back propagation which often gets stuck in
local minima. The genetic algorithm performs a
global search of the weight space and therefore is
unlikely to get stuck in a local minima. Evolutionary
computation does not use error-gradient information.
Therefore, unlike algorithms such as BP, they can be
used where this information is not available or
computationally expensive. It also means that the
activation function of the neurons does not have to be
differentiable or even continuous. Genetic algorithms
can be used to train any type of neural network
including fully recurrent networks. A problem with
genetic algorithms is that they are very slow in fine
tuning once they are close to a good solution.
Therefore the hybridization of GA and BP, where BP

3.2. Evolutionary computation to generate
an optimal NN topology

In the second application the chromosomes contain
the topology of the network and sometimes the
learning parameters such as the learning rate as well.
Genetic algorithms are used in [5],[14],[20],[21],[251.
There are several ways to encode the network
topology as a chromosome. The most commonly
used methods are:

0 a connectivity matrix
0 a graph grammar

Graph grammar based systems are often found to
perform better than methods using a connectivity
matrix. This is due to the fact that when the matrix
method is used, the chromosomes and accordingly

140

the search space for the algorithm becomes very large
as the network size is increased. When graph
grammars are used this is not the case, as the
networks produced are highly structured or modular
1251.

The above methods can be classified as ’strong or
low-level representations’ because the complete
network topology is coded in the chromosomes.
When ‘weak or high-level representauons’ are used,
the chromosomes do not contain the complete
network topology Instead tbej consist of more
abstract terms, like ‘the number of hidden neurons’ or
‘the number of hidden layers’ etc. A method that uses
module< of neuroiis and where only the connections
between these modules are coded can be seen as a
weak representation as well.

I>unng the evaluatlon (calculation of the f imess
measure) every member of tlie population is
translated into a neural network which is then learned
using J separate learning algorithm llke back
propagauoii. As the chromosomes do not contain
information coiiceming the weights of the network,
these have to be set to an inilal (random) value
After each nelwor!. has learned they are tested using
test data, and the fitness measure is calculated This
causes a problem as the performance of a neural
network usually depends on the values of the initial
weights Therefore, 111 order to get a good fitlies5
measure, the networks are to be leamecl several umes
using different initlail weights each l i ne and the
results =e averaged. This causes the approach to
become very slow, see e.g. [IJ]. After evaluation, the
usual geneuc operators (crossovcr. mutation) are
performed on tht. chromosome? representing the
networks to obtrun a new populauon.

3.3. Evolutionary computation in NN
analysis

Although this combination of GA’s and N ” s is not
commonly used, GA’s can be used to analyse or
explain neural networks. In [101 GA’s are used as a
neural network invcrsion tool in that they can find the
input patterns that yield a certain output of Lhe
network

3.4. Evolutionary computation to generate
both a NN topology and its weights

The last option is the current fcocus of this study.
Successfully reponed applications include using a
genetic algorithm where the topology and weights are
encoded :is variable-length binary strings [6]. Gruau
[1 1) uses a graph grarnmar approach callcd ‘cellular

encoding’ in a genetic programming system to
implement Boolean neural networks. The mechanism
is modular in that subnetworks or building blocks can
be used for a subtask of the problem.

In [12] a structured GA is used that simultaneously
optimizes the neural network topology and the values
of the weights. A two-level genetic structure
represented by a single binary string is used where
one level defines the connectivity (topology) and the
other the values of the weights and biases. It was
found that although the algorithm worked well on
sniall problems like XOR, it could not scale up
properly to bigger real-world problems.

In [171 feedforward neural networks are generated by
using GAS, incorporating a strong representauon
scheme where every gene in a chromosome
represents a connection between two neurons. l’he
problem of competing conventions is tackled here by
introducing connection specific distance coefficients
in the genetic material. For each functional mapping
or phenotype, the structural mapping or genotype
with the shortest amount of connection lengths is
preferred. This approach is also known as ‘restrictive
mating‘ [24]. This way, some of the topology
inlormation of the phenotypes (the actual neural
networks) is incorporated into the genotypes. A
disadvantage of the system proposed is that a
maximum size neural network topology, including
the number of hidden layers used, needs to be
specified in advance.

Jacob and Rehder [18] use a grammar-based genetic
system, where topology creation, neuron
functionality creation (e.g. activation functions) and
weight creation are split up into three different
modules, each using a separate GA. The modules ;ire
linked to each other by passing on a fimess measure.
The grammar used is such that a neural network
topology is represented as a string consisting of all
thc existing paths from input to output neurons. In
[24] a somewhat similar modular design approach is
used but here a distinction is made between structure,
connectivity and weights optimization. Structure here
is defined as the number of layers and the number of
neurons in every layer.

Aiigeline et a1 [7] have reported a scheme based on
evolutionary programming where the nctwork5
evolve using both a parametric mutlition (mutation of
the. weights) and a Ftructural mutation I t I T argued
h i t EP is a better choice t o r this t a sk than I \ GA,
m:unly becauw i t is not clear that there exi\ts x i

appropnate interpretation function betueeir the
recombination and evaluation space for the
application of neural network de\ign

14 I

3.5. Modular neural networks
5. Conclusions

In sections 3.2 and 3.4 systems are described that use
a modular neural network structure where groups of
neurons are treated as a single module [8],[14],[23].
An advantage of using modular neural networks is
that the weight space is reduced. This has a positive
effect on both the generalization capability and the
time needed to learn the network.

4. Experiments

Experiments were performed on genetic algorithms
as a learning algorithm for the weights of a neural
network. The exclusive-OR function was chosen as a
test case in our preliminary investigations. Table 1
shows the result: of applying gradient descent (back
propagation) and a genetic algorithm for optimizing
the weights of a multiple-layer perceptron network
structure (2-4-1 network). The training was stopped
when the network had correctlv learned all of the four
training facts.

Details of the two algorithms used are:
sigmoid activation function
training tolerance = 0.2

Back propagation:
includes bias units
learning rate = 0.1
momentum term = 0.9

Genetic algorithm:
population size = 80

crossover probability = 0.7
mutation prohabbility = 0.(32

chromosome length = 192 bits
m a . range of weights = [-20,201

Table I : Optimization of the weights of a tnirltiple-

The results were averaged over several runs. In some
runs the back propagation algorithm did not converge
even arter a very long time. These runs were left out
of the results. The genetic algorithm does not suffer
from being stuck in local minima and therefore is
more robust. Learning times for this problem are
similar for the two algorithms.

This paper has presented in brief a review of
evolutionary computation techniques, hybridizations
of evolutionary computation and neural computing
techniques and some experiments on classical
problems. The long term goal of this research work is
to develop intelligent techniques for rapidly training
neural networks for use in a dynamic environmeni.

Acknowledgments

‘Thanks are due to the Defence Science and
’Technology Organisation, Salisbury, Adelaide, South
Australia, for the financial support (contract number
340479). Edgar Vonk wishes to thank the Control,
Systems and Computer Engineering Group (BSC),
1,aboratory for Network Theory, Department of
Electrical Engineering, University of Twente, for the
permission to undertake this project in the
Knowledge-based Engineering Systems Group,
I Jniversity of South Australia.

References

K o a , John R., Genetic Programming, On tlie
Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge,
1992.
Kinnear. Kenneth E. Jr., ”Evolving of a Sort
Lessons in Genetic Programming”, IEEE
International Conference on Neural Networks,
New York, vol. 2, pp. 881-888, 1993.
I~libbs, R. A. , “Speeding up Backpropagatiori: A
Comparative Study”, Technical Report,
Knowledge-based Engineering Systems Group,
University of South Australia, Australia, 1904.
Lund, Henrik H. and Parisi, Domenico,
“Simulations with an Evolvahle Fitness
Formula”, Technical Repon PCIA-1-94, C.N.R.,
Rome, 1994.
Harp, S. A. and Samad T., “Genetic Synthesis
of Neural Network Architecture”, in: Hadbook
of Genetic Algorithnts, edited by L. Davis, Van
Nostrand Reinhold, pp. 202-221, 1991,
Maniezzo, Vittorio, “Genetic Evolution of the
Topology and Weight Distribution of Neural
Networks”, IEEE Transactions on Neural
Networks, Vol. 5 , No. 1, January 1094.
Angeline, Peter, J., Saunders, Gregory M., and
Pollack, Jordan M., “An Evolutionary
Algorithm that Constructs Recurrent Neural
Networks”, IEEE Transacfions on Neiiral
Nehvorks, Vol. 5.. No. 1, January 1904.

142

IS] Koza, J . R. and Rice, J. P., “Genetic Generation
of both the Weights and Architecture for a
Neural Network”, IEEE International Joint
Conference on Neural Networks, 1991.

[9] Schaffer, J. I)., Whitley D. and Eshelman, L. J.,
“Combinations of Genetic Algorithms and
Neural Networks: A Survey of the State of the
Art”, IEEE International Workshop on
Combinations of Genetic Algortihms and Neural
Networks (‘COGANN-92), Baltimore, p p . 1-37,
1992.

Algorithms in Neural Network Query-Based
Learning and Explanation Facilities”, IEEE
Inrernarional Workshop Ion Combinations of
Genetic Algortihms and Neural Networks
(COGANh?-9;!), Baltimore, pp, 169-183, 1992.

[111 Gruau, F., %“tic Synthesis of Boolean
Neural Networks with a Cell Kewiting
Developmencil Process”. IEEE Infernuticma1
Workshop on Combinations (f Generic
Al,i;nrtihni.s and Neural Networks (COGAIVN-
92). Baltimorc, pp. 55-74, 1992.

Application-Specific Neural Networks using the
Structured Genetic Algorithm”. IEEE
Internuticma1 Workshop on Combinations o/
Genetic Algodhms and Neural Networks
(COGANN-9?), flaltimose, pp 87-96, 1992.

[I31 Gans, H. de, ”Gcnetic Programming, Building
Nanobrains with Genetically Programmed
Neural Network Module>”. IEEE Internarional
Joint Conference on Neural ,Vetworks, New
l‘o,rk, vol. 3,pp. 511-516, 1990.

[I41 Boers, E.J.W and, Kuiper, €I .> ”Biological
Metaphors and the Design o f Modular Artificial
Neural Networks’“, Technical Report,
Dep:lrtmcnts cif Clomputcfr Science and
Experimental and Theoretical Psychology,
Leiden liniversity, The Netherlands, 1992.

[lS] Hassoun, M . I i . , I~”undamenra1s ofArt!ficial
Neural Nerworks. MIT press, 1995.

[16] L o b ” , R., “Structure Evolution in Neural
Systems”,in: ljynamic, Genetic, and Chaotic
Programming, edited by B. Soucek arid the
IRIS Group, John Wiley Rr Sons, Chapter 15,

[17] Braun, El. and Wcisbrod J., “Evolving Neural
Feed forward Networks”, h i e marional
Conference 011 Ai.tificia1 Neural Ners and
Genetic AlXoritht~ns (ANNGA9-7). Innsbruck,
Austria, p p . 25-32, 1993.

[I81 Jacob, C. and Rettder, J., “Evolution of Neural
NCK Architcctures by a Hierarchical Grammar-
based Genetic S y,stem”, lnternarional
Conjerencp on Arlificial Nerc,rul‘Nets and

[101 Eberhart, KC’., “The Role of‘ Genetic

[I21 Dasgupta, D. and McGregor D. R., “Designing

pp. 395-31 1, 199:#:!.

Genetic Algorithms (ANNGA93), Innsbruck,
Austria, pp. 12-19, 1993.

[I91 Munro, P.W., “Genetic Search for Optimal
Representations in Neural Networks”,
International Conference on Artificial Neural
Nets and Genetic Algorithms (ANNGA93),
Innsbruck, Austria, pp. 628-634, 1993.

[20] Mandisber, M., “Representation and Evolution
of Neural Networks”, International Conference
on Artificial Neural Nets and Genetic
Algorithms (ANNGA93). Innsbruck, Austria,

[21] Schiffmann, W., Joost. M., and Werner, R.,
pp, 643-649, 1993.

“Application of Genetic Algorithms U) the
Construction of Topologies for Multilayer
Perceptrons”, International Conference on
Artijicial Neural Nets and Genetic Algorirhms
(ANNGA93), Innsbruck, Austria, pp. 676-682,
1993.

[22] Fogel, D.B., “An Introduction to Evolutionary
Computation“, Australian Journal of Intelligent
Information Processing Svstrms, Vol. 1 , No. 2,
pp. 34-42, 1994.

[23] le Cun, Y., “Generalization and Network Design
Strategies“, in: Connectionism in Perspective,
edited by: Pfeifer, P., Schreter, Z . , Fogelman-
Sodic! F., and Steels, L., Elsevier Science
Publisbers B.V. (North-Holland), pp. 143-155,
1989.

”Genetic Algorithms as Heuristics for
Optimizing ANN Design”, International
Conference on Artificial Neural Nets and
Genetic Algorithms (A”GA93), Innsbruck,

[24] Alba, E., Aldana, J.F., and Troya, J.M.,

Austria, pp. 683-689, 1993.
[25] Kitano, H., “Designing Neural Networks Using

Genetic Algorithms with Graph Generation
System”, Complex Systems. vol. 4. p p . 46 1 -
476, 1990.

143

