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A bstrac t 

There is a tremendous interest in the development of 
the evolutionary computation techniques as they are 
well suited 10 deal with optimization of functions 
containing a large number of variables. This paper 
presents a brief review of evolutionary computing 
techniqucs. It also discusses briefly the hybridization 
of evolutionary computation and neural networks and 
presents ;I solution of a classical problem using neural 
computing and evolutionary computing techniques. 

1. Introduction 

This paper presents ;I brief review of evolutionary 
computation techniques, hybridization of these 
techniques and neural computing techniques and the 
application of evolutionary computing techniques to 
a classical exclusive-OR problem. Section 2 
inuoduces briefly the evolutionary computation 
techniques incorporating genetic algorithms (GAS), 
genetic programming (GP) and evoluuonary 
algorithms E A ) .  Section 3 presents a brief summary 
of the possible hybridizations of evolutionary 
computation and neural networks. Section 4 presents 
some experimenrs on the application of <an 
evolutionary computlng technique to a classical 
exclusive-OR problem. Section 5 present5 die 
conclusion and the future direction. 

2. Evolutionary Computation 

Evolutionary computation is the name given IO a 
collection of algorithms based on the evolubon of a 
population toward.. a solut~orr to 21 ceniin probiem 
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These techniques are successfully used in many 
applications including the automatic generation of a 
neural network architecture. The population of 
possible solutions evolves from one generation to the 
next, ultimately arriving at a satisfactory solution to 
the problem. The algorithms differ in the way a new 
pipulation is generated from the present one and in 
the way the members are represented within h e  
algorithm. 

There is much confusion about the grouping and 
naming of the vanous kinds of evolutionary 
computations. In this paper we distinguish between 
three kinds of evoluuonary computations: Genetic 
Algorithms (GAS), Genetic Programming (GP) and 
Evolutionary Algorithms @As). The latter can be 
divided into Evoluuonary Strategies (ES) and 
Evolutionary Programming (EP). 

2.11. Genetic Algorithms (GAS) 

Genetic algorithms were developed by John Holland 
in the 1970’s and they rely on a linear representabon 
of the genetic material. In GAS the members of the 
population are called chromosomes and are often 
coded as fixed-length binary strings although variable 
length strings have been used as well. Chromosomes 
are made up of a set of genes. In the case of binary 
stnngs they are just bit,. 

2.1.1. The algorithm 

Fig. 1 shows the flowchart of the standard genetic 
algorithm. The reproduction operator that is most 
commonly used is the fitness propomonate or 
roulette wheel method, where members of a 
population are extracted using 3 probabilistic Monte 
Carlo procedure based on their average fitness. 1,or 
example, a chromosome with :i fitness of 20% of the 



total fitness will on average make up 20% of the 
intermediate generation. 

The heurisucs of GAS are mainly based on this 
reproduction and on the crossover operator, and only 
on a very small scale on the mutation operator. The 
crossover operator exchanges parts of the 
chromosomes (strings) of two randomly chosen 
members in the intermediate population and the 
newly created chromosomes are placed into the new 
population. Sonietimes instead of two, only one 
newly created chromosome is put into the new 
population; the other one is discarded. The mutation 
operator works only on a single chromosome and 
randomly alters some part of the representation 
smng. Both operators (and sometimes more) are 
applied withi a certain probability 

population 

Fig. I: Flowchan fcw ihe srandard 
genetic algonthnt 

'I'he stopping criteria is when there is a chromosome 
in the current population that gives an adequate 
solution or when a .set number of generations have 
been completed. Many variations on the above 
aJgorithm are possible. For example, the mutation is 
very often performed after a new population has been 
made; i.e. sequentially. Also, instead of selecting a 
genetic operator pmbabalistically, ofien a certain 
exact percentage of the new population is made using 
this operator. 

2.1.2. Genotypes and phenotypes 

GAS rely on two separate representational spaces. 
One is the recombination space, where the actual 
i:enetic operations are performed on the (binary) 
auings or genotypes. The other space is the 
evaluation space where the actual problem-structures 
or phenotypes are evaluated on their ability to 
perform the task and where their fitness is calculated. 
An interpretation or mapping function is necessary 
between the two. The coding of the genetic material 
plays an important role in the performance of the 
(;As. The genetic operators perform their task on the 
genotypes without any knowledge of their 
interpretation in the evaluation space. This works fine 
as long as the interpretation function is such that the 
application of the genetic operators in the 
recombination space leads to good points in the 
evolution space. Problems occur when a smcture (or 
several very similar structures) in the evaluation 
space can be represented by very different genes in 
the recombination space. Schaffer et al. [9] calls chis 
"competing conventions", but it is also referred to as 
the phenomenon of different structural mappings 
(genotypes) coding the same or very similar 
functional mappings (phenotypes) [ 171. Basically it 
means that a unimcdal error landscape becomes 
multimodal where each peak represents a 
representation (convention) of the structure. It is very 
unlikely that crossover between two different 
chromosomes having the same convention will result 
in a useful offspring. 

2.1.3. The Steady State Genetic Algorithm (SSGA) 

Sometimes instead of first making an intermediate 
population and then applying the genetic operators 
another approach is used where the operators are 
applied directly to members of the current 
population. These members are chosen based on their 
fitness. The newly made chromosome is then merged 
into the current population taking the place crf a 
chromosome that was chosen based on its inversed 
fitness. For a single generation step, this proces\ is 
rcpeated until the number of removed chromosoines 
equals the number of members in the population. 
This approach is called a Steady State Genctic 

138 



Algorithm (SSGA) as opposed to the standard Batch 
Genetic Algorithm. It requires much less memory 
storage as only one population instead of two needs 
to be stored. A certain notion of age can be built into 
the system where for a certain number of iterations 
these newly made members c m  not be reselected to 
create i i  new offspring. 

Apart from the roulette whecl method another 
reproduction mechanism called tournament selection 
is often used. Here a certain number of chromosomes 
(the to~irn~ment sir,e) are selected randomly from the 
population and [lie best inember of this group 
replaces [he worsl 

2.2. Genetic Programming (GP) 

Genetic programming is a technique derived from 
genetic algorithms and was developed by John Kola 
(1) De (;an\ [17 ]  uscs the same name tor his work, 
hut there is JIO relation between the two except that 
bolh x c  b;ised 011 genetic algorithm> Getretic 
programming can be seen a\ a spccial kind of genetic 
algonthms bul differ\ in that it uses hierarchical 
peneuc rn;iteri;il [hat I \  noit lonited in  s i x  The 
members of a ppulauon or c l ~ r o m o ~ ~ n i c ~  arc tree 
structured progranis and the genetic operator\ work 
on the branchcs of &lese tree<. Onginally grnetic 
programming wa\ implementod in the LISP 
programniing language, becausv of its build-in tree 
like &tAa structurec (,‘l-expresrionb), but it  has been 
implemt:nteti i n  vmous languages since The main 
advantage of (3’ over GA is that the size and shape 
of the final wlution doe$ not necd to be known in 

advance 431 CoursL GP is only ativantageou\ over (;A 
if the  chromosome^ can be reprewnted adequate11 by 
hierarchical tree struciures. Kescarch has 4iov.m thal 
C P  can bc ~uccesstullr applied Lo many problems i n  

the fields ot artificial intel1igeni.e. mac hine learning 
and symbolic promusiirg [I] .  

I n  GP thi: chromosome\ are made up of a set of 
junctions arid terminal5 connected to each other by a 
iree structure Iyplcally the set of funcuons include 
arithmetic operations, logical operations and problem 
specific operations ?he terminal set is made up of 
the dat:~ input\ t o  the system and the numencal 
constant:, Functions can geiicrally have hoth other 

\hell as terminals ns Lheir argumenb itnd 
mu\t therk9ore he well-defined to hantllc any input 
~ombiniitii)~~ ‘I‘lte iiumber ot arguments ,I lunction 
has mu\t he defined beforehand GP incorporates 
‘banable election’ so that it I \  not needed to het a 
priori wliich data-inputs are going to bc used. 1 hesc 
are selected on the run This can be a useful concept 
when it IS not known in  advance exactly which data- 
inputs are ncedetl in order to solve Ore problem 

A \  in the standard genetic algorithm paradigm, 
genetic programming relies mainly on the 
reproduction mechanism and the crossover operator. 
7he flowchart for the standard genetic algorithm (fig. 
1) also applies for genetic programming and the same 
reproduction mechanisms apply. Crossover is 
performed on branches of trees, which means that 
entire branches or subtrees are swapped between iwo 
chromosomes. 

As in the genetic algorithm paradigm, there exists a 
steady state approach to genetic programming. 
Steady State Genetic Programming (SSGP) has 
proven to be advantageous over the standard, or batch 
GI’ paradigm in certain applications [2]. 

An interesting feature within the GP paradigm which 
accounts for modularity is the possibility to include 
the so called Automatically Defined Functions 
(ADFs) [l]. These ADFs perform a subtask of Ihe 
problem and can be called upon more than once. An 
AI)F does not have particular fixed terminals as rts 
inputs, but instead i:; parameterized by dummy 
variables. When an ADF: is called upon from witliin 
thr main program (Koza calls this the result 
prtducing branch), the dummy variables itre 
irislantiated with specitic values or terminals. ?‘lie 
A13Fs are defined in the so called function-defining 
branch. The complete genetic tree that represents a 
certain solution therefore consists of a result- 
producing and a function-defining branch. 7 he 
genetic operators work on both branches. The idea is 
that GP will dynamically evolve functions that are 
useful to the problem (ADFs) as well as a main 
program that calls upon these functions. A parallel 
can be drawn here to the field of neural networks 
where ;I certain part of the network performs a 
function that can be seen as :I subtask for the 
complete problem. The difference is that its position 
within the neural network is fixed and that it is of no 
use to the network if its needs this same function 
somewhere else but with other actual inputs. 

2.3. Evolutionary Algorithms (EAs) 

Evolutionary algorithms I221 are another form of 
evcilutioirary computation but instead of GAS (and 
GPI, they focus on  phenotypes and not on genotypes. 
Thcrc is no necd for a separation between a 
recombination and an evaluation space. Thc genetic 
operators work directly on lhe :ictu;il structure or 
phcnotype. Thc structures used in  evolutionary 
algorithms are representations that are problern 
dependent and more natural for the task than Uie 
general representations used for GA. Originally 
evolutionary algorithms focused on a single paretic 
only. but extensions have been made Cor a population 
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consisting of more members. Evolutionary algorithms 
can be divided into Evolutionary Strategies 0 3 )  
which focus on the behaviour of individuals, while 
Evolutionary Programming (EP) focus on the 
behaviour of entire species. 

In EP, the only genetic operator that is used is the 
representation-dependent mutation operator, although 
several different mutation operators can be used in 
the Same algorithm. A commonly used mutation 
operator just adds a Gaussian random variable to each 
component of a chromosome. Because ES deal with 
individuals instead of entire species sexual operators 
(crossover) are possible as well and extensions have 
been made to include these. 

is used to fine-tune a near-optimal solution found by 
GA, has proved to be successful [3]. 

The members of the population are the weights of the 
network which are coded as strings. When real 
valued weights are used, they are usually coded into a 
binary string using a binary or a Gray coding 
mechanism. The fitness measure is normally 
calculated as the performance error of the network on 
test data and the genetic algorithm can in such a case 
be classified as a supervised learning algorithm. 

In [4] a GA is used to evolve ecological neural 
networks that can adapt to their changing 
environment. This is done by letting the fitness 
function, which in this case is seen as individual for 

3. Hybridization of Evolutjonary every gene, co-evolve with the weights of the 
Computation and Neural Networks network. A special feature Of this research is that 

there is no reinforcement for ‘good’ behaviour of the 

Evolutionary computation can be used in neural 
network design in several ways. For example, it can 
be used : 

0 on a fixed neural network structure to train the 
network; i.e. to determine the weights 

to generate the architecture of the neural network 
to be trained by a separate learning algorithm 
(usually back propagation) 

network; the network just tries to model or adapt to 
the world in which it  lives. 

De Garis [13] uses a method which is based on fully 
self-connected neural network modules. It is shown 
that using this approach a network can be taught a 
certain task even though the time-dependent input 
varies so fast that the network never settles down. 
The system does not use a crossover operator (it 
could therefore be called evolutionary programming) 
and is used to teach a pair of sticks to walk. 

to analyse a neural network In [15] and [19], a genetic algorithm is used on a 
fixed three layer feedforward network to find the 

In the evaluation phase the weights from the hidden 
to the output layer are adjusted using a simple 

3.1. Evolutionary computation as a supervised delta rule. The fitness measure again is 
learning algorithm for a NN just the performance error on the training set. 

to generate both the neural network architecture optimal mapping from the input to the hidden layer. 
and the weights 

In the first application above, the genetic algorithm 
provides a good alternative to a learning algorithm 
such as back propagation which often gets stuck in 
local minima. The genetic algorithm performs a 
global search of the weight space and therefore is 
unlikely to get stuck in a local minima. Evolutionary 
computation does not use error-gradient information. 
Therefore, unlike algorithms such as BP, they can be 
used where this information is not available or 
computationally expensive. It  also means that the 
activation function of the neurons does not have to be 
differentiable or even continuous. Genetic algorithms 
can be used to train any type of neural network 
including fully recurrent networks. A problem with 
genetic algorithms is that they are very slow in fine 
tuning once they are close to a good solution. 
Therefore the hybridization of GA and BP, where BP 

3.2. Evolutionary computation to generate 
an optimal NN topology 

In the second application the chromosomes contain 
the topology of the network and sometimes the 
learning parameters such as the learning rate as well. 
Genetic algorithms are used in [5],[14],[20],[21],[251. 
There are several ways to encode the network 
topology as a chromosome. The most commonly 
used methods are: 

0 a connectivity matrix 
0 a graph grammar 

Graph grammar based systems are often found to 
perform better than methods using a connectivity 
matrix. This is due to the fact that when the matrix 
method is used, the chromosomes and accordingly 
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the search space for the algorithm becomes very large 
as the network size is increased. When graph 
grammars are used this is not the case, as the 
networks produced are highly structured or modular 
1251. 

The above methods can be classified as ’strong or 
low-level representations’ because the complete 
network topology is coded in the chromosomes. 
When ‘weak or high-level representauons’ are used, 
the chromosomes do not contain the complete 
network topology Instead tbej consist of more 
abstract terms, like ‘the number of hidden neurons’ or 
‘the number of hidden layers’ etc. A method that uses 
module< of neuroiis and where only the connections 
between these modules are coded can be seen as a 
weak representation as well. 

I>unng the evaluatlon (calculation of the f imess 
measure) every member of tlie population is 
translated into a neural network which is then learned 
using J separate learning algorithm llke back 
propagauoii. As the chromosomes do not contain 
information coiiceming the weights of the network, 
these have to be set to an inilal (random) value 
After each nelwor!. has learned they are tested using 
test data, and the fitness measure is calculated This 
causes a problem as the performance of a neural 
network usually depends on the values of the initial 
weights Therefore, 111 order to get a good fitlies5 
measure, the networks are to be leamecl several umes 
using different initlail weights each l i ne  and the 
results =e averaged. This causes the approach to 
become very slow, see e.g. [IJ]. After evaluation, the 
usual geneuc operators (crossovcr. mutation) are 
performed on tht. chromosome? representing the 
networks to obtrun a new populauon. 

3.3. Evolutionary computation in NN 
analysis 

Although this combination of GA’s and N ” s  is not 
commonly used, GA’s can be used to analyse or 
explain neural networks. In [ 101 GA’s are used as a 
neural network invcrsion tool in that they can find the 
input patterns that yield a certain output of Lhe 
network 

3.4. Evolutionary computation to generate 
both a NN topology and its weights 

The last option is the current fcocus of this study. 
Successfully reponed applications include using a 
genetic algorithm where the topology and weights are 
encoded :is variable-length binary strings [6]. Gruau 
[ 1 1 )  uses a graph grarnmar approach callcd ‘cellular 

encoding’ in a genetic programming system to 
implement Boolean neural networks. The mechanism 
is modular in that subnetworks or building blocks can 
be used for a subtask of the problem. 

In [12] a structured GA is used that simultaneously 
optimizes the neural network topology and the values 
of the weights. A two-level genetic structure 
represented by a single binary string is used where 
one level defines the connectivity (topology) and the 
other the values of the weights and biases. It was 
found that although the algorithm worked well on 
sniall problems like XOR, it could not scale up 
properly to bigger real-world problems. 

In [ 171 feedforward neural networks are generated by 
using GAS, incorporating a strong representauon 
scheme where every gene in a chromosome 
represents a connection between two neurons. l’he 
problem of competing conventions is tackled here by 
introducing connection specific distance coefficients 
in the genetic material. For each functional mapping 
or phenotype, the structural mapping or genotype 
with the shortest amount of connection lengths is 
preferred. This approach is also known as ‘restrictive 
mating‘ [24]. This way, some of the topology 
inlormation of the phenotypes (the actual neural 
networks) is incorporated into the genotypes. A 
disadvantage of the system proposed is that a 
maximum size neural network topology, including 
the number of hidden layers used, needs to be 
specified in advance. 

Jacob and Rehder [18] use a grammar-based genetic 
system, where topology creation, neuron 
functionality creation (e.g. activation functions) and 
weight creation are split up into three different 
modules, each using a separate GA. The modules ;ire 
linked to each other by passing on a fimess measure. 
The grammar used is such that a neural network 
topology is represented as a string consisting of all 
thc existing paths from input to output neurons. In 
[24] a somewhat similar modular design approach is 
used but here a distinction is made between structure, 
connectivity and weights optimization. Structure here 
is defined as the number of layers and the number of 
neurons in every layer. 

Aiigeline et a1 [7] have reported a scheme based on 
evolutionary programming where the nctwork5 
evolve using both a parametric mutlition (mutation of 
the. weights) and a Ftructural mutation I t  I T  argued 
h i t  EP is a better choice t o r  this t a sk  than I \  GA, 
m:unly becauw i t  is not clear that there exi\ts x i  

appropnate interpretation function betueeir the 
recombination and evaluation space for the 
application of neural network de\ign 
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3.5. Modular neural networks 
5. Conclusions 

In sections 3.2 and 3.4 systems are described that use 
a modular neural network structure where groups of 
neurons are treated as a single module [8],[14],[23]. 
An advantage of using modular neural networks is 
that the weight space is reduced. This has a positive 
effect on both the generalization capability and the 
time needed to learn the network. 

4. Experiments 

Experiments were performed on genetic algorithms 
as a learning algorithm for the weights of a neural 
network. The exclusive-OR function was chosen as a 
test case in our preliminary investigations. Table 1 
shows the result: of applying gradient descent (back 
propagation) and a genetic algorithm for optimizing 
the weights of a multiple-layer perceptron network 
structure (2-4-1 network). The training was stopped 
when the network had correctlv learned all of the four 
training facts. 

Details of the two algorithms used are: 
sigmoid activation function 
training tolerance = 0.2 

Back propagation: 
includes bias units 
learning rate = 0.1 
momentum term = 0.9 

Genetic algorithm: 
population size = 80 

crossover probability = 0.7 
mutation prohabbility = 0.(32 

chromosome length = 192 bits 
m a .  range of weights = [-20,201 

Table I :  Optimization of the weights of a tnirltiple- 

The results were averaged over several runs. In  some 
runs the back propagation algorithm did not converge 
even arter a very long time. These runs were left out 
of the results. The genetic algorithm does not suffer 
from being stuck in local minima and therefore is 
more robust. Learning times for this problem are 
similar for the two algorithms. 

This paper has presented in brief a review of 
evolutionary computation techniques, hybridizations 
of evolutionary computation and neural computing 
techniques and some experiments on classical 
problems. The long term goal of this research work is 
to develop intelligent techniques for rapidly training 
neural networks for use in a dynamic environmeni. 
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