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Abstract

There is a tremendous interest in the development of
the evolutionary computation techniques as they are
well suited to deal with optimization of functions
containing a large number of variables. This paper
presents a brief review of evolutionary computing
techniques. It also discusses briefly the hybridization
of evolutionary computation and neural networks and
presents a solution of a classical problem using neural
computing and evolutionary computing techniques.

1. Introduction

This paper presents a brief review of evolutionary
computation techniques, hybridization of these
techniques and neural computing techniques and the
application of evolutionary computing techniques to
a classical exclusive-OR problem. Section 2
introduces briefly the evolutionary computation
techniques incorporating genetic algorithms (GAs),
genetic programming (GP) and evolutionary
algorithms (EA). Section 3 presents a brief summary
of the possible hybridizations of evolutionary
computation and neural networks. Section 4 presents
some experiments on the applicaion of an
evolutionary computing technique to a classical
exclusive-OR  problem. Section 5 presents the
conclusion and the future direction.

2. Evolutionary Computation

Evolutionary computation is the name given (0 a
collection of algorithms based on the evolution of a
population towards a solution to a certain problem.
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These techniques are successfully used in many
applications including the automatic generation of a
neural network architecture. The population of
possible solutions evolves from one generation to the
next, ultimately arriving at a satisfactory solution to
the problem. The algorithms differ in the way a new
population is generated from the present one and in
the way the members are represented within the
algorithm.

There is much confusion about the grouping and
paming of the various kinds of evolutionary
computations. In this paper we distinguish between
three kinds of evolutionary computations: Genetic
Algorithms (GAs), Genetic Programming (GP) and
Evolutionary Algorithms (EAs). The latter can be
divided into Evolutionary Strategies (ES) and
Evolutionary Programming (EP).

2.1. Genetic Algorithms (GAs)

Genetic algorithms were developed by John Holland
in the 1970’s and they rely on a linear representation
of the genetic material. In GAs the members of the
population are called chromosomes and are often
coded as fixed-length binary strings although variable
length strings have been used as well. Chromosomes
are made up of a set of genes. In the case of binary
strings they are just bits.

2.1.1. The algorithm

Fig. 1 shows the flowchart of the standard genetic
algorithm. The reproduction operator that is most
commonly used is the fitmess proportionate or
roulette wheel method, where members of a
population are extracted using a probabilistic Monte
Carlo procedure based on their average fitness. For
example, a chromosome with a fitness of 20% of the
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total fimess will on average make up 20% of the
intermediate generation.

The heuristics of GAs are mainly based on this
reproduction and on the crossover operator, and only
on a very small scale on the mutation operator. The
crossover operator exchanges parts of the
chromosomes (strings) of two randomly chosen
members in the intermediate population and the
newly created chromosomes are placed into the new
population. Sometimes instead of two, only one
newly created chromosome is put into the new
population; the other one is discarded. The mutation
operator works only on a single chromosome and
randomly alters some part of the representation
string. Both operators (and sometimes more) are
applied with a certain probability.
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Fig. 1: Flowchart for the standard
genetic algorithm

‘The stopping criteria is when there is a chromosome
in the current population that gives an adequate
solution or when a set number of generations have
been completed. Many variations on the above
algorithm are possible. For example, the mutation is
very often performed after a new population has been
made; i.e. sequentially. Also, instead of selecting a
genetic operator probabalistically, often a certain
exact percentage of the new population is made using
this operator.

2.1.2. Genotypes and phenotypes

(GAs rely on two separate representational spaces.
One is the recombination space, where the actual
genetic operations are performed on the (binary)
strings or genotypes. The other space is the
evaluation space where the actual problem-structures
or phenotypes are evaluated on their ability to
perform the task and where their fitess is calculated.
An interpretation or mapping function is necessary
between the two. The coding of the genetic material
plays an important role in the performance of the
(As. The genetic operators perform their task on the
genotypes without any knowledge of their
interpretation in the evaluation space. This works fine
as long as the interpretation function is such that the
application of the genetic operators in the
recombination space leads to good points in the
evolution space. Problems occur when a structure (or
several very similar structures) in the evaluation
space can be represented by very different genes in
the recombination space. Schaffer et al. [9] calls this
“competing conventions”, but it is also referred v as
the phenomenon of different structural mappings
{genotypes) coding the same or very similar
functional mappings (phenotypes) [17]. Basically it
means that a unimodal error landscape becomes
multimodal where each peak represents a
representation (convention) of the structure. It is very
unlikely that crossover between two different
chromosomes having the same convention will result
in a useful offspring.

2.1.3. The Steady State Genetic Algorithm (SSGA)

Sometimes instead of first making an intermediate
population and then applying the genetic operators
another approach is used where the operators are
applied directly to members of the current
population. These members are chosen based on their
fitness. The newly made chromosome is then merged
mto the current population taking the place of a
chromosome that was chosen based on its inversed
fitness. For a single generation step, this process is
repeated until the number of removed chromosomes
equals the number of members in the population.
This approach is called a Steady State Genetic
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Algorithm (SSGA) as opposed to the standard Batch
Genetic Algorithm. It requires much less memory
storage as only one population instead of two needs
to be stored. A certain notion of age can be built into
the system where for a certain number of iterations
these newly made members can not be reselected to
create a new offspring.

Apart from the roulette wheel method another
reproduction mechanism called tournament selection
is often used. Here a certain number of chromosomes
(the tournament size) are selected randomly from the
population and the best member of this group
replaces the worst

2.2, Genetic Programming (GP)

Genetic programming is a technique derived from
genetic algorithms and was developed by John Koza
[1]. De Garis [13] uses the same name for his work,
but there is no relation between the two except that
both ar¢ based on genetic algorithms. Genetic
programming can be seen as a special kind of genetic
algorithms but differs in that 1t uses hierarchical
genetic material that is not limited in size. The
members of a population or chromosomes are tree
structured programs and the genetic operators work
on the branches of these trees. Originally genetic
programming was implemented in  the LISP
programming language, because of its build-in tree
like data structures (S-expressions), but it has been
implemented in various languages since. The main
advantage of GP over GA is that the size and shape
of the final solution does not need to be known in
advance. Of course GP is only advantageous over GA
if the chromosomes can be represented adequately by
hierarchical tree structures. Research has shown that
GP can be successtully applied t© many problems in
the fields of artificial intelligence, machine learning
and symbolic processing [1].

In GP the chromosomes are made up of a set of
functions and terminals connected to each other by a
tree structure. Typically the set of functions include
arithmetic operations, logical operations and problem
specific operations. The terminal set is made up of
the data inputs to the system and the numerical
constants. Functions can generally have both other
functions as well as terminals as their arguments and
must therefore be well-defined 1o handle any input
combination. The number of arguments a function
has must be defined beforehand. GP incorporates
‘variable selection’ so that it is not needed to set a
priori which data-inputs are going to be used. These
are selected on the run. This can be a useful concept
when it is not known in advance exactly which data-
inputs are needed in order to solve the problem.

As in the standard genetic algorithm paradigm,
genetic  programming  relies mainly on the
reproduction mechanism and the crossover operator.
The flowchart for the standard genetic algorithm (fig.
1) also applies for genetic programming and the same
reproduction mechanisms apply. Crossover s
performed on branches of trees, which means that
entire branches or subtrees are swapped between (two
chromosomes.

As in the genetic algorithm paradigm, there exists a
steady state approach to genetic programming.
Steady State Genetic Programming (SSGP) has
proven 1o be advantageous over the standard, or batch
GP paradigm in certain applications [2].

An interesting feature within the GP paradigm which
accounts for modularity is the possibility to include
the so called Automatically Defined Functions
(ADFs) [1]. These ADFs perform a subtask of the
problem and can be called upon more than once. An
ADF does not have particular fixed terminals as its
inputs, but instead is parameterized by dummy
variables. When an ADF is called upon from within
the main program (Koza calls this the result
producing branch), the dummy variables are
instantiated with specific values or terminals. The
ADFs are defined in the so called funciion-defining
branch. The complete genetic uee that represents a
certain solution therefore consists of a result-
producing and a function-defining branch. The
genetic operators work on both branches. The idea is
that GP will dynamically evolve functions that are
useful to the problem (ADFs) as well as a main
program that calls upon these functions. A parallel
can be drawn here to the field of neural networks
where a certain part of the network performs a
function that can be seen as a subtask for the
complete problem. The difference is that its position
within the neural network is fixed and that it is of no
use to the network if its needs this same function
somewhere else but with other actual inputs.

2.3. Evolutionary Algorithms (EAs)

Evolutionary algorithms [22] are another form of
evolutionary computation but instead of GAs (and
GP), they focus on phenotypes and not on genotypes.
There is no need for a separation between a
rccombination and an evaluation space. The genetic
operators work directly on the actual structure or
phenotype. The structures used in evolutionary
algorithms are representations that are problein
dependent and more natural for the task than the
general representations used for GA. Originally
evolutionary algorithms focused on a single pareunt
only, but extensions have been made for a population
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consisting of more members. Evolutionary algorithms
can be divided into Evolutionary Strategies (ES)
which focus on the behaviour of individuals, while
Evolutionary Programming (EP) focus on the
behaviour of entire species.

In EP, the only genetic operator that is used is the
representation-dependent mutation operator, although
several different mutation operators can be used in
the same algorithm. A commonly used mutation
operator just adds a Gaussian random variable to each
component of a chromosome. Because ES deal with
individuals instead of entire species sexual operators
(crossover) are possible as well and extensions have
been made to include these.

3. Hybridization of Evolutionary
Computation and Neural Networks

Evolutionary computation can be used in neural
network design in several ways. For example, it can
be used :

e on a fixed neural network structure to train the
network; i.e. to determine the weights

o 1o generate the architecture of the neural network
to be trained by a separate learning algorithm
(usually back propagation)

e to analyse a neural network

e 1o generate both the neural network architecture
and the weights

3.1. Evolutionary computation as a
learning algorithm for a NN

In the first application above, the genetic algorithm
provides a good alternative to a learning algorithm
such as back propagation which often gets stuck in
local minima. The genetic algorithm performs a
global search of the weight space and therefore is
unlikely to get stuck in a local minima. Evolutionary
computation does not use error-gradient information.
Therefore, unlike algorithms such as BP, they can be
used where this information is not available or
computationally expensive. It also means that the
activation function of the neurons does not have to be
differentiable or even continuous. Genetic algorithms
can be used to train any type of neural network
including fully recurrent networks. A problem with
genetic algorithms is that they are very slow in fine
tuning once they are close to a good solution.
Therefore the hybridization of GA and BP, where BP

is used to fine-tune a near-optimal solution found by
GA, has proved to be successful [3].

The members of the population are the weights of the
network which are coded as strings. When real
valued weights are used, they are usually coded into a
binary string using a binary or a Gray coding
mechanism. The fitness measure is normally
calculated as the performance error of the network on
test data and the genetic algorithm can in such a case
be classified as a supervised learning algorithm.

In {4] a GA is used to evolve ecological neural
networks that can adapt to their changing
environment. This is done by letting the fitness
function, which in this case is seen as individual for
every gene, co-evolve with the weights of the
network. A special feature of this research is that
there is no reinforcement for ‘good’ behaviour of the
network; the network just tries to model or adapt to
the world in which it lives.

De Garis [13] uses a method which is based on fully
self-connected neural network modules. It is shown
that using this approach a network can be taught a
certain task even though the time-dependent input
varies so fast that the network never settles down.
The system does not use a crossover operator (it
could therefore be called evolutionary programming)
and is used to teach a pair of sticks to walk.

In {15] and [19], a genetic algorithm is used on a
fixed three layer feedforward network to find the
optimal mapping from the input to the hidden layer.
In the evaluation phase the weights from the hidden
to the output layer are adjusted using a simple
supervised delta rule. The fitness measure again is
just the performance error on the training set.

3.2. Evolutionary computation to generate
an optimal NN topology

In the second application the chromosomes contain
the topology of the network and sometimes the
learning parameters such as the learning rate as well.
Genetic algorithms are used in [5),[14],[20],[21],[25].
There are several ways to encode the network
topology as a chromosome. The most commonly
used methods are:

e aconnectivity matrix
e agraph grammar

Graph grammar based systems are often found to
perform better than methods using a connectivity
matrix. This is due to the fact that when the matrix
method is used, the chromosomes and accordingly
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the search space for the algorithm becomes very large
as the network size is increased. When graph
grammars are used this is not the case, as the
networks produced are highly structured or modular
[25].

The above methods can be classified as 'strong or
low-level representations’ because the complete
network topology is coded in the chromosomes.
When ‘weak or high-level representations’ are used,
the chromosomes do not contain the complete
network topology. Instead they consist of more
abstract terms, like ‘the number of hidden neurons’ or
‘the number of hidden layers’ etc. A method that uses
modules of neurons and where only the connections
between these modules are coded can be seen as a
weak representation as well.

During the evaluation (calculation of the fimess
measure) every member of the population is
translated into a neural network which is then learned
using a separate learning algorithm like back
propagation. As the chromosomes do not contain
information concerning the weights of the network,
these have to be set to an initial (random) value.
After each network has learned they are tested using
test data, and the fitness measure 1S calculated. This
causes a problem as the performance of a neural
network usually depends on the values of the initial
weights. Therefore, in order to get a good fitess
measure, the networks are to be learned several times
using different initial weights each time and the
results are averaged. This causes the approach to
become very slow, see e.g. [14]. After evaluation, the
usual genetic operators (crossover, mutation) are
performed on the chromosomes representing the
networks to obtain a new population.

3.3. Evolutionary computation in NN

analysis

Although this combination of GA's and NN's is not
commonly used, GA’s can be used to analyse or
explain neural networks. In [10] GA’s are used as a
neural network inversion tool in that they can find the
input patterns that yield a certain output of the
network.

3.4. Evolutionary computation to generate
both a NN topology and its weights

The last option is the current focus of this study.
Successfully reported applications include using a
geneltic algorithin where the topology and weights are
encoded as variable-length binary strings [6]. Gruau
[11} uses a graph gramnmar approach called ‘cellular

encoding’ in a genetic programming system (0
implement Boolean neural networks. The mechanism
is modular in that subnetworks or building blocks can
be used for a subtask of the problem.

In {12] a structured GA is used that simultaneously
optimizes the neural network topology and the values
of the weights. A two-level genetic structure
represented by a single binary string is used where
one level defines the connectivity (topology) and the
other the values of the weights and biases. It was
found that although the algorithm worked well on
small problems like XOR, it could not scale up
properly to bigger real-world problems.

In [17] feedforward neural networks are generated by
using (GAs, incorporating a strong representation
scheme where every gene in a chromosome
represents a connection between two neurons. The
problem of competing conventions is tackled here by
introducing connection specific distance coefficients
in the genetic material. For each functional mapping
or phenotype, the structural mapping or genotype
with the shortest amount of connection lengths is
preferred. This approach is also known as 'restrictive
mating' [24]. This way, some of the topology
information of the phenotypes (the actual neural
networks) is incorporated into the genotypes. A
disadvantage of the system proposed is that a
maximum size neural network topology, including
the number of hidden layers used, needs to be
specified in advance.

Jacob and Rehder (18] use a grammar-based genetic
system, where topology  creation, neuron
functionality creation (e.g. activation functions) and
weight creation are split up into three different
modules, each using a separate GA. The modules are
linked to each other by passing on a fimess measure.
The grammar used is such that a neural network
topology is represented as a string consisting of all
the existing paths from input to output neurons. In
[24] a somewhat similar modular design approach is
used but here a distinction is made between structure,
connectivity and weights optimization. Structure here
is defined as the number of lavers and the number of
neurons in every layer.

Angeline et al. [7] have reported a scheme based on
evolutionary programming where the networks
evolve using both a parametric mutation (mutation of
the weights) and a structural mutation. 1t is argued
that EP is a better choice for this task than is GA,
mainly because it is not clear that there exists an
appropriate  interpretation function between the
recombination and evaluation space for the
application of neural network design.
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3.5. Modular neural networks

In sections 3.2 and 3.4 systems are described that use
a modular neural network structure where groups of
neurons are treated as a single module [8],[14],[23].
An advantage of using modular neural networks is
that the weight space is reduced. This has a positive
effect on both the generalization capability and the
time needed to learn the network.

4. Experiments

Experiments were performed on genetic algorithms
as a learning algorithm for the weights of a neural
network. The exclusive-OR function was chosen as a
test case in our preliminary investigations. Table 1
shows the results of applying gradient descent (back
propagation) and a genetic algorithm for optimizing
the weights of a multiple-layer perceptron network
structure (2-4-1 network). The training was stopped
when the network had correctly learned all of the four
training facts.

Details of the two algorithms used are:
sigimoid activation function
training tolerance = .2

Back propagation:

¢ includes bias units
learning rate = 0.1
momentum term = 0.9

Genetic algorithm:

population size = 80
chromosome length = 192 bits
max. range of weights = {-20,20]
crossover probability = 0.7
mutation probabbility = 0.02

Table 1: Optimization of the weights of a multiple-
layer perceptron network

Method Average leaming time
Genetic Algorithm 12 secs
Back Propagation 14 secs

The results were averaged over several runs. In some
runs the back propagation algorithm did not converge
even after a very long time. These runs were left out
of the results. The genetic algorithm does not suffer
from being stuck in local minima and therefore is
more robust. Learning times for this problem are
similar for the two algorithms.

5. Conclusions

This paper has presented in brief a review of
evolutionary computation techniques, hybridizations
of evolutionary computation and neural computing
techniques and some experiments on classical
problems. The long term goal of this research work is
to develop intelligent techniques for rapidly training
neural networks for use in a dynamic environment.
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