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Abstract—Connection-oriented Guaranteed-Throughput (GT)
mesh-based Networks on Chip (NoCs) have been proposed as a
replacement for buses in real-time stream processing systems but
are currently rarely used as hardware cost tends to be higher
than conventional interconnects. Recently an interconnect with a
ring topology was introduced as a low-cost alternative for use in
medium scale homogeneous Multiple Processor System on Chip
(MPSoC) designs. Cost-effective integration of stream processing
accelerators would require an extension of this ring interconnect.

We present a dual-ring communication infrastructure for
heterogeneous MPSoC designs. Data and credits are transferred
between tiles using their separate, oppositely directed, rings. The
minimum throughput is determined by analysis of a Cyclo-Static
Data Flow (CSDF) model for a system with communication
between accelerators and processors.

The performance benefits and costs are evaluated by integra-
tion of our dual ring and an accelerator in a 16 core MPSoC
which is mapped on a Virtex6 FPGA. On this MPSoC a real-time
PAL video decoder is executed. A performance gain of a factor
3.6 was obtained at an increase in hardware cost of only 8.5%.

I. INTRODUCTION

Programming of homogeneous Multiple Processor Sys-
tems on Chip (MPSoCs) is usually much easier than the
programming of heterogeneous MPSoCs. However, the use
of general purpose processors for Digital Signal Processing
(DSP) applications is inherently less efficient compared to
the use of dedicated hardware. As such, the use of stream
processing accelerators which contain dedicated logic can
improve throughput. However, an interconnect which supports
stream processing accelerators should not be so complex that
it negates the energy and performance advantage gained from
using accelerators. At the same time, such an interconnect
should provide real-time guarantees as required by many stream
processing applications, for example in the Software Defined
Radio (SDR) domain.

Recently a connectionless ring interconnect was introduced
as a low cost alternative for buses in medium scale homoge-
neous MPSoCs for real-time stream processing applications [1].
The concept of guaranteed acceptance removes the need
for flow-control inside the write-only network. Instead, flow
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control is provided at the application level by a distributed
communication protocol for FIFO channels.

In order to improve the efficiency and performance of
the system from [1], we have extended this system with
stream processing accelerators. Integrating stream processing
accelerators in a memory mapped MPSoC introduces new
issues as these accelerators usually work on a stream of data
and as such have no notion of addresses. Communication
with these accelerators requires an interconnect which supports
hardware flow control.

In this paper we introduce a dual-ring communication
infrastructure for heterogeneous MPSoCs with accelerators
intended for stream processing applications. Hardware flow
control is credit-based where the number of credits denote
the depth of the buffer between a producer and a consumer.
A producer consumes credits upon producing data and a
consumer sends the producer a credit whenever it consumed
data. As flow control is implemented in hardware by means of
a small shell in each Network Interface (NI), the number of
simultaneous FIFO channels for this implementation is limited.
As such, all communication involving stream processing
accelerators is handled in hardware, including streaming data
from processor to accelerator or vice versa, while processor-
to-processor communication is handled in software by the
C-HEAP algorithm [2] which was modeled previously as
an Synchronous Data Flow (SDF) graph [1]. We present a
Cyclo-Static Data Flow (CSDF) [3] model for hardware based
flow control in order to derive application level throughput
guarantees. This model is valid for processor to accelerator
communication when said processor only executes a single
task. We show by means of a real-time Phase Alternating
Line (PAL) video decoder application that adding the second
ring and accelerator results in a significant improvement in
throughput but results only in a relatively small increase of the
hardware cost.

The outline of this paper is follows. In the next section we
will introduce related work, Section III introduces the dual ring
interconnect and our MPSoC system. Section IV presents the
data flow model of the hardware flow control and in Section V
hardware costs and performance is evaluated by means of a
real-time PAL video decoder application. The conclusions are
presented in Section VI.



II. RELATED WORK

Work in the field of integrating stream processing accelera-
tors can be loosely grouped into three categories: interconnects
supporting point-to-point streaming, wrappers for accelerators
providing stream support and accelerators as co-processors.

Before considering interconnects, we first distinguish two
major classes: connection oriented and connectionless intercon-
nects. Connection oriented networks have separate connections
between masters and slaves where properties can be specified
for each individual connection [4]. In a connectionless network,
streams are not separate and as such can influence each other
which makes it hard to provide real-time guarantees [5]. We
show that throughput guarantees can be given by making use
of a CSDF model despite that our network is connectionless.

Ideally, data streams are transferred on their own dedicated
FIFO channel such as provided by the AXI4 Stream Inter-
connect [6] and Avalon Streaming Bus [7]. However, when
communication patterns between components are not known
at design time, all-to-all connectivity is required which tends
to result in high hardware costs.

Alternatively, circuit switched interconnects like a single
layer bus, cross-bar or interconnects supporting virtual chan-
nels [8], [9], [10], [11] could be used to integrate stream
processing accelerators in an MPSoC design as long as the
setup of the point-to-point channels is handled elsewhere. For
real-time applications support for Guaranteed-Throughput (GT)
traffic is mandatory. Usually supporting all-to-all connectivity
in such Networks on Chip (NoCs) results in high hardware
costs where this is supported by default in our low cost dual
ring interconnect.

Contention in such NoCs can prevent channels from being set
up when a critical router is in use. The automatic serialization
of the ring topology coupled with our arbitration policy prevents
contention and provides GT support. Streaming data support
is realized by a shell in the NI of the dual ring interconnect.

Rings have been used in commercial systems in recent years
such as the Cell processor from IBM [12], the Intel Nehalem
processor architecture [13] and more recently in the Maxeler
data-flow computers [14]. The difference between our ring
and existing implementations are the throughput and latency
guarantees that our ring interconnect provides.

In [15], a ring network is introduced which proposes Rotating
Time Division Multiplex Access (RTDMA) as a possible
scheduling algorithm to divide bandwidth fairly between
peripherals, which is similar to our arbitration policy. They
support hardware flow-control but provide no back-pressure
mechanism. Additionally, they do not support point-to-point
data streams and are not work conserving.

Instead of using an interconnect with support for data
streams, a wrapper can be placed between a stream processing
accelerator and an interconnect in order to provide stream
support. The C-HEAP [2] FIFO protocol can be implemented
in such a wrapper. However, these wrappers have a significant
hardware cost as their functionality is comparable to that of a
Direct Memory Access (DMA) controller. Our hardware flow
control uses static addresses for data and credit updates to
prevent the need for dynamic address generation. By using
C-HEAP only for software FIFO communication, we have
maximum flexibility without high hardware costs.

A method to embed accelerators in a homogeneous memory
mapped system is presented for the STHORM architecture [16].
Both accelerators and their wrappers have a notion of memory
addresses and as such require logic for dynamic memory
address generation. The use of static addressing in our shells
for each accelerator results in low hardware costs.

An example of a solution which integrates fine-grained
accelerators in the data path of a programmable processor
is the Imagine stream processor [17]. This processor employs
a crossbar for the communication between accelerators and
the Arithmetic Logic Units (ALUs). The accelerators and
ALUs execute in a Single Instruction Multiple Data (SIMD)
fashion under the control of a program counter. In contrast,
the accelerators and processors in our design are data driven
which introduces additional scheduling freedom compared to
the tight centralized control from Imagine.

The concept of “conservation cores” [18] is similar to
co-processors. In this work parts of a software algorithm
are synthesized into dedicated hardware blocks which are
called conservation cores. The software offloads work to these
co-processors wherever possible in order to reduce energy
consumption. As the master processor has to wait for the co-
processor to complete before it can advance the program thread,
this system is instruction driven. Because our design is data
driven, once again we have the freedom to perform processing
data in pipelined fashion whenever possible.

III. PROPOSED ARCHITECTURE

We will now describe the MPSoC system which contains
the dual ring interconnect. This system was designed for
heterogeneous processing applications where various processors
and accelerators are employed to improve energy efficiency
over homogeneous designs. Our architecture consists of various
interconnected “tiles” which contain processing elements as is
shown in Figure 1a.

A. Processor Tile
Figure 1b shows an overview of a processor tile. In our

current prototype we have multiple processor tiles connected
to the ring. Each tile contains a RISC MicroBlaze processor,
timer for interrupts and local memory for instructions and
data. Instruction and data caches are present to improve
performance of larger programs. Each processor runs at the
system clock speed of 100 MHz and executes a small real-time
POSIX compliant kernel with multi-threading support. The
local software FIFO memory is dual ported and is connected
to the output port of the NI in order to receive data writes
from remote tiles. These memories are connected to a Local
Memory Bus (LMB) and are capable of single cycle reads or
writes and as such also adhere to the guaranteed acceptance
required for the ring.

The hardware stream FIFO in Figure 1b is used to receive
a data stream from an accelerator tile, which is described
in Section III-B. This FIFO is connected directly to the
MicroBlaze processor by means of a Fast Simplex Link
(FSL) [19] connection allowing for single cycle access to the
data stream.

All data entering the ring passes through the shell in the
NI. Data sent to a processor tile will use software flow control



(a) Abstract MPSoC architecture (b) Processor tile (c) Accelerator tile

Fig. 1. Overview of the MPSoC architecture and two types of tiles

while data for stream processing accelerators will use hardware
flow control.

Each processing tile executes one or more tasks on a
real-time POSIX compliant kernel. Usually accelerators are
configured from a single processing tile when the system starts.
Programs are compiled using the GNU Compiler Collection,
allowing for easy development and programming.

B. Accelerator Tile
In Figure 1c an accelerator tile is shown. The interface

between the NI and the accelerator is similar to the interface of
a simple FIFO channel. At the input of the accelerator, a signal
is set when the shell holds data from the interconnect. When
the accelerator is ready to process this data, it reads the data
from the NI shell output and sends a signal that it completed
the read. At the output of the accelerator, the inverse is used.
Flow control is implemented in hardware in the NI shell and
as such this simple handshake interface to load and eject data
from an accelerator is sufficient for any stream processing
accelerator.

The accelerator has no notion of the underlying interconnect
or memory addresses which are used to transfer packets
between tiles. Accelerator configuration can be programmed
over the ring by any processor, for example the signal gain on
a level conversion accelerator.

In our system, stream processing accelerators are currently
chained together based on a description written by a program-
mer which describes the data flows between tiles. A support
library abstracts the exact interfaces used to set up and configure
data streams, simplifying the use of accelerators. Processor tiles
read from an accelerator by means of a library function which
pulls data from the FSL FIFO and write data to accelerators
using a similar function. Accelerators have no notion of which
tile they are communicating with.

C. Data Ring
Our dual ring interconnect combines two uni-directional

rings to support software and hardware based flow control.
By only applying hardware flow control for data streams
involving accelerators, we keep hardware costs low while the
use of software flow control between software tasks maximizes
flexibility in communication patterns. We will now describe
the uni-directional ring [1] in more detail.

The packet switched uni-directional interconnect for all-to-
all communication has low hardware cost. Our slot allocation
algorithm for the ring, as briefly explained in Section III-D,
provides GT traffic and makes the ring work conserving. All-to-
all communication is supported without using further internal
buffers, aside from registers between NIs. This results in low
hardware cost and does not reduce predictability.

A ring interconnect consists of a number of NIs that are
chained together from one to another, forming a ring. When a
packet is received from a neighboring NI, it is either ejected
when the current NI is its destination, or passed on to the
next NI if it is not. Packets that are to be injected, enter the
ring when it is available: which means it is injected when
the current NI has no packet to pass along and the arbitration
policy allows injection. Because packets have a single route
between two tiles, it is guaranteed that data writes arrive in
the same order as they were issued. As routing is trivial, we
consider the “router” to be part of the NI.

To keep hardware costs low, our ring relies on the concept
of guaranteed acceptance: connected tiles are require to accept
and register any packet in a single cycle at any time, which
is similar to many multi-layer buses. As such, data is ejected
from the ring whenever it reaches its destination. This means
that there is no need for back-pressure or packet deflection
to manage packet flow within the ring. This also allows us to
determine the transit latency precisely since we know for every
packet how many hops it will need to reach its destination.

The nature of a ring provides serialization for all NIs,
preventing the need for memory port arbitration. As input
and output buffers can be shared between streams in our NIs,
there is no limit to the number of simultaneous streams that
can be multiplexed over the same NI.

We show that there is no need to support remote reads which
keeps network complexity low. As such, tiles can only write
to remote memories, which is no issue for our software and
hardware FIFO channel implementations.

Figure 2 shows a schematic overview of a single NI. At
the local input port of the network interface there is a small
FIFO which has a capacity of one word for accelerators and is
configurable for processor tiles. For processor tiles, an address
is provided when writing data, for accelerators, only data is
written. This FIFO holds tuples consisting of a network address
and a data word. The depth γ of the FIFO is configurable
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Fig. 2. Schematic overview of a single NI. ∗Accelerators only read and write
data and omit addresses.

at design time. To prevent confusion we will refer to this
hardware FIFO simply as “buffer” for the remainder of this
paper. Whenever this buffer is full, any further writes from the
local tile to the network will stall this tile.

D. Slot Allocation
Every NI passes an address and data to its neighbor every

cycle, both of which may be empty. We consider these pairs
unique and call them slots [1]. By giving every slot a unique
and incrementing number as identifier, we can distinguish
between every slot. By numbering NIs in the same manner, we
can define the concept of an owned slot: when a slot arrives at
an NI which has the same ID as the slot, this slot is owned by
that NI. We define now the first rule of our arbitration policy:

Rule 1: Every NI can always claim its own slot without
having to check if it contains data: it can not be in use by
another NI.

We observe that if both slots and NIs are numbered in the
same fashion, then every slot will reach its owner at the same
time as the slots align with their initial NI. This happens once
every N cycles, where N is the number of NIs forming the
ring. From this we can conclude that available bandwidth is
distributed fairly between all NIs and as such is 1

N .
We now extend this policy to make the ring interconnect

work conserving by using unclaimed slots.
Rule 2: When a slot is empty, it can be used by any NI

provided that the slot will not reach its owner before the data
is delivered.

This rule ensures that unclaimed bandwidth can be used
while its guaranteed that any NI can always use its own slot.

As a result of this slot allocation policy, we can derive
bounds for throughput and latency for single packets traversing
one of the rings in our interconnect. These bounds will be
used when modeling a FIFO channel between two tasks using
either the software or hardware FIFO implementations.

E. Software FIFO
Our ring network is used with a distributed FIFO imple-

mentation [1] based on C-HEAP [2] using only writes to
remote memory. This software FIFO provides support for
back-pressure at the application level. This is used for the
communication between parallel software tasks in stream
processing applications that can be described by task graphs.

C-HEAP uses data containers which are an arbitrary number
of words in size and works by means of distributing read and

write pointers to both producer and consumer. These pointers
are incremented in a round-robin fashion on the containers of
the FIFO instance and are compared to determine how much
data is buffered in a FIFO channel. The C-HEAP algorithm
does not require locks, mutexes or atomic read-modify-write
support. The only requirement is that reads and writes are
in-order; they should arrive in memory in the same order as
they were issued.

F. Credit Ring
We extend the interconnect consisting of a single, uni-

directional data ring from [1] with a second ring for flow
control for stream processing accelerators. To keep hardware
costs low, it is undesirable to have large buffers at the inputs
of accelerators to hold large tokens when processing can be
fine grained. This means containers for the accelerator input
FIFO could be as small as a single data word and buffers
have to hold at least one such container. To prevent a large
communication overhead on the data ring, we will use this
second ring to send credits between consumers and producers.

By using a credit-based handshake [20], we implement flow
control for accelerators. In this flow control scheme, we have a
producer-consumer pair with a number of credits. The number
of credits available at the producer determines how many data
containers can be buffered at the consumer. When the producer
wants to send data, it is required to have at least a single credit
available. When no credits are available anymore, the producer
has to wait for the consumer to free up its buffer. When a
consumer consumed a data container, it sends a credit back to
the producer to signal that it freed up space for a single data
container.

In this case, the number of credits indicate the number of data
containers that can be buffered at the input of an accelerator.
As long as a producing accelerator has credits and input data,
it can send data to another accelerator.

As credits are not unique, we only need to transfer the fact
that a credit is present; this can be done in a single bit instead
of 32 bits for a data word. As such, the credit ring requires
less hardware than the data ring.

The credit ring has the same limitations as the data ring: high
throughput and low latency is only possible when processing is
kept local, i.e., data is sent to a neighbor which is only a few
hops away. To keep latency low and prevent the needless
intersection of credit streams, the credit ring transfers its
payload in the opposite direction of the data ring. This means
that if data is transferred H hops, a credit will traverse H hops
back from the data consumer to the data producer.

G. Dual Ring Interconnect
Credit based flow control is implemented in the NI in a small

shell which makes use of both rings, see Figure 2. This shell
passes traffic for the software FIFO to the data ring. Data traffic
to or from accelerators is subject to hardware flow control.

Each shell contains a single credit return address per input
and single data forwarding address per output. As data arrives
at the accelerator tile, the shell will pass it to the inputs of
the accelerator. When the accelerator accepts the data at one
of its inputs, a credit will be sent to the return address. Every
input for an accelerator is buffered by the shell where at least a



single input token is buffered. Data produced by an accelerator
is passed to the shell which will forward data to the data
forwarding address as soon as credits are available. Note that
these addresses are static and as such require no counter logic
as is common for dynamic addressing. In this fashion, data is
streamed from one accelerator to the next.

While flow control supports the use of multiple credits
per stream, input buffers with a matching capacity at the
accelerators are required. In the current implementation we
use a fixed depth of a single credit per stream. This limits
the maximum throughput between two tiles using hardware
flow control but this is of little consequence for our current
demonstrator as it requires a lower throughput.

IV. DATA-FLOW MODEL

The dual ring interconnect is used for software FIFO
communication between processor tiles and hardware FIFO
communication for all other combinations between tiles. The
software FIFO communication has previously been modeled
as an SDF graph [1].

An SDF model is a directed graph G = (E, V ) with actors
v ∈ V and directed edges e ∈ E. Each edge e

i,j
describes a

unbounded queue for atomic data objects called tokens between
actors v

i
and v

j
. The head and tail of each edge is annotated

by quanta which denote the number of tokens an actor will
consume or produce. Every actor has a firing duration ρ

v
. An

actor can fire when its incoming edges have at least the number
of tokens as denoted by their quanta. To prevent concurrent
firing where this is not desired, self edges are used with a
single token to prevent overlapping firings of actors.

CSDF extends SDF by introducing the concept of phases.
Each actor has a cyclic behavior during which its phases are
fired. The firing duration for every phase p is denoted as ρv (p).
Both firing durations and quanta are expressed as a list of
values with an equal length.

In this paper we define that actors in a CSDF graph do
not have an implicit self-edge and as such phases could fire
in concurrently. To prevent token reordering all phases of an
actor that does not have a self-edge with one token must have
the same firing duration. If parallel execution of phases of the
same actor is not desired, a self-edge is added with a single
token to the CSDF actor.

In order to keep hardware costs low, inputs of an accelerator
tile should have a very small FIFO capacity as we assume that
most stream processing accelerators can work on individual data
words. Processing tiles on the other hand, transfer larger chunks
of data to minimize overhead resulting from the acquire and
release calls on containers in the software FIFO administration.

If we would attempt to capture the exchange of data
containers between a processor tile and an accelerator tile
in a simple SDF model containing a Producer-Consumer pair
of actors, we see that this model is not accurate because it
models that all S words are produced at once when the task
v
P

finishes its execution instead of word by word during the
execution of the task. The result is shown in Figure 3 and
contains actors v

P
and v

Acc
where v

P
produces data in FIFO

containers of size S words and v
Acc

consumes data one word at
a time. The depth of the FIFO between both actors is expressed
in data words and denoted by α. When the hardware FIFOs

v
P

v
Acc

ρ
P

ρ
Acc

S 1

1S

1

1

1

1
α

1 1

Fig. 3. Potentially dead-locked model for accelerator communication

should be kept small for cost reasons, it is desirable to make α
smaller than S. However in this case the model will deadlock.

We will now introduce a new model for temporal analysis
of the hardware FIFO communication. To this end we derive
an CSDF model which can be used to determine whether
the requirements are satisfied for a specific real-time stream
processing application. We need CSDF as we just showed
that SDF is not sufficiently expressive to accurately model the
communication between a processor and an accelerator.

In our CSDF model, the incremental transference of data
v
P

to v
Acc

is modeled by the explicit release of individual data
tokens where every token denotes a data word. In Figure 4,
actor v

P
produces S times a tokens (notation 〈S × 1〉), each

of which is released explicitly after each phase. Note that the
sum of all firing durations for each phase of v

P
from Figure 4

is identical to the firing duration of v
P

from Figure 3 and for
simplicity we can assign the last phase the summed duration.
At the start of the firing of v

Acc
, one token will be consumed

and at the completion one credit token is emitted.
Note that if α = 1, parallel execution is impossible as v

P
and

v
Acc

will execute one after another. As such, we assume that
α ≥ 2 where increasing FIFO capacity improves pipelining and
throughput. We will show that a minimum FIFO buffer capacity
can be computed given a minimum throughput requirement.

In our system a processor will stall if a write can not
complete. During a stall the processor does not execute
instructions. A write can not complete if the buffer in the
network interface is full. How often this buffer is full during a
write depends on the actual moments in time that v

Acc
consumes

its data. Because our dataflow analysis only determines the
latest possible consumption moments, the actual consumption
moments are not known at design time and therefore the
total time that the processor will stall is unknown. As a
consequence it is not possible to determine at design time
how many cycles are left for other tasks executing on the same
processor. Therefore, for predictability reasons we do not allow
sharing of a processor by multiple tasks if one of these tasks
communicates with an accelerator.

At the completion of every phase of v
P

a write is issued
which may stall the processor. However, as writes only occur
at the end of a phase and not during its firing, the processor
will never stall during the firing of a phase. As such the firing
durations of all phases of v

P
are not affected by the stalling

of the processor.
When we consider a FIFO channel between accelerators,

a producing accelerator would write output word by word to
the consuming accelerator which will send a credit for every

v
P

v
Acc

〈(S−1)×0,
∑i<S
i=0

ρ
P

(i)〉 〈ρ
Acc
〉

〈S×1〉 〈1〉

〈1〉〈S×1〉

〈S×1〉

〈S×1〉

〈1〉

〈1〉
α

Fig. 4. CSDF model of hardware FIFO communication



accepted word. As such, the model from Figure 4 can also
be applied to accelerator to accelerator communication when
S = 1.

One type of data exchange between tiles that not has been
covered so far, is streaming data from an accelerator to a
processor tile. As shown in Section III-A, data arrives at a
processor tile in a hardware FIFO which is connected to the
shell from the NI like an accelerator. Data delivered to the
hardware FIFO is directly available to a task running on the
processor. As such, from a modeling perspective, this case is
no different than inter-accelerator communication.

A. Channel Description
The model from Figure 4 only describes the communication

between a producer v
P

and consumer v
Acc

where the interaction
at the end points are described. As such the interconnect that
actually transports the data is assumed to be ideal: it introduces
no latency and has unlimited bandwidth. In an actual system,
data is transferred over an interconnect which introduces
latency and imposes a bandwidth limit. These properties can
be described by a Latency-Rate Server model [21] which is
shown in Figure 5.

By adding two actors in both the data and credit path, we
can express latency and rate for both channels. The latency
actor v

L
from Figure 5 introduces a delay expressing the

worst case latency experienced by any packet that traverses the
interconnect to an arbitrary tile. This includes all wait times
like access delays and queuing effects and thus requires a
deterministic interconnect which can provide such guarantees.
Because there is no queuing in the network itself, the latency
for a packet going from v

P
to v

C
in Figure 5 is ρ

L
+ ρ

R
.

Therefor, the firing duration of ρ
L

should be the worst case
latency reduced by the firing duration of ρ

R
.

The second actor v
R

is used to model the maximum rate or
bandwidth of the interconnect. In the ideal case, both the firing
duration ρ

R
and latency ρ

L
are 0 which implies unlimited

bandwidth and no packet latency. As this is never the case,
the self-loop on v

R
determines the rate at which tokens are

passed on to v
C

. As v
R

can fire once every ρ
R

time units, its
maximum throughput will be 1

ρ
R

.
We will now use the properties from the dual ring intercon-

nect as described in Section III to obtain the CSDF model for
hardware FIFO communication on the dual ring interconnect.
As both credits and data traverse the interconnect, both paths
in the model use a Latency-Rate Server to describe the channel
as is shown in Figure 6.

From Section III-D we see that a ring with N tiles will
fairly distribute all available bandwidth under full load and
as such the worst case throughput will be 1

N . The worst case
latency for the transfer of a data packet over the ring is the
combination of the stall time before a packet is admitted onto
the ring and the traversal time on the ring itself. The worst

L-R Server

v
P

v
L

v
R

v
C

ρ
L

ρ
R

Fig. 5. HSDF model of a Latency-Rate Server
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α

Fig. 6. CSDF model of hardware FIFO including channel characteristics

case stall time occurs when the input buffer at the NI is filled
with γ data words and we missed the owned slot of the NI by
one cycle. After N − 1 cycles, the first data packet is injected
into the owned slot from the buffer and every N cycles after
that, the next data word is injected into the owned slot on
the ring until all data is transmitted. As such the stall time is
β = (N − 1) + (γ − 1)N = γN − 1. The worst case latency
for a single packet is as such the sum of stall time β and the
traversal time based on the number of hops H a packet takes
until it reaches its destination: β+H = γN−1+H . As credit
tokens traverse the dual ring in the opposite direction of the
data, the latency for both data and credit packets is identical.

B. Guaranteed Throughput
In order to determine exact throughput and latency bounds,

we need to transform the CSDF model from Figure 6 to its
Homogeneous Synchronous Data Flow (HSDF) counterpart.
HSDF is a simplified form of SDF where all quanta are one.

The model from Figure 6 does not contain the stall time
introduced by the network at the producer when the input
buffer at the NI is full. When we are only interested in the
worst case stall time before a packet is admitted into the input
buffer at the NI, we see that within N − 1 cycles a packet
from the input buffer is injected into the ring. One cycle later
the input buffer can accept a new packet in the input buffer.
As such, in the worst case, at the end of each phase of v

P
,

writing a single data word stalls the processor N cycles.
This stall time can be aggregated as the total stall time for

any actor v during the write of S words:

ϕ = N · S (1)

This wait time can be incorporated into the original firing
duration of actor v: ρ̂ = ρ+ ϕ. As ϕ directly influences the
firing duration of v

P
, it should be kept small. This can be

done by reducing the capacity of the input buffer γ at the NI.
However, lowering γ can make the average case throughput
worse by increasing the amount of stall cycles.

In order to determine the worst case throughput, we need to
transform the model from Figure 6 from CSDF to its HSDF
counterpart [3] in order to determine its Maximum Cycle Mean
(MCM). The throughput is the inverse of the MCM. The MCM
is the maximum of all Cycle Means (CMs) of every simple
directed cycle C in the HSDF graph G:

λ∗ = max
∀C∈G

{λ(C)} (2)

Where the Cycle Mean (CM) of a cycle C is defined as:

λ(C) =
w(C)

τ
(3)
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Fig. 7. HSDF obtained after transformation of the CSDF model from Figure 6

Here w(C) is the sum of all firing durations of all actors on
C and τ is the sum of number of tokens on all edges in C.
The cycle with the largest CM is called the critical cycle.

In the transformation from CSDF to HSDF of the model for
hardware FIFO communication, the value of α and S determine
the number of actors in the resulting model and the critical cycle
through them. We will show the transformation for the case
where α = 2 and S = 2 and derive the MCM. As the resulting
HSDF model will have many cycles, rather than obtaining the
MCM symbolically, we will present a numerical example. We
use the following parameters: input buffer γ = 1, worst case
traversal time is H = 15 for traffic on a ring with N = 16
tiles. Additionally we define that ∀i•ρ

P
(i) = ρ

Acc
= 1, where

i denotes all phases for v
P

.
We transform the CSDF model to a HSDF model [3], which

is shown in Figure 7. Using the parameters as specified before,
we can now numerically calculate the firing duration for each
actor. We find that two cycles have the maximum CM and as
such are critical:

c1 =
(
v
P1 , vL1

D

, v
R1
D

, v
C1 , vL1

C

, v
R1
C

, v
P1

)
c2 =

(
v
P2 , vL2

D

, v
R2
D

, v
C2 , vL2

C

, v
R2
C

, v
P2

) (4)

The MCM can now be determined:

λ∗ = λ(c1) = λ(c2) =
62

1
(5)

The transformation of the CSDF model for other values of
S and α is done in a similar fashion. For completeness, we
show the MCM for various combinations of S and α. The
resulting MCMs are presented in Table I where we can see
that the dual ring is rate limited in this example by v

RD
when

α = 4. Latency introduced by the distance between v
P

and
v
C

influences throughput only when α < 4. As such, when an
accelerator tile has a FIFO buffer of four words, our guaranteed
lower bound on throughput is reached and further increasing α
can only increase best effort throughput for this network size.

V. EVALUATION

In this section we will evaluate the architecture implementa-
tion of the proposed interconnect by means of a demonstrator
application. We will consider the hardware costs of both rings
and accelerator shells compared to the size of processors and
accelerators in the system.

Container size in number of words (S)
1 2 3 4 5

FIFO capacity (α)

1 62 124 186 248 310
2 31 62 93 124 155
3 62

3
124
3

62 248
3

310
3

4 16 32 48 64 80
5 16 32 48 64 80

TABLE I
MCM FOR VARIOUS S AND α ON FOR HARDWARE FIFO COMMUNICATION

BETWEEN A PROCESSOR AND ACCELERATOR.

Data Ring: 2.1% Credit Ring: 1.6%
Shells: 4.8% AM Decoder Accelerator: 33%

TABLE II
RELATIVE LOGIC USAGE ON A VIRTEX-6 FPGA OF THE NI COMPONENTS

AND ACCELERATOR COMPARED TO A MICROBLAZE PROCESSOR

A. Hardware Costs
We implemented our dual ring interconnect for an MPSoC

with 16 CPU cores and one accelerator on a Xilinx ML-605
prototyping board. Previously, the single ring was shown to
scale linearly with the number of processor tiles and occupy
only ∼2% of the total hardware costs in the design [1].

When we consider our dual ring interconnect, the NI
comprises of the interface for both the data and credit ring and
the shell which implements hardware flow control. In Table II,
we present the logic usage for our dual ring interconnect
normalized to the size of a single MicroBlaze processor. The
ring routers for both the data and credit ring use 3.7% of the
amount of logic needed for a single processor. As we want
every processor to be able to communicate with an accelerator,
the shell is part of the NI. The combination of both ring routers
and shell results in a NI which is 8.5% in size compared to a
single processor.

B. PAL Video Decoder
In order to evaluate the performance of the proposed

architecture we implemented a PAL decoder in software on
a heterogeneous 16 core design. The PAL standard describes
a field interlaced, 25 frames per second color video signal,
usually in combination with FM modulated audio [22]. The
signal consists of an Amplitude Modulation (AM) luminance
signal (Y) and a quadrature modulated color difference signal
(R-Y and B-Y) at 4.43 MHz from the luminance carrier.

Every horizontal line is separated by a sync pulse which uses
a lower signal value than the rest of the inverted luminance
signal, as shown in Figure 8. It is customary to normalize the
input signal so that the luminance ranges from 0.0 to 1.0 where
0.3 and lower are used for line syncs. Each frame consists of
two interleaved fields. All fields are separated by a number of
synchronization pulses.

Our parallel decoding algorithm is depicted as a task graph
in Figure 9. The actors in this task graph correspond with tasks
where each task is using a dedicated processor. Some tasks
are suitable for task level parallelism and are duplicated to
improve application throughput. The decoder finds the sync
pulses denoting the start of a fields, deinterlaces two fields into
a complete frame and outputs it to the screen.

Most tasks from Figure 9 are simple signal processing tasks
without complex control, field and type detection are control
heavy tasks which are computationally bound and can not be
duplicated and thus limit throughput of the entire decoder.
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However, in order to reach a speed of 3 MS/s or 12 MB/s,
the “AM Demod” task has to be executed on four processors
in parallel. This software task was replaced by a single
accelerator tile containing a hardware decoder which freed
up four processors. In Figure 8 this can be seen where the
“AM Demod” tasks are replaced by the single, dashed task
depicting the accelerator. The throughput over this accelerator
is bounded by the speed of the software “ADC” and “Level
Detect” tasks and improves throughput between those two tasks
from 3 MS/s to 11 MS/s.

This is a 366% increase in throughput from the addition
of a single accelerator which is only 1

12 the size of the four
processors it replaces.

VI. CONCLUSION

In this paper we presented a low cost dual-ring commu-
nication infrastructure for a real-time heterogeneous multi-
core stream processing architecture for SDR applications.
Our dual ring interconnect realizes low hardware cost by
sharing buffers within a NI and provides automatic serialization
while providing bandwidth and latency guarantees. The work
conserving scheduling policy of the ring interconnect allows
tasks to use the reserved but unused bandwidth of other tasks
which can improve average throughput at the application level.

Software tasks communicate using a software FIFO im-
plementation which only requires the data ring. Accelerator
integration is supported by means of credit-based hardware
flow control which uses a second ring for transferring credits.

We derived a CSDF model which describes a hardware
FIFO between two tiles. This model can be used to determine
the required FIFO capacity in order to reduce the effects of
network latency on application throughput.

We found that our dual ring interconnect occupies 8.5% of
the resources in a 16 core MPSoC design when implemented
on an FPGA. We evaluated our design by means of a PAL
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Fig. 9. Task graph of our PAL decoder application

video decoder application. When only software tasks are used,
all 16 processors are used. Four processors could be freed up
by using a single accelerator for the AM demodulation which
at the same time improved maximum throughput by 366%.

The presented results indicate the potential of the dual ring
communication interconnect for use in heterogeneous medium
scale multiprocessor systems for real-time stream processing
applications.
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[15] M. Panić et al., “On-chip ring network designs for hard-real time systems,”
in Proc. Int’l Conference on Real-Time Networks and Systems. New
York, NY, USA: ACM Press, 2013, p. 23.

[16] F. Conti, A. Marongiu, and L. Benini, “Synthesis-friendly techniques for
tightly-coupled integration of hardware accelerators into shared-memory
multi-core clusters,” in Proc. Int’l Conf. on Hardware/software codesign
and system synthesis (CODES+ISSS). New York, NY, USA: IEEE, Sep.
2013, pp. 1–10.

[17] B. Khailany et al., “Imagine: media processing with streams,” IEEE
Micro, vol. 21, no. 2, pp. 35–46, 2001.

[18] G. Venkatesh et al., “Conservation cores,” in Proc. Int’l Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS). New York, NY, USA: ACM Press, 2010, p. 205.

[19] Xilinx, LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c), 2010.
[20] N. Kung and R. Morris, “Credit-based flow control for ATM networks,”

IEEE Network, vol. 9, no. 2, pp. 40–48, 1995.
[21] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling run-

time arbitration by latency-rate servers in dataflow graphs,” in Proc. Int’l
Workshop on Software and Compilers for Embedded Systems (SCOPES).
New York, NY, USA: ACM Press, 2007, p. 11.

[22] ITU-R, “Rec. ITU-R BT.470-6: Conventional Television Systems,” Tech.
Rep., 1998.


