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Abstract—Structured prediction has wide applications in
many areas. Powerful and popular models for structured pre-
diction have been developed. Despite the successes, they suffer
from some known problems: (i) Hidden Markov models are
generative models which suffer from the mismatch problem. Also
it is difficult to incorporate overlapping, non-independent features
into a hidden Markov model explicitly. (ii) Conditional Markov
models suffer from the label bias problem. (iii) Conditional
Random Fields (CRFs) overcome the label bias problem by global
normalization. But the global normalization of CRFs can be
expensive which prevents CRFs from applying to big data.

In this paper, we propose the Empirical Co-occurrence Rate
Networks (ECRNs) for sequence labeling. ECRNs are discrim-
inative models, so ECRNs overcome the problems of HMMs.
ECRNSs are also immune to the label bias problem even though
they are locally normalized. To make the estimation of ECRNSs as
fast as possible, we simply use the empirical distributions as the
estimation of parameters. Experiments on two real-world NLP
tasks show that ECRNs reduce the training time radically while
obtain competitive accuracy to the state-of-the-art models.

I. INTRODUCTION

Structured prediction has many important applications in
natural language processing [1], computer vision [2], [3],
bioinformatics [4], [5] and other areas. For example, in nat-
ural language processing, part-of-speech (POS) tagging [6]
is a typical structured prediction task. The input of a POS
tagger is a sentence which is treated as a sequence of words
and the output is a sequence of POS tags assigned to each
word in the sentence. Named entity recognition (NER) [7] is
another important application in information extraction which
transforms a sequence of words into a sequence of NER tags
which identify people, organizations, locations or other named
entities. In other applications, the structure of outputs can be
more complex than sequences, e.g., for a syntactic parser, the
output is a parse tree which is tree-structured.

Structured prediction attracts a lot of research interests and
has been studied extensively in NLP and other areas. Many
powerful models, such as Hidden Markov Models (HMMs)
[8], Conditional Markov Models (CMMs) [9], [10], and Con-
ditional Random Fields (CRFs) [11], have been proposed. They
are widely applied to practical applications in different areas.
Despite the great successes achieved by these models, they
are not flawless. They suffer from some known problems.
Hidden Markov Models are generative models whose objective
function at training time is different from the objective function
at decoding time. This is known as the mismatch problem
[10]. At training time, HMMs optimize a joint probability,
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but at decoding time they try to find a sequence of tags
which maximizes a conditional probability. Also it is difficult
to incorporate overlapping, non-dependent features explicitly
into a hidden Markov model. Conditional Markov models
were proposed to overcome the drawbacks of hidden Markov
models. Conditional Markov Models are discriminative models
in which the objective functions are consistent with each
other at training and decoding time. But conditional Markov
models are affected by the label bias problem [11], [12]. Then
Conditional Random Fields were proposed, which avoid the
label bias problem. But the training of conditional random
fields can be very expensive [13].

In this paper, we propose the Empirical Co-occurrence
Rate Networks (ECRNs) for predicting structured outputs.
ECRNSs avoid the problems of the existing models. ECRNs are
discriminative models. In a discriminative model, the objective
functions are consistent at training and decoding time. And
also it is easy to craft overlapping, non-independent features
into ECRNs explicitly. We also show that ECRNs avoid the
label bias problem naturally even though they are locally
normalized. To make the training of ECRNS as fast as possible,
we simply use the empirical distributions as the estimation of
parameters. This results in very efficient training of ECRNs.
Experiments on two real-world datasets show that ECRNs
reduce the training time radically while obtain competitive
results to the state-of-the-art models.

The rest of this paper is organized as follows. In Section
II, we review the existing popular models, such as HMMs,
CMMs and CRFs. We also illustrate their known problems.
Section III is devoted to our model: Empirical Co-occurrence
Rate Networks (ECRNG5). In Section IV, we prove ECRNs do
not suffer from the label bias problem by experiments on a
simulated dataset. Also in this section we describe experiments
on two real-world datasets. Conclusions and future work
follow in the last two sections.

II. RELATED WORK

In this section, we review some popular models (HMMs,
CMMs, CRFs) for structured prediction. In Section III, we
will introduce our model ECRNs. These models differ in some
important characteristics, such as conditioning (generative or
discriminative), graph structure (directed or undirected) and
factorization. Table I summarizes the important characteristics
of these models.

A. Hidden Markov Models
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TABLE I: Characteristics of Models

HMM | CMM | CRF | ECRN
Conditioning® Gen. Dis. Dis. Dis.
Normalization” | Loc. | Loc. | Glo. | Loc.
Training® Fast Fast | Slow | Fast
Directionality? Dir. Dir. Un. Un.
LBP* No Yes No No

“generative or discriminative

Plocal or global

“whether training is fast or slow

ddirected or undirected

“whether affected by the label bias problem

Fig. 1: Hidden Markov Models

1) Graph Structure: Figure 1 shows a first order HMM,
where S = [sq,$2,...,8,] is the state sequence (or tag
sequence) and O = [01, 02, ..., 0,,] is the observation sequence
(or word sequence). For example, in part-of-speech tagging,
S are the POS tags to be predicted and O are the words in
a sentence. In graphical models, the graph structure encodes
independence relations between nodes. Based on these inde-
pendence relations, we can factorize a joint probability into
small factors.

2) Factorization: The factorization of directed models is
based on the mathematical concept of conditional probability.
HMMs are generative models which factorize a joint proba-
bility as follows:

n

2(5,0) = p(s1) [ plorls:) H psilsy). (D)

i=1

3) Known Issues: There are two known drawbacks of
HMMs [13]. The first drawback is the mismatch problem
which stems from their generative nature. At training time,
HMMs optimize a joint probability p(S,O), but at decoding
time we want a tag sequence which maximizes the conditional
probability p(S|0). As P(S,0) = p(S|0)p(0), where p(O)
is the distribution of observations, HMMs just pay unnecessary
efforts to model p(O). Klein et al. [14] show models with
consistent objective functions at training and decoding time
perform better than mismatch models. The second drawback
is HMMs have difficulty to incorporate overlapping, non-
independent features explicitly [10]. This can be observed from
the factors p(o;|s;) in Equation 1. o; is assumed independent
of other observations conditioned by s;.

B. Conditional Markov Models

1) Graph Structure: Figure 2 shows a first order CMM.
Maximum entropy markov models (MEMMs) [10] are typical
CMMs which train the model using the maximum entropy
framework.

Fig. 2: Conditional Markov Models

2) Factorization: CMMs are discriminative models which
factorize a conditional joint probability as follows:

n—1

p(S10) = p(51|0) [ ] p(sitalsi, ). ©)

i=1

3) The Label Bias Problem: Due to their discrimina-
tive nature, CMMs do not suffer from the mismatch prob-
lem of HMMs and they can easily craft overlapping, non-
independence features explicitly. But CMMs are affected by
the Label Bias Problem [6], [11], [12], [15] which stems from
the nature of their factorization. The factors p(s;1+1|s;, O) are
local conditional probabilities with respect to s. These local
conditional probabilities prefer the s; with fewer outgoing
transitions. The extreme case is when s; has only one possible
outgoing transition s;;1, then p(s;11|s;, O) is always 1 no
matter what o;4; is. That is 0;41 is not used for predict-
ing s;+1. We use the following example to illustrate this
problem. Suppose the training dataset consists of 21 training
instances including 11 of (rib:XIB), 9 of (rob: YOB) and
1 of (rob:XIB), where {r,o,i,b} are observations and
{X,Y,0,I,B} are tags. At test time, we want to predict the tags
for the observation sequence (rob). Obviously, the correct tags
for (rob) should be (YOB) rather than (XIB). Because there are
9 of (rob:YOB) and only 1 of (rob:XIB). But according
to Equation 2, ngOB|rob) = p(Y|r)p(0]Y,0)p(B|0,b) =
2 x 1 x1 = 2, which is smaller than p(XIB|rob) =
p(X|T)p(I|X,0)p(B]I,b) = £2 x 1 x 1 = 2. So CMMs will
mislabel (rob) as (XIB). The reason is that (X) has only
one outgoing transition (I). This constrains p(I|X,0) to be
1 even though p(I|o) is very small. That is (o) is not used
for prediction its tag. The tag of (o) totally depends on the
previous tag. From this example, we can see that the local
conditional probabilities p(s;y1]s;,O) cause the label bias
problem.

C. Conditional Random Fields

Fig. 3: Conditional Random Fields

1) Graph Structure: Figure 3 shows a linear-chain CRF.
CRFs [11] are discriminative and undirected graphical models.



2) Factorization: The factorization for undirected models
are based on the Hemmersley-Clifford Theorem. According to
this theorem, a linear-chain CRF can be factorized as follows:

n—1

p(S|0) = Z(0) H P(54, 541, 0) H ¥(s5,0),

where Z(O) is the global normalization which ensures
> 5 p(S]0) = 1. ¢ and 1) are non-negative factors defined over
pairwise and unary cliques, respectively. Unlike local models,
such as HMM and CMM whose factors are probabilities, the
factors of CRFs, ¢ and v, have no probabilistic interpreta-
tions!. So they cannot be locally normalized.

3) Known Issues: The global normalization makes CRFs
unaffected by the Label Bias Problem. A known problem
of CRFs is the training of CRFs for large-scale datasets
can be slow. On linear-chain CRFs, the time complexity of
the standard training method for CRFs is quadratic in the
size of the tag set, linear in the number of features and
almost quadratic in the size of the training sample [13],
[16]. Approximate techniques [17]-[19] have been proposed
for reducing the training time, but they are not guaranteed
to converge or still take considerable time. Also advanced
optimization techniques, such as stochastic gradient descent
[20] and average perception [21], have been applied to accel-
erate convergence rate. Normally, they reduce the number of
iterations, but they cannot reduce the time complexity of one
iteration. Also sometimes they oscillate when getting close to
the optimum and we need to pre-set the maximum number of
iterations to stop the iterative process.

III. EMPIRICAL CO-OCCURRENCE RATE NETWORKS
A. Graph Structure

ECRNSs are discriminative, undirected models. A linear-
chain ECRN has the same graph structure as Figure 3. But the
factorization of ECRNSs is different from that of CRFs.

B. Co-occurrence Rate Factorization

Co-occurrence Rate (CR) is the exponential function of
Pointwise Mutual Information (PMI) [22]. PMI was first
introduced into NLP community by Church and Hanks [23].
It instantiates Mutual Information [24] to specific events and
was originally defined between two variables which can be
extended to multiple variables [25], [26]. Copula is a similar
concept in statistics [27]. To the best of our knowledge, we
are the first to apply CR to factorize undirected graphs.

Definition 1 (CR and Conditional CR).

P(X1s s Xo)
CR(Xy; s X)) = Dol 2n)
X Xn) = ) p (%)
(X1, Xn |Y)

CRXs; i Xn [Y) = e S X V)

According to this definition, if there is only one variable,
then CR(X) = p(X)/p(X) = 1. For convenience, CR()) = 1.
CR is a proper quantity for measuring compatibility: (i) If 0 <

'Sometimes they are intuitively explained as the compatibility between
nodes in cliques. But the notion compatibility has no formal definition.

CR < 1, events occur repulsively; (ii) If CR = 1, events occur
independently; (iii) If CR > 1, events occur attractively. We
distinguish the following two notations:

(X1, X2, X3)
p(X1)p(X2)p(X3)’
p(X1, X2, X3)
p(X1)p(X2, X3)

CR(X1; X3 X3) =

CR(Xl; Xng) =

The first denotes CR between three random variables: X, X5
and Xj3. By contrast, the second denotes CR between two
random variables: X; and a joint variable X5 X3. We have
the following two simple but very useful theorems.

Theorem 1 (Partition Theorem).

CR(X 15 Xis Xig1; -5 Xin)
= CR(X1;..; Xi)CR(X k415 -o; Xn)CR(X 1. Xi; Xigy1.. X0 )

Proof.

CR(X71;..; Xk)CR(X k15 -5 X )CR(X 1. Xy Xpog1--X0)
_ p(Xl,‘.,Xk) p(.XkJr]_,u,.Xn)
[T p(X3) Tz p(X5)
p(le-,Xk,Xk-&-l,n,Xn)
p(Xl,..,Xk)p(Xk+1,..,Xn)
_ p(Xl,..,Xk7Xk+1,..7Xn)
a ITi=: p(X0)
= CR(X1;.; Xp; Xit15 -5 Xn)- |

Theorem 2 (Conditional Independence Theorem). If X L Y |
Z, then we have CR(X;Y Z) = CR(X; Z).

X LY | Z means X is independent of Y conditioned by
Z.

Proof: X LY |Z = p(X,Y|Z) =p(X|2)p(Y|Z).

p(X,Y,2) = p(Z)p(X,Y|Z) = p(Z)p(X|Z)p(Y|2Z)

= p )P — p(x. 2307, 2)/0(2).

X,Y,Z .
So CR(X;Y Z) = s = CR(X; Z). [

It is easy to prove that Theorem 1 and Theorem 2 also apply
to Conditional CR. There are more nice theorems of CR [28].
Even we can obtain the factors of the Hemmersley-Clifford
Theorem and Junction Tree by CR (Section 4 and 5 in [28]).

With Theorem 1 and Theorem 2, the linear-chain undi-
rected graph in Figure 3 can be factorized as:

(51, 8n|0) = [ [ CR(sj-1;5;10) [ p(5il0).  (3)
j=2 i=1

This factorization can be obtained by CR as follows:



(51, -+, $|0) = CR(51; .3 52|0) [ [ p(s:10)

4)
= CR(s1|O)CR(s1; 52..sn|O)CR(;;l..; 5n|0) )
[Tpts10)
i=1
= CR(s1; 82]O)CR(82; ..; $»|O) ﬁp(sﬂO) (6)
i=1

n

= H CR(s;j_1;5;|0) Hp(si\O).

=2 i=1

Equation 4 is obtained by Definition 1. Equation 5 is based
on Theorem 1. We obtain Equation 6 because CR(s1]/0) =
1 and s; L s9..8, | so. Following Theorem 2, we have
CR(S1; 82..8,|0) = CR(s1;$2|0). By repeating this process
we can obtain the final result.

p(z,y)

CR, e.g. CR(x;y) = 2()p(y)- 1S @ symmetric concept which
fits the symmetric nature of undirected graphs. By contrast,
as we know the factorization of directed graphs (Bayesian
networks) are based on the conditional probability. Conditional
probability, e.g. p(z|ly) = plzy) g an asymmetric concept

(v)
which fits the asymmetric nazt)uzée of directed graphs.

C. Unaffected By The Label Bias Problem

ECRNSs avoid the label bias problem due to the nature
of their factorization. In Section II-B3, we can see that
the label bias problem stems from the local conditional
probabilities p(s|s’,0), where s’ is the previous tag and
s is the current tag. But in the factorization of ECRNs
(Equation 3), there is no such local conditional probabili-
ties. The factors in Equation 3 are local joint probabilities

CR(s';8|0) = % and unary probabilities p(s|O).
In a local joint probability p(s’,s|O), both o' and o can be
used for predicting s. If p(s|o) is very small, p(s’,s|O) is
also very small. That is s’ cannot dominate the prediction
of s. The current observation o also matters. So ECRns
avoid the label bias problem naturally. We further check this
by the example given in Section II-B3. According to Equa-
tion 3, p(Y0B|rob) = CR(Y;0|ro)CR(0; B\ob)p(Y\r)p(O\o)p(B\b)

9/21/><9/10 9/1/0><1 X 291 X35 X1 = 1%’ which is bigger
than p(XIB|rob) = CR(X;I|ro)CR(I;B|ob)p(X|r)p(I|o)p(B|b)
12/211/2 10 1/11/(}21 X % X 15 X 1 = 15. So ECRNs will
make the correct prediction YOB for rob. This is confirmed
by experiments in Section IV-A.

D. Parameter Estimation

Traditionally, we can use the Maximum Entropy framework
(MaxEnt) [10] to train the parameters of a graphical model.
In MaxEnt, the probability is given by an exponential function
of features. The constraints of MaxEnt require the expected
value of each feature in the estimated distribution be equal to
the empirical values in the training dataset. This is equivalent
to maximizing some log likelihood function. The maximization
can be done by optimization algorithms, such as Limited-
memory BFGS.
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To make the parameter estimation as fast as possible,
also there are some very interesting challenges of applying
MaxEnt to CRNs (Section III-D1), we leave MaxEnt train-
ing of CRNs as future work. Instead, we simply use the
empirical distributions to estimate the parameters. From the
factorization of ECRNs (Equation 3), we can see that we need
to estimate two kinds of parameters: the unary probability
p(s;|O) and the CR(s;j_1;s;|O). Since CR(s;j_1;s;|O) can
be calculated through the( unary and pairwise probabilities

. p(s;-1,8;|0) :
as CR(s;j_1;5;|0) = m, we can estimate the
unary p(s;|O) and pairwise probabilities p(s;_1, s;|O) instead
of CR(s;j_1;5;]0). We simply estimate these probabilities
directly by the frequencies of patterns in the training dataset
as follows:

Sy 0
p(sil0) = o)

Z #(87,02)
#(8is Si+1,0i,0i41)
Zsis”rl #(Sla Si+1, O, O’i+1) 7
where #(s;,0;) is the times (or frequency) of the pattern
(si,0;) appears in the training dataset.

P(si,5i41|0) =

At decoding time, we may encounter o; or o;+; which is
a unknown word”. The formulas above cannot be applied to
unknown words, because the denominator is equal to 0 due to
#(s,0;) is 0 for any unknown word. In this case, we simply
use the feature f(o;) to replace the o; itself in the patterns
(si, f(0;)) as follows.

_oy  #(si, f(0i))
PeilO) = = (i F(00)

#(sis si+1, f(04), f(0i+1))
Dosisies (80 sit1, f(0:), f(0i41))

where o; and o0;4; are unknown words. Since the pattern
(84, f(0;)) has been seen in the training data, the denominator
cannot be equal to 0. It is important that when we calculate
CR using pairwise and unary probabilities, the same features
should be used to estimate these three probabilities. That is in

CR(s';s|0) = %, the three factors on right hand side
are conditioned by the same features. In other words, CR should

be treated as a whole. Otherwise, the accuracy decreases.

1) Challenges of MaxEnt Training of CRNs: In Equation
3, the unary probabilities can be normalized locally, but unfor-
tunately the CR factors cannot®. The normalization conditions
(or log-partition function in log form) play critical role in esti-
mation [29]. They are the constraints to compute the moments
of the distribution. Without local normalizations, CR factors
can not be directly estimated. A promising way to obtain CR
estimations is to train the pairwise and unary probabilities in
a CR factors separately using MaxEnt at training time, and at
decoding time CR can be calculated by pairwise and unary
probabilities.

p(si,5i41|0) =

Another option may be to transform Equation 3 into the
following form and maximize the joint probability:

i p(sz |0)
2Unknown words are the words which do not appear in the training dataset.

3Not really cannot. It is very interesting to use the empirical
>,y CR(z;9|O) as the normalization of CR(z;y|O) in future.

p(81, .., 8|0) =




Unfortunately, even the unary and pairwise factors can be
locally normalized, in our preliminary experiment, this method
did not work. We guess the reason is p(s’, s|O) and p(s’|O)
or p(s|O) are not independent factors (this is obvious) and the
objective function seems not convex. If we maximize the joint
probability, p(s’, s|O) is maximized but p(s’|O) or p(s|O) is
minimized. Then the estimated moments of these distributions
deviate far from the empirical moments and this method failed.
The failure of this method tells us to treat the CR factor as a
whole is important because CR factors are independent of unary
probabilities. This will be explored further in future.

The Decoder of ECRNs can be efficiently implemented
using the traditional Viterbi algorithm.

IV. EXPERIMENTS

We adopt MALLET version 0.4 [30] as the implementation
of MEMM, CRF++ version 0.57 [31] as the implementation
of standard training of CRFs. ECRNs were implemented by us
in Java. For piecewise (PW) [19] training of CRFs, we adopt
the MALLET version 2.0 as the implementation.

A. The Label Bias Problem

We test LBP on simulated data following [11]. The sim-
ulated data were generate as follows. There are five types
of tags: {R1,R2,1,0,B} and four types of observations:
{r,i,0,b}. The designated observation for both R1 and R2
is r, for [ it is ¢, for O it is o and for B it is b. We generate
the paired sequences from two tag sequences: [R1, I, B] and
[R2,0, B]. Each tag emits the designated observation with
probability of 29/32 and each of other three observations
with probability 1/32. For training, we generate 1000 pairs
for each tag sequence, so totally the size of training dataset
is 2000. For testing, we generate 250 pairs for each tag
sequence, so totally the size of testing dataset is 500. We run
the experiment for 10 rounds and report the average per-token
accuracy (%) in Table II.

TABLE II: Accuracy For Label Bias Problem

ECRN PW
95.8 96.0

CRF++
95.9

MEMMs
66.6

The experimental results show that ECRN, piecewise train-
ing (PW) and the standard training (CRF++) of CRFs are
all unaffected by the label bias problem. But MEMMs suffer
from this problem because its accuracy is significantly lower
than other models. This experiments confirm our discussions
in Section III-C and Section II-B3.

B. Part-of-speech Tagging Experiment

We use the Brown Corpus [32] for part-of-speech tagging
experiments. The raw data were preprocessed by excluding the
incomplete sentences which are not ending with a punctuation.
This results in 34,623 sentences. The size of the tag space is
252. Following [11], we introduce features and parameters for
each tag-word pair and tag-tag pair. We also use the same
spelling features as those used by [11]:

D

(f1) Whether a token begins with a number or upper
case letter.
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2)  (f2) Whether a token contains a hyphen.
3)  (f3) Whether a token ends in one of the following
suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies.
TABLE III: Accuracy On POS Tagging
Overall | Known | Unknown | Time (Sec.)
CRF++ 95.4 96.1 71.7 4,571,807
ECRN 95.6 96.9 70.5 3.9

Table III lists the per-token accuracy obtained by CRF++
and ECRN on the part-of-speech tagging dataset. The overall
accuracy gives the per-token accuracy obtained by models cov-
ering all words including known and unknown words. Known
and unknown accuracy show the per-token accuracy only
considering known or unknown words. From the experimental
results, ECRN is much faster than the traditional training
(CRF++) of CRFs, and achieves better results on known words.
Results also show that CRF++ outperforms ECRN on unknown
words by 1.2 percent. On the overall accuracy, ECRN and
CRF++ perform almost the same well. Because we simply
use the empirical distribution to estimate the parameters. The
training of ECRN is just by counting the frequencies in the
training data without iterative optimization.

C. Named Entity Recognition

We use the the Dutch part of CoNLL-2002 NER Corpus*
as our experimental dataset. There are three files in this
corpus: ned.train (13,221) for training, ned.testa (2,305) for
development and ned.testb (4,211) for testing.

The size of the tag space is 9. We use the same features as
those described in the part-of-speech tagging experiment. The
results are listed in Table IV.

TABLE IV: Accuracy On NER

Overall | Known | Unknown | Time (Sec.)
CRF++ | 96.13 98.2 774 794
ECRN | 96.23 98.8 73.7 1.3

On this dataset, ECRN obtains better results on overall
and known word accuracy. But on unknown words, CRF++
perfomes significantly better than ECRN. This is the trade-off
between speed and accuracy. The results also show ECRN is
much faster than CRF++. The experimental results on NER
dataset are consistent with the result on POS tagging dataset.

V. CONCLUSION

The existing models for structured prediction have their
own drawbacks. We proposed the empirical Co-occurrence
Rate Networks (ECRNs) for predicting structured outputs.
ECRNSs avoid the problems with the existing models. ECRNs
are discriminative, local models which are unaffected by the
label bias problem. ECRNs can be trained very fast by simply
using the empirical distribution to estimate the parameters.
Experiments on two real-world NLP datasets show that ECRNs
speeds up the training radically and obtains competitive results
to state-of-the-art models. ECRNs can be very useful for
practitioners on big data.

“http://www.cnts.ua.ac.be/conl12002/ner/
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As discussed in Section III-D1, MaxEnt training of CRNs
is very interesting. Also in this paper, we did not try global
features for training ECRN. Even Equation 3 shows CRNs can
be conditioned by global features (the big O), we still need
experimental evidence to support this. More comprehensive
comparisons between models will be done including statistical
tests. Moreover, we focus on linear-chain graphs in this paper.
CR factorization can also be applied to tree-structured and
cyclic graphs [28]. We will explore this direction. We will also
study other important models for structured prediction, such
as structured SVMs [33], [34] which minimize large-margin
risks and apply factorization to kernel representations (ker-
nel decomposition), exemplar-based methods [35], constrained
conditional models [36] and so on. It is very interesting to
apply CR factorization to kernel representations and minimize
large-margin risks.

FUTURE WORK
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