
Online Bivariate Outlier Detection in Final Test
Using Kernel Density Estimation

H.C.M. Bossers, J.L. Hurink, G.J.M. Smit
Department of Electrical Engineering, Mathematics and Computer Science

University of Twente, Enschede, The Netherlands
h.c.m.bossers@utwente.nl

Abstract—In parametric IC testing, outlier detection is applied
to filter out potential unreliable devices. Most outlier detection
methods are used in an offline setting and hence are not
applicable to Final Test, where immediate pass/fail decisions
are required. Therefore, we developed a new bivariate online
outlier detection method that is applicable to Final Test without
making assumptions about a specific form of relations between
two test parameters. An acceptance region is constructed using
kernel density estimation. We use a grid discretization in order
to enable a fast outlier decision. After each accepted device the
grid is updated, hence the method is able to adapt to shifting
measurements.

I. INTRODUCTION

In parametric integrated circuit (IC) testing, measurements
usually need to be within certain specification limits; devices
that are not within these limits will be rejected. However, these
limits are usually quite wide, since they need to cope with lot-
to-lot and part-to-part variation [1]. Therefore, outlier detection
methods are used in order to detect deviating behavior in the
measurements; the outliers. An outlier is defined as a mea-
surement which differs significantly from an expected pattern
of behavior, even if the measurement is within its specification
limits [2]. The rationale for outlier detection is that deviating
behavior is probably caused by some latent defect and entails
reliability risks. This is supported by empirical evidence [3].
For a more extensive discussion of outlier detection in IC
testing see, for example, [4].

In this paper, we specifically focus on bivariate online
outlier detection, i.e. online outlier detection in a combination
of two test parameters. In the next section we elaborate on this
in more detail. Online means that we have to apply outlier
detection during testing and perform outlier detection each
time new measurements become available; this in contrast
to (offline) post-processing. Until now, most outlier detec-
tion methods (both in semiconductor testing and elsewhere)
are post-processing methods; see, for example, [5]. Post-
processing is possible in Wafer Test where after testing, each
die still can be identified based on its coordinates on the
wafer. However, in Final Test (also called package test) this
identification is usually not possible. Even if it is possible, the
filtering of the detected outliers from the tested lot requires
an additional process step in the testing process, which is
undesirable. Therefore, we specifically focus on online outlier
detection which is applicable to Final Test. The online element
leads to the requirement that methods should be extremely

fast, since otherwise testing time increases, which may be
expensive. However, due to the handling and testing time,
there is some time before the arrival of the next device. As
a consequence, only the outlier decision needs to be made
very rapidly. Afterwards, there is some time (dependent on
the handling and testing time) which can be used for updating
of limits and statistical analysis, before the next decision has
to be taken.

Our main contribution is the development of an algorithm
which can be used to perform online bivariate outlier detection
and is applicable at Final Test, without any assumptions about
the relation between the parameters. Furthermore, our method
is able to adapt to shifting data. The basis of the method is a
rolling horizon approach: it uses test data of a certain number
of previous good (non-outlier) devices to construct a rejection
region for the upcoming device. Note that we do not consider
the test pair selection, for some guidelines we refer to [6].

II. MULTIVARIATE OUTLIER DETECTION

In a previous paper [7] we have introduced a univariate
online outlier detection method. However, univariate methods
are only able to detect unexpected measurements within a
single test. Due to all kinds of relations between tests, it
may occur that only some combinations of values are very
strange, whereas the values on itself are not deviating in their
own dimension. The most simple example of this phenomena
occurs if two tests have a strong linear relation. In this case,
it is easy to form combinations of values that are normal
in their own dimension, but if combined deviate significantly
from the linear relation. In [6], this linear relation is exploited
for outlier detection. However, there also exist all kinds of
nonlinear relations. Therefore, we now focus on bivariate
outlier detection that is suitable for arbitrary relations between
two test parameters. Most of the used concepts can be extended
to higher dimensions, but then very fast the statistical curse
of dimensionality shows up. This means that in order to make
reliable statistical estimations the number of required observa-
tions grows very fast. However, this is not very practical for
online outlier detection, since using a very large horizon means
both long initialization time and less (slower) adaptivity to
measurement shifts. In the following subsections we elaborate
on the concepts of distance and scaling. Furthermore, we
discuss a method which can be used for outlier detection:
kernel density estimation (KDE). This method is very suitable



for our problem, since it does not make any assumptions about
the relations in the data.

A. Distance

The key in multivariate outlier detection is the concept of
distance or dissimilarity between two (d-dimensional) obser-
vations x and y, or between an observation and some ’center
of mass’ x̄. In the univariate case we can simply take the
(absolute) difference of the observations. In order to obtain
a scale-invariant distance, this difference is divided by the
standard deviation. However, in the multivariate case we have
d-dimensional vectors and distance can be calculated in several
ways. Some well known distance functions are the Euclidean
distance and Mahanalobis distance. The Euclidean distance
between two vectors x and y is defined as:

distE(x, y) =
√

(x− y)T (x− y) (1)

However, this distance is extremely sensitive to scale differ-
ences in the dimensions, since the deviation in each dimension
is equally weighted. Furthermore, it ignores correlations in
the data, so each deviation is equally weighted, regardless
whether it is a deviation which could be expected on basis
of correlation or a deviation which is opposite to the expected
correlation. As a consequence, the dataset should be more or
less equally scaled in each dimension. Furthermore, the outlier
detection method itself should take correlations into account.

Mahanalobis distance is based on correlations and is scale-
invariant, but requires a covariance matrix S of the data. It is
defined as:

distM (x, y) =
√

(x− y)TS−1(x− y) (2)

Note that the Mahanalobis distance reduces to the Euclidean
distance if S is the identity matrix, i.e. there are no correlations
and the data is equally scaled. The key of Mahanalobis dis-
tance lays in the re-scaling of deviations in each dimension by
use of the covariance matrix. This sounds very useful for the
multivariate outlier setting, but we have to make some remarks.
The first is regarding the robustness: as in the case with
standard deviation in the univariate case, also the covariance
matrix is very sensitive to outliers [8]. Robust alternatives
can be computed but are computationally more expensive.
Secondly, we should remark that the covariance matrix is
based on linear dependence, so non-linear relations are usually
not well captured by the covariance. This can be clarified with
a simple example: let X be a standard normally distributed
random variable and let Y = X2. Then the covariance between
those variables is 0, but Y is completely determined by X . So
Mahanalobis distance does not seem suitable for our problem.
We have decided to use Euclidean distance and to cope with
the scaling problem and data dependencies within our method.

B. Scaling

Scaling is necessary in datasets with unequally scaled vari-
ables. The most well known technique is autoscaling or stan-
dardization. Suppose we have n datapoints in d-dimensions:
xij : i = 1, . . . n, j = 1, . . . d. Let x̄j denote the mean and

sj the standard deviation of the jth dimension. Then the
autoscaled data zij is given by:

zij =
xij − x̄j
sj

(3)

The use of mean and standard deviation immediately shows
the sensitivity to outliers. So probably other scaling techniques
are more appropriate. For example robust scaling, where the
median and MAD (Median Absolute Deviation around the
median) are used instead of mean and standard deviation. We
refer to [9] for a more extensive discussion of different scaling
methods. Until now we neglected the fact that the scaling
method has to work online, since we need the scaling for
online outlier detection. Therefore, we propose to use the uni-
variate method presented in [7]. This online method essentially
computes the standardized distance from the (robust) mean and
rejects a device if the distance exceeds a certain threshold.
Furthermore, this method protects itself against outliers by
using robust statistics in the initialization phase, i.e. the start-
up of the method. So we can use this standardized distance in
order to obtain equally scaled variables.

C. Kernel Density Estimation

Data dependencies can be taken into account by using a
density-based approach. The aim is to estimate a density,
which can be used to distinguish between low and high density
areas. One way to do this is to assume some parametric family
of distributions (like the normal distribution) and estimate its
parameters. However, real-life data usually does not come
from the assumed distribution, so it might be better to use
only the data to determine the shape of the distribution,
without further assumptions about the class of distributions.
This can be done with Kernel Density Estimation (KDE).
The main advantage of KDE is that it does not make any
assumption about the shape or linear relations between the
different variables. KDE can be used for outlier detection, see
for example [10].

KDE basically means that each observation is given an
equal probability mass of 1/n, which is spread out in a
certain region around the observation. This region is defined by
the kernel function and the bandwidth parameter. The kernel
function determines the shape of the region and the bandwidth
parameter controls the size of the region (note that the total
mass is the same for each observation). Then a density estimate
for a certain point x can be obtained by aggregating the values
of all individual kernels on that point. Mathematically, f̂(x),
a density estimate for x, looks as follows:

f̂(x|X1, . . . , Xn) =
1

n

n∑
i=1

1

hd
K

(
x−Xi

h

)
where X1, . . . , Xn are given d-dimensional observations, h is
the bandwidth parameter and K a kernel function. If f̂(x) is
smaller than a certain threshold, x lies in a very low density
region and it can be characterized as an outlier. In the 2-
dimensional case, this can be interpreted as follows: each
observation has an influence within a circle around it with



radius h, the bandwidth parameter. The values in this circle
are determined by the kernel function which has a maximum
at the observation itself and decreases to zero by moving
from the center until the (euclidean) distance to the center
is equal to h. A density estimate for x can be obtained by
adding the kernel values of x for each observation Xi. In
Figure 1 an example is shown. The black dots indicate the (2-
dimensional) observations, the surface represents the resulting
density estimate from these six observations. Because of the
low number of observations, the effect of a single observation
is clearly visible as a ’bubble’ centered around an observation.
Furthermore, when two (or more) observations are close to
each other, the bubbles intersect and the values of the kernels
in the intersection area are added.

Note that basic KDE, as described above, requires equally
scaled variables, since the Euclidean distance is used. Scale
differences can be taken into account within KDE by using
variable bandwidths for each dimension [11]. However, for
online outlier detection we prefer to use the basic KDE since
using variable bandwidths means that the update of the density
estimation after each measurement becomes more complex and
computationally demanding.

Figure 1. Example Kernels

III. ONLINE KERNEL OUTLIER DETECTION

In the previous sections, we discussed the kernel density
estimation as an offline outlier detection method. However,
for Final Test we need an online method. Thus, in this section
we transform the kernel density method to an online version.

As in the univariate case, a rolling horizon is used. So each
time a decision is based on the previous n observations. In
our description, we mainly focus on the 2-dimensional case.
Most concepts can easily be generalized to higher dimensions,
however the required number of observations for reliable
density estimations grows very fast [11], as the space in
which observations can occur, grows exponentially. The use of
Euclidean distance in the kernel functions implies that more
or less equally scaled dimensions are required. Therefore, we
use the univariate rolling horizon method described in [7]
to standardize the measurements. Furthermore, this method
detects and removes the gross outliers in each dimension. After

this preprocessing, we apply multivariate outlier detection on
the standardized measurements. A schematic overview of our
method is presented in Figure 2. In the next subsection, we
describe the (online) bivariate outlier detection method in more
detail.

1) Measurements xi = [xi1 xi2] become available
2) Apply Univariate Outlier Detection on xi1 and xi2

separately (based on previous n1 observations)
3) If both xi1 and xi2 are accepted: return standardized

values yi = [yi1 yi2]
4) Apply Bivariate Outlier Detection on yi (based on

previous n2 observations)

Figure 2. Online Outlier Detection Method

A. Online Bivariate Outlier Detection

For the bivariate outlier detection we use a rolling horizon
approach: based on the previous n non-outlier observations
we decide if the next observation is an outlier or not. Note
that in our case, the observations are pairs of measurements
of two test parameters. The method consists of two phases:
the initialization phase and the rolling horizon phase. We first
introduce the method, and discuss afterwards how to deal with
the initialization phase.

In each iteration of the rolling horizon phase, we have an
horizon H = {Y1, . . . , Yn} of n standardized observations Yj ,
and a new standardized observation yi on which we have to
decide if it is an outlier or not. A straightforward approach
would be to compute the kernel density estimate of yi:

f(yi|H) =
1

nh2

∑
j∈H

K

(
yi − Yj
h

)
(4)

and characterize yi as outlier if f(yi|H) is smaller than a
certain threshold T. A disadvantage of this approach is that
evaluation (4) takes some time, hence the outlier decision
cannot be taken very fast. Ideally, we are prepared for taking
a fast decision, after which update computations may be
performed while the testing process continues until the next
device is tested. To achieve this, we need to store density
estimates of the horizon. In kernel density estimates, the effect
of a single observation can easily be added or subtracted,
so updating is very easy. However, it is impossible to store
density estimates for all points, since the data comes from
a continuous distribution. Hence, a discretization is required
such that we assign regions to a limited number of points,
equally spread among the (2-dimensional) continuous mea-
surement space. Note that this space is bounded, since the
univariate outlier detection method rejects measurements with
an (absolute) standardized value larger than a certain tolerance
level k. So the measurement space consists of all points
in [−k, k] ∗ [−k, k]. A discretization can be obtained by
constructing a grid of horizontal and vertical lines each having
a distance of δ in between. The intersections of these lines are



used as points in the discretized (storage) space DS. Each
continuous observation is assigned to the nearest point in the
discretized space by rounding.

The level of discretization can be controlled by the distance
δ between the lines in the grid. The number of points in DS
is in the order of O(k2/δ2). Furthermore, for updating the
density estimate, only the area around the new observation is
influenced, which is determined by the bandwidth h and δ.
The number of points which need to be updated each iteration
is in the order of O(h2/δ2). So a low value for δ results in a
large number of points, which means a good approximation,
but also more computation time and more demanding memory
requirements. An overview of the method is presented in
Figure 3. The index j is used for the oldest measurement in
the Horizon, N is the total number of devices in the test run
and T is the threshold for deciding if an observation is an
outlier or not.

Initialization:
Construct Baseline Horizon H = {Z1, . . . , Zn}
Compute f(x|H) ∀x ∈ DS
set i := n, j := 0

Repeat
i = i+ 1
zi = discretize(yi)
Look up: f(zi|H)
If f(zi|H) ≤ T

then outlier detected;
Else

update density estimate
j = (j mod n) + 1
Zj = zi

Until i = N

Figure 3. Multivariate Rolling Horizon Method

Note that this discretization is an approximation to the
exact density shown in formula (4), since we approximate
the density of a new observation with the density of the
nearest discretized point. However, we have moved almost
all required calculations after the outlier decision moment.
Only the discretization of the new observation and lookup
of corresponding density needs to be done before the outlier
decision can be made. Furthermore, the required calculation
time decreases if δ increases. If δ is chosen not too small
compared to h, the total computation time per observation
(both before and after the outlier decision) is smaller than
using the exact formula (4). This is because for each new
observation, the evaluation of (4) requires n (bivariate) kernel
evaluations. In the discretization we can compute the kernel
beforehand, during the update process only the center of
the kernel changes, so we can simply add/subtract the (pre-
computed) kernel values for all points in the neighborhood.

B. Parameters

The presented method is influenced by four parameters:
discretization level δ, bandwidth h, threshold T and horizon
size n. Furthermore, the type of kernel K can also be seen as
a parameter, but the kernel type is usually not very important
and the most convenient type can be chosen [11]. Since our
final purpose is outlier detection, it is enough if we can
distinguish low density points from high density points. Hence,
we can use integer valued kernels in order to save memory
and computation time. Therefore, we use a modified boxcar
kernel: all points within a distance h from the center get value
1, but points within distance 0.5h or 0.25h, get value 2 or
3 respectively. So we have an integer valued kernel where
points closer to the center have a higher value. The value
of δ has a large impact, on the one hand on approximation
performance, and on the other hand on computation time and
memory requirements. The bandwidth h and horizon size n are
connected, if n increases, h can be decreased. The horizon size
needs to be large enough to obtain reliable density estimates,
but small enough for practical use. There are some rules for
computing the optimal bandwidth [11]. However, these rules
only provide optimal bandwidths if the density which needs to
be estimated is multivariate normal. Furthermore, our purpose
is outlier detection, thus only for the low density regions we
need reliable density estimates. The density estimates for the
dense regions are not very important, as long as there is a clear
distinction between high and low density regions. Therefore,
we recommend to do experiments to obtain good settings for
the parameters. The threshold T needs to be set based on the
desired strictness of the method, but also the kernel type and
the bandwidth need to be taken into account.

C. Initialization Phase

Until know, we ignored the initialization phase. That means
that all devices in the baseline escape outlier detection. One
solution could be to analyze afterwards if the baseline contains
outliers. If yes, then the complete baseline should be retested
in order to find the outliers. However, in case of a lot size of
2500 and a baseline of 250, this would result in 10% more test
time. So it is worthwile to incorporate outlier detection also
during the initialization. For the first devices, online analysis
is only possible if data of previous lot can be used. After a
few devices, some information of the current lot is available
which can be used for (rough) outlier detection. An example of
outlier detection in the baseline is presented in [7], where we
consider the univariate case. There we use robust statistics,
in order to avoid the influence of outliers and start outlier
detection early, for example after 30 or 50 devices. However,
we have to protect against possible outliers, therefore we have
to be more conservative and take a higher threshold. In this
way, we can distinguish between normal devices and the ’still
unsure’ devices. Usually, all or almost all of the ’still unsure’
devices also turn out to be normal devices afterwards, but at
the decision moment there was not enough evidence for this.
Depending on the required conservativeness and variation in
the baseline, we can already classify about 70-90 % as normal



during the initialization phase. This means that in case a retest
of the baseline is required, we only have to retest about 10-30
% of the baseline.

IV. EXPERIMENTS

In this section we present the results of some initial ex-
periments with the presented method using real-world data.
Furthermore, we show the effects of the different steps in the
method. We performed three types of comparisons, first we
show the effects of the discretization compared to the exact
formula (4). Then we compare our online outlier detection
method with offline outlier detection (also using KDE) on
scaled data. The first two comparisons are made based on
the scaled data, in the third comparison we show the results
of our online outlier detection method on original data. This
can vary because the measurements are online scaled, hence
the scaling can differ along the process.

A. Discretization Effects

We start with the comparison of our discretization method
and the exact online density computation (formula 4) for
different discretization levels ranging from 0.1 to 0.75. Lower
levels are not practical since then computation time and
memory will drastically increase; higher levels are not ex-
pected to deliver good approximations. In Figure 4 we plotted
the computed densities of both methods on test data of a
combination of two tests. However, since our aim is outlier
detection we only looked at the the low density regions;
there we need reliable density estimation. The horizontal and
vertical line indicate the 2nd percentiles in both directions.
The xth percentile is the value of the density below which
x percent of the observations fall. As a consequence, all
observations below the horizontal line or to the left of the
vertical line lie in the lowest density regions. This gives an
indication which devices would be rejected by both methods if
the objective was to reject all devices below the 2nd percentile.
All observations in the upper left and lower right quadrant
would then be treated differently, so these quadrants should be
as empty as possible. As can be seen in Figure 4 we can obtain
a quite good approximation with δ = 0.1. A discretization
level of 0.25 also performs reasonably well, although there
occur some minor differences in both methods. The higher
levels show a degrading performance, but for δ = 0.5 the linear
pattern is still clearly visible, especially for the lowest density
points which are most relevant. Note that we have chosen a
rather high percentile, in practice the desired rejection rate is
usually lower.

B. Online Effects

In this section we compare the results of the presented
online method versus an offline outlier detection method. The
offline outlier detection method is executed on all (scaled)
observations at the same time, so this can only be done if
all measurements are available. For the online method we
used a horizon size n = 250 and discretization parameter
δ = 0.1, since this value provides very accurate approximation,

Figure 4. Approximation Results (lower 2%-percentile)

so differences in the results are most likely the result of differ-
ences between online and offline outlier detection. As offline
outlier detection method we also use KDE, but with adaptive
bandwidth in order to obtain smoother density estimation in
the tails. As a result, observations in the low density regions
get a higher bandwidth and are more flattened. For more
detailed information about adaptive bandwidth estimators we
refer to [12] and [11].

In Figure 5, a combination of two test parameters is plotted
of 4600 devices. The gray points are the normal points, the
black points are detected as outlier both online and offline.
The circled points are only detected online, the points with a
plus sign are only detected offline. As can be seen the results
of methods coincide on the majority of points, however there
are three only offline outlier and five only online outliers.

Figure 5. Online (o) vs. Offline (+)

The same pattern can be seen in Table I. This table shows a
comparison of online versus offline with different bandwidth
and threshold settings on 40,000 devices. Note that each
parameter setting results in a different rejection percentage.
For a fair comparison we look at the same percentage offline
outliers, by taking those observations with the lowest density
such that the number of online and offline outliers is the
same for each parameter setting. The offline suspects are
all observations within twice the rejection percentage, so the



suspects are those observations which are also in the lower
density regions. As can be seen is the number of outliers the
highest with a low bandwidth and decreases if the bandwidth
increases. Therefore, we used a higher threshold for h = 2.5.
Furthermore, a large part of the online outliers is also offline
outlier, and from the remaining part only a small fraction is
offline regarded as normal. On the other hand, the number of
offline outliers which are not detected is still relatively high:
around 10% of the total number of outliers. However, from
yield perspective this is not neccessarily bad: it is better to
detect most outliers without much overkill, than detecting all
outliers with large overkill.

(h,T) (1.5,1) (2,1) (2.5,2) (2.5,3)
online outlier, offline outlier 317 250 241 279
online outlier, offline suspect 47 34 29 23
online outlier, offline normal 5 1 1 1
offline outliers not detected 52 35 30 24

Table I
PARAMETER COMPARISON

C. Results in Original Data

In this section we analyze the results of our online outlier
detection method in the original data, i.e. without scaling. In
Figure 6, four plots are shown with data points of two tests.
The online detected outliers are circled. The first plot is on
an aggregated dataset of three wafers, the other three plots
only contain data of the individual wafers. In the aggregate
plot, it seems if there are some online outliers detected which
are quite in the middle of a dense cloud of points. However,
in the individual wafer plots there are no outliers within
the dense cloud of points (except for one in wafer 19).
Apparently, there has occurred a shift in the measurements.
This shows that outlier detection should not be executed on
a very aggregate level, if possible. Otherwise, the variance is
likely to increase which will have a negative effect on outlier
detection possibilities. See for example [5], for a paper about
the importance of variance reduction for outlier detection.

V. CONCLUSIONS

In this paper, we have presented a new method to deal
with bivariate online outlier detection. The method is based
on kernel density estimation, but in order to make fast outlier
decisions we use a discretization such that previous density
estimates can be stored. The level of discretization can be
used to control the accuracy on one hand and required
memory and update computation time on the other hand.
Initial experiments show that our method is able to detect
outliers, and there are only minor differences with offline
detection. More experiments are required to determine the
effectiveness of our method. This also can give more insight
into favorable parameter settings. Further research is required
to determine the effects of outlier detection on dppm values,
that is, investigate which outliers are indeed potential failures.

Figure 6. Online Outliers in Real Data

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
of AgentschapNL and the province Overijssel (Pieken in de
Delta). Furthermore, the authors would like to thank Patrick
Zwegers from Salland Engineering and the DATA reviewers
for their valuable comments and feedback.

REFERENCES

[1] J. L. Roehr, “Measurement Ratio Testing for Improved Quality and
Outlier Detection,” in Proceedings of the International Test Conference,
IEEE, 2007.

[2] P. O’Neill, “Statistical Test: A New Paradigm to Improve Test Ef-
fectiveness and Efficiency,” in Proceedings of the International Test
Conference, pp. 1–10, IEEE, 2007.

[3] R. Madge, M. Rehani, and K. Cota, “Statistical Post-Processing at
Wafersort - An Alternative to Burn-in and a Manufacturable Solution to
Test Limit Setting for Sub-micron Technologies,” in Proceedings of the
VLSI Test Symposium, pp. 69–74, IEEE, 2002.

[4] S. S. Sabade, Integrated Circuit Outlier Identification by Multiple
Parameter Correlation. PhD thesis, Texas AM University, 2006.

[5] W. R. Daasch and R. Madge, “Variance Reduction and Outliers: Sta-
tistical Analysis of Semiconductor Test Data,” in Proceedings of the
International Test Conference, IEEE, 2005.

[6] L. Fang, M. Lemnawar, and Y. Xing, “Cost Effective Outliers Screening
with Moving Limits and Correlation Testing for Analogue IC’s,” in
Proceedings of the International Test Conference, IEEE, 2006.

[7] H. C. M. Bossers, J. L. Hurink, and G. J. M. Smit, “Online Univariate
Outlier Detection in Final Test: A Robust Rolling Horizon Approach,”
in Proceedings of the European Test Symposium, IEEE, 2011.

[8] P. Rousseeuw and B. van Zomeren, “Unmasking Multivariate Outliers
and Leverage Points,” Journal of the American Statistical Association,
vol. 85, no. 411, pp. 633–639, 1990.

[9] L. H. Chang, R. J. Pell, and M. B. Seasholtz, “Exploring process data
with the use of robust outlier detection algorithms,” Journal of Process
Control, vol. 13, pp. 437–449, 2003.

[10] L. Latecki, A. Lazarevic, and D. Pokrajac, “Outlier Detection with
Kernel Density Functions,” in Proceedings of the 5th International Con-
ference on Machine Learning and Data Mining in Pattern Recognition,
pp. 61–75, IEEE, 2007.

[11] B. Silverman, Density Estimation for Statistics and Data Analyis.
Chapman and Hall, 1986.

[12] H. Stratigopoulos, S. Mir, E. Acar, and S. Ozev, “Defect Filter for
Alternate Test,” in Proceedings of the European Test Symposium, IEEE,
2009.


