A Design Method For Modular Energy-Aware Software

Steven te Brinke, Somayeh Malakuti, Christoph Bockisch, Lodewijk Bergmans, and
Mehmet Aksit
University of Twente — Software Engineering group — Enschede, The Netherlands
{brinkes, malakutis, c.m.bockisch, bergmans, aksit}@cs.utwente.nl

ABSTRACT

Nowadays reducing the overall energy consumption of soft-
ware is important. A well-known solution is extending the
functionality of software with energy optimizers, which mon-
itor the energy consumption of software and adapt it accord-
ingly. To make such extensions manageable and to cope with
the complexity of the software, modular design of energy-
aware software is necessary. Therefore, this paper proposes
a dedicated design method for energy-aware software.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces

General Terms

Design, Performance

Keywords

energy-aware software, modularity, design method

1. INTRODUCTION

Green computing emphasizes the need for reducing the en-
vironmental impacts of I'T solutions by reducing their energy
consumption. Green computing can be achieved by making
software energy-aware by augmenting it with so-called en-
ergy optimizers, which monitor the energy consumption of
the software during its execution and optimize it accordingly.

Today’s software is already facing the problem of com-
plexity [7], and extending its functionality with energy opti-
mizers increases this problem. Modularization is commonly
considered as means to cope with the complexity of the soft-
ware, because the scope of focus can be reduced to individual
modules [6], which communicate with each other through
well-defined interfaces.

To cope with the complexity of energy-aware software, we
claim that energy optimizers must be modularized. This can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13, March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

1180

provided resources provided services

M QQQ

Resource-aware component

implementation
A

required services

RUM Resource-Utilization

Model (RUM)

M1

required resources

Figure 1: Resource-Aware Component Notation

be understood as the separation of the functional and opti-
mization concerns. Energy optimizers need to gather nec-
essary information from functional components to optimize
their energy consumption. For exchanging this information,
functional and optimizer components must provide suitable
interfaces to each other. Along this line, we have proposed
a dedicated notation for modeling such components [5].

However, a modeling notation is not sufficient to achieve
modularity in the design of energy-aware software. In this
paper, we propose a design method to guide designers through
the activities performed to identify and modularly design (1)
necessary components and the energy-specific interfaces of
these components, (2) the models that must be prepared
during each activity, and (3) the analysis that must be per-
formed on the models. More details of the design method
and a concrete realization to modularly design a real-life
media player are described in a technical report [2].

2. NOTATION FOR COMPONENTS

Figure 1 depicts a notation—which we proposed earlier
[5]—for modeling resource-aware components. We consider
energy as a special kind of resource; a component may con-
sume various resources, which eventually may lead to the
consumption of energy. Therefore, such resources must also
be taken into account. The provided services, required ser-
vices, provided or required resources are specified in terms
of a name and signature of a single attribute.

In contrast to the services and resources, the resource uti-
lization model (RUM) of the component is more complex,
because it represents the relations between all the services
and resources provided and required by the component. The
RUM is represented as the light gray box inside the compo-
nent and exposed through the octagonal port; each compo-
nent has only one RUM. It has already been proposed to
express the RUM as a state chart in which states are anno-
tated with resource behavior, and invocations on the services
of the component are modeled as transitions.

Identify Identify Identify
functional user optimizer
components components components

[inconsistent or incomplete]

v
?{consistent and complete]

v
[Model service ports] [Model resource ports }
' v

¥

?{consistent and complete]
[Model resource behavior J

y

[inconsistent or incomplete]

[inconsistent or incomplete]

?{consistent and complete]
[Analyze system resource behavior

[inconsistent or incomplete]
[consistent and complete]

[Select most suitable optimizer components

Y

O

Figure 2: Design method for energy-aware software

3. DESIGN METHOD

This paper proposes a method to design energy-aware
software systems such that modularity is achieved in the
design of such systems. Figure 2 is a UML activity diagram
that depicts the activities that are performed in our design
method, along with the order and dependency of activities.
The activities are depicted as boxes and each activity results
in a model. The arrows represent the order of activities; the
activities between bars can be performed in any order. The
diamonds represent points in our method where the models
are evaluated and possibly are redesigned iteratively, e.g.,
by changing the decomposition, or adding details. The ac-
tivities result in a set of modeled components, which are
represented in the notation depicted in Figure 1.

While our design method can always be applied with pen
and paper, if automatic analyses are desired, a tool must
be used. In a technical report [2], we present more details
about the design method and our concrete experience with
the model checker UPPAAL.

3.1 Identify components

At the top of the diagram are the activities for identifying
the software components. The design method distinguishes
three kinds of components: functional, user and optimizer.

The functional components refer to both software and
hardware components which form the target system; each
component implements part of the functionality of the sys-
tem and interacts with other components to accomplish the
overall functionality. Since there are already various guide-
lines for modularizing functional aspects of software [6, 3],
our method suggests to adopt an existing guideline to iden-
tify functional components.

The way in which users interact with software can have a

1181

large influence on the overall energy consumption [4]. For ex-
ample, if a media-player application adopts a caching mech-
anism, caching would not be effective if a user disturbs the
normal stream of video by seeking forward and backward.
Therefore, to be able to analyze the effectiveness of an opti-
mization strategy, it is needed to model the usage scenarios.

Since it is not possible to foresee all possible usage scenar-
ios, it is desirable to at least model most common scenarios.
Our design method represents these scenarios as user com-
ponents. To facilitate analysis of resource consumption, we
propose to model deterministic user behavior.

The optimizer components monitor and adapt the resource
consumption of functional components during execution. For
this matter, they interact with functional components. Our
design method distinguishes optimizer components from other
functional components to emphasize that they must be mod-
ularized so that various optimization strategies can be used
interchangeably during the concrete design.

3.2 Model ports

The service ports of a component represent the function-
ality provided and required by the component. These ports
are part of the interface of the component and must be mod-
eled after the components are identified.

Both software and hardware functional components can
provide and consume resources; the kind of resources may be
different for hardware and software components. For exam-
ple, a hardware device consumes electric energy as resource;
whereas a software component may require a network con-
nection or a buffer as a resource.

To be able to analyze resource consumption of compo-
nents, the provided and required resources must be spec-
ified as the interface of the components. In addition, the
inter-connection among the components must be specified so
that a provided resource can be consumed by other compo-
nents. Therefore, our design method proposes the following
approach for modeling the resource ports.

First, identify a resource with respect to which the soft-
ware should be optimized and the components that directly
require this resource. Second, add the corresponding re-
quired resource ports to these components. Components
that consume the resource of interest in general also provide
resources which relate to the resource of interest (e.g., be-
cause they consume the initial resource in order to provide
another resource at a higher abstraction level). Such related
resources must be added as provided resource ports to the
components. This activity must be applied recursively until
all relevant resources are identified.

3.3 Model resource behavior

After modeling the components and their interfaces, we
model their resource behavior. The resource behavior is the
dynamic resource consumption and provision of components
during their execution, and we represent them via RUMs
(see Figure 1). This dynamic relation can, for example, in-
clude the following information: which resources are con-
sumed or produced by each service port, and how switching
among the services influences the resource consumption.

RUMs are energy state charts [1] that represent the re-
source behavior of components. The RUM of a component
can be modeled, for example, through the following activi-
ties.

Start by identifying states with distinct functional behav-

ior of a component, for example, by considering the function-
ality defined as service ports, or by referring to the require-
ments or hardware specification. Define transitions between
these states that can happen at events related to service in-
vocation and possibly other events such as time-outs. Next,
add the resource consumption to the model by annotating
each state with the amount of resources it consumes or pro-
duces; thereby you must refer to the required and provided
resource ports of the component.

States with multiple characteristics of resource usage must
be split into multiple states. Now, identify the possible tran-
sitions between these new states and the already existing
states, and events triggering these transitions. This step
must be applied recursively until all states have a single
characteristic of resource consumption.

3.4 Analysis

Our design method considers checking activities after each
modeling step. Examples of checks are: checking whether
any component is missing; checking whether the required
interfaces of components are bound to compatible provided
interfaces of other components, etc. If a model fails such
checks, the initial activities are performed again in a new
iteration to improve the design until it passes the checks.

When at least an initial version of all models exists, the
effectiveness of various optimizer components can be ana-
lyzed. Specific to our method is the analysis of the system’s
resource behavior using RUMs. This can, for example, be
used to analyze which optimization results in the least re-
source consumption. Based on this analysis, designers can
select a composition for the final system design using the
most suitable one among alternative optimizer components.

4. RELATED WORK

This section discusses two categories of related work. For
each category, we only compare our work with one represen-
tative paper. A more extensive review of related work can
be found in a technical report [2].

A wide range of techniques and mechanisms are proposed
for making software green. However, there is a lack of meth-
ods and techniques that take software modularity into ac-
count. For example, adopting the solution proposed by Gotz
et al. [4] requires to design and implement the software such
that it complies with their component model. However, this
might not be an effective solution; first because large-scale
commercial software might not be implemented in this com-
ponent model; and second there are already a large number
of legacy software systems that must be extended with en-
ergy optimization functionality, and re-implementing them
according to a new component model might not be consid-
ered suitable. In our design model we reused the existing
notation and activities to design modular software and ex-
tended them with energy-specific notations and activities.

This paper focuses on optimization of energy usage, but
our work can more generally be used to specify the software’s
usage of arbitrary resources. This relates to modeling the
non-functional properties of services. Zschaler [8] proposes
a semantic framework for the specification of non-functional
properties. This framework allows checking whether a cer-
tain composition meets the quality goals. However, the
framework only reasons about a single composition; it does
not know how the composition can be improved. Therefore,
Zschaler’s approach does not support optimization. In con-

1182

trast, our approach specifies the amount of resource usage
and how this can be influenced, to facilitate optimization.

S. CONCLUSIONS AND FUTURE WORK

This paper discussed the need for designing energy-aware
software in a modular way, and proposed a method for this
matter. We also applied the method to a media-player as
a case study. This case study, including more details about
our approach, is described in a technical report [2].

One of the challenges when applying the approach is how
much detail should be added to resource utilization models.
RUMs are part of the interface of a component, so it is de-
sired that RUMs do not contain any implementation details.
However, some implementation details might be needed to
explain the resource behavior. This increases the coupling:
Controllers that depend on the precise resource behavior
given in the RUM, might not be applicable to implemen-
tations that have different resource behavior. Therefore, it
might be desired to add less detail to the RUM, even though
it could hinder some optimization strategies. We will ad-
dress the desired level of detail in RUMs in future work.

As future work we will apply this method to large-scale
systems such as industrial printers. In addition, we will
extend our notation to be able to model diverse kinds of
adaptation actions that energy optimizers can perform on
functional components. We will also investigate suitable
programming mechanisms to implement and modularize the
software that is designed according to our method; aspect-
oriented languages are among our first candidates.

6. REFERENCES

[1] L. Benini, R. Hodgson, and P. Siegel. System-level
power estimation and optimization. In Proc. Int.
Sympos. Low Power Electron. Des., pages 173—178,
Aug. 1998.

S. te Brinke, S. Malakuti, C. M. Bockisch, L. M. J.
Bergmans, and M. Aksit. A design method for modular
energy-aware software. Technical Report
TR-CTIT-12-28, Centre for Telematics and Information
Technology, University of Twente, Enschede, Nov. 2012.
J. Garland and R. Anthony. Large-Scale Software
Architecture: A Practical Guide using UML. Willey, 1st
edition, 2003.

S. Gotz, C. Wilke, S. Cech, and U. Assmann.
Architecture and mechanisms for energy auto tuning.
In Proc. Sustainable ICTs and Management Systems
for Green Computing, 2012.

S. Malakuti Khah Olun Abadi, S. te Brinke, L. M. J.
Bergmans, and C. M. Bockisch. Towards modular
resource-aware applications. In Proc. 3rd Int. Workshop
on Variability & Composition (VariComp 2012), pages
13-17, New York, March 2012. ACM.

D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053-1058, Dec. 1972.

W. Royce. Improving software economics-top 10
principles of achieving agility at scale. White paper,
IBM Rational, May 2009.

S. Zschaler. Formal specification of non-functional
properties of component-based software systems.
Software and Systems Modelling, 9:161-201, 2009.

3

(6]

(7l

8

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

