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Abstract

Minutiae, which are the endpoints and bifurcations of

fingerprint ridges, allow a very discriminative classification

of fingerprints. However, a minutiae set is an unordered

set and the minutiae locations suffer from various defor-

mations such as translation, rotation and scaling. In this

paper, we introduce a novel method to represent a minu-

tiae set as a fixed-length feature vector, which is invariant

to translation, and in which rotation and scaling become

translations, so that they can be easily compensated for. By

applying the spectral minutiae representation, we can com-

bine the fingerprint recognition system with a template pro-

tection scheme, which requires a fixed-length feature vector.

This paper also presents two spectral minutiae matching al-

gorithms and shows experimental results.

1. Introduction

A fingerprint consists of a pattern of line structures,

which are called ridges. The most prominent ridge char-

acteristics are minutiae, which are the ridge endpoints and

bifurcations. They are known to remain unchanged over

an individual’s lifetime [11]. Minutiae-based fingerprint

recognition techniques are popular and widely used [5, 9].

However, they have some drawbacks, which limit their ap-

plication. First, due to the fact that minutiae sets are un-

ordered, the correspondence between individual minutia in

two minutiae sets is unknown before matching and this

makes it difficult to find the geometric transformation (con-

sisting of translation, rotation, scaling, and optionally non-

linear deformations [5]) that optimally registers (or aligns)

two sets. For fingerprint identification systems with very

large databases [2], in which a fast comparison algorithm

is necessary, minutiae-based matching algorithms will fail

to meet the high speed requirements. Secondly, a minutiae

representation of a fingerprint cannot be applied directly in

recently developed template protection schemes [15, 16],

which require as an input a fixed-length feature vector rep-

resentation of a biometric modality. The spectral minu-

tiae representation as proposed in this paper overcomes the

above drawbacks of the minutiae sets, thus broadening the

application of minutiae-based algorithms.

There are several algorithms to extract a fixed-length fea-

ture vector from fingerprints. The FingerCode as presented

in [10] is based on ridge features. The author concluded

that FingerCodes are not as distinctive as minutiae and they

can be used as complementary information for fingerprint

matching. Willis and Myers brought forward a fixed-length

minutiae wedge-ring feature [18], which recorded the minu-

tiae numbers on a pattern of wedges and rings. However,

this method can only perform a coarse fingerprint authen-

tication, and cannot handle big translations and rotations.

Recently, a feature vector based on the distribution of the

pairwise distances between minutiae is proposed by Park et

al. [13]. However, this algorithm is only evaluated on the

manually labelled minutiae and the performance is not sat-

isfying.

Our method is inspired by the Fourier-Mellin transform,
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which was first introduced by the optical research com-

munity [7]. It was often used in image processing to ob-

tain a translation, rotation and scaling invariant descriptor

of the image [8, 14]. However, the implementation of the

Fourier-Mellin transform requires a Fourier transform and a

polar-logarithmic mapping. When applying those on a dig-

ital image, a resampling and interpolation process is nor-

mally unavoidable. To avoid the interpolation errors, we

introduce an analytical representation of the minutiae set,

and then use analytical expressions of a continuous Fourier

transform that can be evaluated on polar-logarithmic coor-

dinates. By representing minutiae in the spectral domain,

we transform a minutiae set into a fixed-length feature vec-

tor, which at the same time does not need registration to

compensate for translation, rotation and scaling. By using

a spectral minutiae representation instead of minutiae sets,

we meet the requirements of template protection and allow

for faster matching as well.

The spectral minutiae representation method can be eas-

ily integrated into a minutiae-based fingerprint recognition

system. Minutiae sets can be directly transformed to this

new representation, which makes this method compatible

with the large amount of existing minutiae databases.

This paper is organized as follows. First, in Section 2,

the concept of spectral minutiae representation is explained

in detail. Next, two correlation-based spectral minutiae

matching algorithms are proposed in Section 3. Then, Sec-

tion 4 will present the experimental results. Finally, we will

draw conclusions in Section 5.

2. Spectral Minutiae Representation

2.1. Background

The spectral minutiae representation is based on the

shift, scale and rotation properties of the two-dimensional

continuous Fourier transform. If we have an input signal

f(~x), ~x = (x, y)T (we denote the transpose of a vector ~v

as ~vT), its continuous Fourier transform is

F{f(~x)} = F (~ω) =

∫

∞

−∞

∫

∞

−∞

f(~x) exp(−j~wT~x)d~x,

(1)

with ~ω = (ωx, ωy)T. The Fourier transform of a translated

f(~x) is

F{f(~x − ~x0)} = exp(−j~ωT~x0)F (~ω), (2)

with ~x0 = (x0, y0)
T the translation vector. The Fourier

transform of an isotropically scaled f(~x) is

F{f(a~x)} = a−2F (a−1~ω), (3)

with a (a > 0) the isotropic scaling factor. The Fourier

transform of a rotated f(~x) is

F{f(Φ~x)} = F (Φ~ω), (4)

with

Φ =

(

cos φ − sin φ

sin φ cos φ

)

. (5)

Here Φ is the (orthonormal) rotation matrix and φ is the

(anticlockwise) rotation angle of f(~x).
It can be seen from (2) that if only the magnitude of

the Fourier spectrum is retained, this results in a translation

invariant representation of the input signal. Furthermore,

from (3) and (4) it follows that scaling and rotation of the

input signal results in a scaled and rotated Fourier spectrum.

Based on the above properties of the two-dimensional

Fourier transform, we can re-map the Fourier spectral mag-

nitude onto a polar-logarithmic coordinate system with re-

spect to an origin, such that the rotation and scaling become

translations along the angular and radial axes, respectively.

The detailed steps are as follows. Consider a signal t(~x)
that is translated, scaled and rotated replica of r(~x),

t(~x) = r(aΦ~x − ~x0), (6)

then the magnitude of the Fourier transforms of t(~x) and

r(~x) are related by,

|T (~ω)| = a−2|R(a−1Φ~ω)|, (7)

which is a translation invariant representation of the input

signal. If we re-map the Fourier spectral magnitude onto a

polar-logarithmic coordinate system as,

λ = log
√

ω2
x + ω2

y, β = arctan(
ωy

ωx
), (8)

Rpl(λ, β) = |R(eλ cos β, eλ sin β)|, (9)

Tpl(λ, β) = |T (eλ cos β, eλ sin β)|, (10)

then we have the Fourier spectral magnitude of t(~x) and

r(~x) on the polar-logarithmic coordinates,

Tpl(λ, β) = a−2Rpl(β + φ, λ − log a). (11)

Equation (11) is a translation invariant description of the

input signal, while the rotation and scaling have become

translations along the new coordinate system axes. If we

would perform a Fourier transform on Tpl(λ, β), this is

called a Fourier-Mellin transform.

We will introduce a similar procedure as we showed

from equations (7) to (11) that can be applied to minutiae

sets in order to find a representation which is invariant to

translation and where rotation and scaling are translations.
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2.2. An analytical spectral minutiae representation

When implementing the Fourier transform there are two

important issues that should be considered. First, when

a discrete Fourier transform is taken of a continuous im-

age, this results in a description of a periodic repetition

of the original image. This is undesirable because it in-

troduces errors. Second, the re-mapping onto a polar-

logarithmic coordinate system after using a discrete Fourier

transform introduces interpolation artifacts. Therefore we

introduce an analytical representation of the input minu-

tiae, and then use analytical expressions of a continuous

Fourier transform that are evaluated on every grid point

in the polar-logarithmic plane. These analytical expres-

sions are obtained as follows. Assume we have a finger-

print with Z minutiae. With every minutia, a function

mi(x, y) = δ(x − xi, y − yi), i = 1, . . . , Z is associated

where (xi, yi) represents the location of the i-th minutia in

the fingerprint image. Thus, in the spatial domain, every

minutia is represented by a Dirac pulse. The Fourier trans-

form of mi(x, y) is given by:

F{mi(x, y)} = exp(−j(ωxxi + ωyyi)), (12)

and the spectral representation of the minutiae is defined as

M(ωx, ωy) =

Z
∑

i=1

exp(−j(ωxxi + ωyyi)). (13)

This is the analytical expression for the spectrum which

can be directly evaluated on a polar-logarithmic grid. The

resulting representation in the polar-logarithmic domain is

invariant to translation, while rotation and scaling of the

input have become translations along the polar-logarithmic

coordinates.

2.3. Implementation

In order to obtain our final spectral representation, the

continuous spectrum (13) is sampled on a polar-logarithmic

grid. In the radial direction λ we use M = 128 samples log-

arithmically distributed between λ = 0.1 and λ = 0.6. In

the angular direction β, we use N = 256 samples uniformly

distributed between β = 0 and β = π. Because of the sym-

metry of the Fourier transform for real-valued functions, us-

ing the interval between 0 and π is sufficient. This polar-

logarithmic sampling process is illustrated in Figure 1.

The examples of the minutiae spectra are shown in Fig-

ure 2. For each spectrum, the horizontal axis represents the

rotation angle of the spectral magnitude (from 0 to π); the

vertical axis represents the frequency of the spectral magni-

tude (the frequency increases from top to bottom). We can

notice that the minutiae spectrum is periodic on the hori-

zontal axis.

(a)

(b)

Figure 1. Illustration of the polar-logarithmic sampling. (a) the

Fourier spectrum in a Cartesian coordinate and a polar-logarithmic

sampling grid; (b) the Fourier spectrum sampled on a polar-

logarithmic grid.

3. Spectral Minutiae Matching

After representing fingerprints in the form of minutiae

spectra, the next step is matching: the comparison of two

minutiae spectra. The result of matching is either a ‘match’

(the two spectra appear to be from the same finger) or a

‘non-match’ (the two spectra appear to be from different

fingers). Normally, in this step, we will first compute a

number (similarity score) which corresponds to the degree

of similarity. Then, by using a threshold, we can make a

match/non-match decision [6].

3.1. Direct matching

Let R(m,n) and T (m,n) be the two sampled minu-

tiae spectra in the polar-logarithmic domain respectively

achieved from the reference fingerprint and test fingerprint.

Both R(m,n) and T (m,n) are normalized to have zero

mean and unit energy. As a similarity score, the correla-

tion of two minutiae spectra was chosen, which is a com-

mon similarity measure in image processing. Therefore, the

matching score between R and T is defined as:

S
(R,T )
DM =

1

MN

∑

m,n

R(m,n)T (m,n). (14)
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(a) (b) Minutiae spectrum of (a)

(c) (d) Minutiae spectrum of (c)

(e) (f) Minutiae spectrum of (e)

(g) (h) Minutiae spectrum of (g)

Figure 2. Examples of minutiae spectra. (a) and (c) are fingerprints

from the same finger; (e) and (g) are fingerprints from the same

finger.

3.2. Weighted sum correlation matching

Let R(m,n) and T (m,n) be as defined in the previous

subsection. The line correlation C(R,T )(m) of R(m,n) and

T (m,n) is defined as

C(R,T )(m) =
1

N

N
∑

n=1

R(m,n)T (m,n), (15)

for m = 1...M , where M = 128, N = 256.

During matching, a weighted sum rule for the line cor-

relation values is chosen as the similarity score of R(m,n)
and T (m,n), which is defined as:

S
(R,T )
WSC =

1

M

M
∑

m=1

w(m)C(R,T )(m), (16)

with w(m) the sum rule weight for the correlation value

C(R,T )(m). The weights w(m) need to be obtained by

training. It is chosen as:

w(m) =
µG(m) − µI(m)
√

σG(m)σI(m)
, (17)

which is related to the detection index used in communi-

cation theory [17]. In (17), µG(m) and σG(m) are the

mean and the standard deviation of C(R,T )(m) in case R

and T are from the same finger (a genuine pair), and µI(m)
and σI(m) are the mean and the standard deviation of

C(R,T )(m) in case R and T are from different fingers (an

imposter pair).

3.3. Fast rotation shift searching

In most fingerprint databases, there is no scaling differ-

ence between the fingerprints, or the scaling can be com-

pensated for on the level of the minutiae sets [4]. There-

fore, in practice only rotations have to be compensated for.

This is done by testing a few rotations. Because we applied

the polar-logarithmic transform to the Fourier spectra, the

rotation becomes the circular shift in the horizontal direc-

tion in our minutiae spectra. We chose to test rotation from

−10 ◦ to +10 ◦, which corresponds circular shifts from -15

units to +15 units in the polar-logarithmic domain. This ro-

tation range is fingerprint data dependent. If big rotations

appeared often in fingerprint samples, then a larger rota-

tion range should be applied. Let Tk(m,n) be defined as

T (m,n) with a circular shift k in the horizontal direction.

For each shift trial, a new similarity score S(R,Tk) is calcu-

lated using (14) or (16). Finally, the highest score is chosen

as the final matching score and the corresponding shift k is

recorded as the best shift (that is, the best rotation).

We applied a fast search for the best shift. This algorithm

consists of the following steps:

(1) 5 circular shifts (k = −12,−6, 0, 6, 12) are applied to

T (m,n) and the similarity scores S(R,Tk) are calculated.

The maximum value of S(R,Tk) is denoted as S1 and its

corresponding shift k is denoted as k1;

(2) 2 circular shifts (k = k1 − 2, k1 + 2) are applied to

T (m,n), and the similarity scores S(R,Tk) are calculated.

The maximum value of S(R,Tk) and S1 is denoted as S2,

and its corresponding shift k is denoted as k2;

(3) 2 circular shifts (k = k2 − 1, k2 + 1) are applied to

T (m,n), and the similarity scores S(R,Tk) are calculated.

The maximum value of S(R,Tk) and S2 is denoted as Sfinal.

Using this fast rotation shift search algorithm, only 9

shift trials need to be tested, instead of 31 shift trials for

an exhaustive search. After these steps, the value Sfinal is

recorded as the final matching score between R and T . We

tested both fast search and exhaustive search methods, and

gained similar results. But, theoretically, this fast search

solution is heuristic and may not give optimal results.
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4. Results

4.1. Measurements

We test the spectral minutiae representation in a verifica-

tion setting. A verification system authenticates a person’s

identity by comparing the captured biometric characteristic

with her own biometric template(s) pre-stored in the system.

It conducts a one-to-one comparison to determine whether

the identity claimed by the individual is true [11].

The matching performance of a fingerprint verification

system is evaluated by means of several measures. The most

commonly used are the false acceptance rate (FAR), the

false rejection rate (FRR), and the equal error rate (EER).

FAR is the probability that the system gives a ‘match’ deci-

sion for fingerprints that are not from the same finger. FRR

is the probability that the system gives a ‘non-match’ deci-

sion for fingerprints that are from the same finger. When

the decision threshold of a biometric security system is set

so that the FAR and FRR are equal, the common value of

FAR and FRR is referred to as the EER. For simplicity, we

use EER as a performance indicator of our scheme.

The proposed algorithms have been evaluated by apply-

ing them to the MCYT Biometric Database [12]. We used

the fingerprint data containing 3600 fingerprints. They were

obtained from the first 30 individuals (person ID from 0000

to 0029 in MCYT). Each individual contributed data from

10 different fingers, and from each finger, 12 samples were

collected using the optical sensor U.are.U from Digital Per-

sona [1], with a resolution of 500dpi. The minutiae sets

were obtained by the VeriFinger minutiae extractor [3].

Among our fingerprint dataset, we used 1200 fingerprint

samples from 10 individuals (person ID from 0020 to 0029

in MCYT) as a training set to calculate the weighted sum

correlation weights (17), and 2400 fingerprint samples from

20 individuals (person ID from 0000 to 0019) as the test set.

For each comparison, we chose two fingerprints from the

data set: one as a reference fingerprint, another one as a

test fingerprint. For matching verification (genuine pairs),

we used all the possible combinations, thus we have in total

10×10×
(

12
2

)

= 6600 genuine scores in the training set, and

20 × 10 ×
(

12
2

)

= 13200 genuine scores in the test set. For

non-matching verification (imposter pairs), we compared

each fingerprint with 10 randomly chosen samples from

other individuals, thus we have in total 1200× 10 = 12000
imposter scores in the training set, and 2400 × 10 = 24000
imposter scores in the test set.

The weights (17) for the weighted sum correlation

matching that we obtained from the training set are shown

in Figure 3. The EERs we achieved from the test dataset are

shown in Table 1. The genuine and imposter distributions

are shown in Figure 4. The FAR, FRR and ROC (Receiver

Operating Characteristic) curves are shown in Figure 5 and

6 respectively. In these figures, the matching scores are nor-
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Figure 3. The weights for each line correlation.

Table 1. Matching results (the test dataset).

Matching method EER

Direct matching (DM) 3.21%

Weighted sum correlation (WSC) 3.13%

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

matching score

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Genuine distribution (DM)

Imposter distribution (DM)

Genuine distribution (WSC)

Imposter distribution (WSC)

Figure 4. Genuine and imposter distributions (the test dataset).
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Figure 5. FAR and FRR curves (the test dataset).

malized to the interval [0,1] for a better comparison.

From Table 1, we can see that the weighted sum cor-

relation matching (WSC) received a small improvement

compared with the direct matching (DM). From Figure 4,

the genuine score distributions for the two matching algo-
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rithms are almost overlapping, while the imposter scores

from WSC are slightly lower. However, based on the very

small difference in EERs, we cannot state that WSC is a

better matching algorithm.

To evaluate our algorithm, we compared our results with

the ones from other fingerprint recognition systems. From

the academic domain, the MCYT organizer reports an EER

with 5.5% using minutiae-based algorithm [12]. From the

commercial domain, we tested the performance of VeriFin-

ger from Neurotechnologija, whose algorithm achieved one

of the best results in both FVC2006 and FpVTE 2003 from

NIST [3]. VeriFinger received a much better result with an

EER 0.34%. In our method, to combine with template pro-

tection schemes, we cannot perform an alignment between

the reference and test minutiae sets, which is a crucial step

for minutiae-based matching. This may cause the degrada-

tion of our algorithm. The comparison shows that although

our result is acceptable for academic research, we still need

to improve our algorithm to reach the security level of the

current top fingerprint recognition systems.

5. Conclusion

The spectral minutiae representation is a new minutiae-

based approach. Our method represents an unordered minu-

tiae set as a fixed-length feature vector, which enables the

combination of fingerprint recognition systems and tem-

plate protection schemes. Moreover, this method avoids the

minutiae registration difficulties by representing a minutiae

set as a translation-invariant spectrum, in which the rotation

and scaling become translations, so that they can be easily

compensated for. In this paper, we also presented spectral

minutiae matching algorithms and showed the experimental

results. However, severe fingerprint non-linear distortions,

noisy and missing minutiae can reduce the accuracy of our

system. To make our method more robust to minutiae errors

is our future work.
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