
Modeling Service Discovery in Ad-hoc Networks
Fei Liu

fei.liu@utwente.nl
Patrick Goering

patrick.goering@utwente.nl
Department of Computer Science

University of Twente, P.O. Box 217,
7500 AE Enschede, the Netherlands

Geert Heijenk
geert.heijenk@utwente.nl

ABSTRACT
A protocol for service discovery using attenuated Bloom filters
has been proposed for ad-hoc networks. Based on our study, it can
well save network bandwidth compared to conventional
approaches. We have built both an analytical model and a
simulation model to evaluate the performance of our novel
discovery mechanism. A comparison of these two models shows
that the analytical model yields very accurate results. Further, an
extension to the discovery protocol is introduced, and shown to
yield significant performance gains. Finally, the impact of node
mobility on the performance of our discovery mechanism is
evaluated, and shown to be moderate.

Categories and Subject Descriptors
C.2.2 [Network protocols]: Network protocols – General; C.4
[Computer Systems Organization]: Performance of Systems –
Design studies

General Terms
Performance, Design, Verification.

Keywords
service discovery, attenuated Bloom filters, ad-hoc networks.

1. INTRODUCTION
Multi-hop ad-hoc networks (MANETs) as non-infrastructure
wireless networks are widely used in emergency and temporary
scenarios. The nodes participating in ad-hoc networks are mostly
lightweight battery-supported devices. How to minimize the
network traffic and processing power for nodes is one of the
major challenges to ad-hoc networks. Considering those
questions, we have proposed a novel service discovery
mechanism for ad-hoc networks by using attenuated Bloom filters
in [14][11]. A Bloom filter [2] is a bit vector for representing a set
to support membership queries. It can represent sets of service or
context information in a simple and efficient way. Attenuated
Bloom filters are layers of Bloom filters, which summarize
service information based on the distance (number of hops). By
using attenuated Bloom filters, our mechanism supports
probabilistic querying with a small probability of false positives.

In this paper, we use the term service discovery, although the
discovery mechanism described here can also be used for context
discovery.

We have built an analytical model [14] and a simulation model
[11] to evaluate the performance of our mechanism. The research
in [14] shows that, compared to conventional solutions, using
attenuated Bloom filters to discover service information can well
save traffic load in practical situations in a fully distributed static
ad-hoc network. Further, research in [11] shows that our approach
gives nodes a good view of the services in their neighborhood,
even if nodes are moving.

The contributions of this paper are the following. (1) We
investigate the accuracy of an approximation that has been used in
literature to express the false positive probability of Bloom filters.
(2) We evaluate the accuracy of the analytical model we have
proposed by comparing it with simulation results. (3) We examine
the impact of an extension to the discovery protocol, replacing
periodic broadcast messages with keep-alive messages. Finally (4)
we investigate the impact that mobility of nodes has on the
performance of our service discovery mechanism.
The paper is structured as follows. Chapter 2 will introduce
related work on service discovery mechanisms. Chapter 3 will
give a brief explanation of our algorithm, its extension, and both
analytical and simulation models. Chapter 4 will show the
experimental results for the comparison of both models and for
the impact of node mobility on the performance. In Chapter 5 we
will conclude the validation and propose future work.

2. RELATED WORK
Service discovery is one of the major challenges in ad-hoc
networks, due to their distributed infrastructure, mobility, and
limited resources. The conventional approaches can be
categorized into two types: proactive discovery and reactive
discovery. In a proactive approach, nodes keep a table or list that
describes the location of service information in a part of or the
entire network. In the rest of this paper, we call this approach
complete advertisement protocol. In contrast, in a reactive
approach, nodes do not have any idea about the service
information in the network. A query is sent to all the nodes in the
network whenever information is required. We name this
approach non advertisement protocol. The choice of reactive
versus proactive approach depends significantly on the network
and service context and on the interaction with the underlying
routing protocol [13].

Research has been done to improve the conventional approaches.
Client-server approaches are used in some protocols, such as
Bluetooth Service Discovery Protocol (SDP) [3]. An SDP server
is normally used to register or store service information. Clients

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PE-WASUN’07, October 22, 2007, Chania, Crete Island, Greece.
Copyright 2007 ACM 978-1-59593-808-4/07/0010...$5.00.

can obtain the service information via SDP servers. This kind of
approach is not suitable for a fully distributed ad-hoc network.
Cluster-based approaches are also often used in ad-hoc networks,
such as the Intentional Naming System (INS) [1]. Nodes in one
cluster are aware of all information from all nodes in the cluster
and usually a service directory is used to support inter-cluster
queries. Further, a hierarchical approach is also one of the popular
ways to improve the discovery in ad-hoc network, like Group-
based Service Discovery protocol (GSD) [6]. Services are
described in a class/subclass hierarchy to support selectively
forwarding queries. Periodical advertisement and peer-to-peer
caching are used in GSD.

However, none of the protocols mentioned above really
contributes to saving bandwidth which is a requirement for usage
in an ad-hoc network. A Bloom filter, as a space saving data
structure, is often used to enhance the membership query for a set
of information, such as spell check or web cache. It can also be
used for service discovery. In [9], Bloom filters have been
proposed to be used for a secure Service Discovery Service
(SDS). Services were stored with Bloom filters locally to speed-
up queries. In contrast, attenuated Bloom filter have been
introduced in [16] to enhance the location mechanism for peer-to-
peer networks especially while the required location is nearby. It
consists of layers of basic Bloom filters used to provide
probabilistic location and routing to enhance querying within a
small range. Nodes exchange and update the attenuated Bloom
filters with neighbors directly. By updating the filters, nodes have
the knowledge of the information further away with decreased
accuracy. Based on this idea, we have proposed a fully distributed
and lightweight service discovery protocol using attenuated
Bloom filters for ad-hoc networks in [14][11].

3. SERVICE DISCOVERY USING
ATTENUATED BLOOM FILTERS
A Bloom filter is a bit array of w bits. All bits are set to 0 by
default. Each piece of information, i.e. a string describing a
service, is coded with b independent hash functions over the range
{1…w} agreed upon globally. The hash results are used as bit
positions. All the bits in those positions are set to 1. As a result,
this bit vector summarizes the collection of service information.

The string describing a service can be defined according to DNS
SRV records [12]. This is also used in Apple’s Bonjour service
discovery protocols, Multicast DNS [7] and DNS-SD [8]. A
hierarchy of domain name, transport protocol, service type and
instance are used to define a service name. In [7], the domain
name is “.local” and the transport protocol can be either tcp or
udp. The service type registry is maintained and published by
[10]. The instance is a user-friendly name, intended to be used
while browsing for services. The transport protocol and service
type are prefixed by an underscore to distinguish them from the
domain name part of the service name. An example of a service
name would be: “Color Printer._printer._tcp.local.”.

Querying can be easily performed by hashing the query string and
comparing the results with the Bloom filter. If all the bit positions
of the query indicated to one are also set to one in the Bloom
filter, the queried information is most likely (but not certainly)
contained by the filter, with small false positive probability. A
false positive occurs if a service is not stored in the filter, but each

hash result for the queried services equals a hash result of any of
the stored services. In this case the corresponding bits are set in
the Bloom filter, although the service is not present. Otherwise,
the filter definitely does not contain the queried information; there
is no false negative in Bloom filters.

We use independent Bloom filters to represent the reachable
service information for each number of hops away. These layers
of Bloom filters, all with the same width w, are called attenuated
Bloom filters, of which the ith layer filter contains the service
information i hops away. We use d to indicate the depth or
number of layers an attenuated Bloom filter consist of. d is also
the maximum number of hops a query will be forwarded. Context
aggregation can be easily performed by using attenuated Bloom
filters. To aggregate two filters A and B, each layer of filter A
needs to be bitwise OR’d with the corresponding layer of filter B.
The result is the aggregated filter of A and B. Attenuation of the
Bloom filter is done by moving all layers one layer down (i.e.
layer i becomes layer i + 1) and discarding the last layer (layer d).
In our proposal, nodes spread information on available services
by aggregating attenuated Bloom filters received from their
neighbors, attenuating them, and applying the hash results for
their own offered services to the first layer of the attenuated filter.
The resulting attenuated Bloom filter is broadcasted to all direct
neighbors.

3.1 Introduction to the Protocol
The service discovery protocol can be defined in three critical
phases: service exchange, service query, and update and
maintenance. Note that the first two phases have been proposed in
earlier work [14], whereas the method proposed for the third
phase is new here.

3.1.1 Service Exchange
Each node stores several attenuated Bloom filters: a Bloom filter
containing the services from the node itself, a separate attenuated
Bloom filter for each direct neighbor, and one outgoing filter
which attenuates and merges all filters from neighbors and its own
filter. Nodes periodically broadcast their Bloom filters and a
generation-id to uniquely identify the information in the Bloom
filters. Whenever a node receives a filter from an unknown node,
it will establish a link for this node, update its filter by
aggregating the current filter with the one received from this new
neighbor, and broadcast the new filter to all its neighbors. Any
node receiving updates from neighbors will also aggregate the
changes and generate one new outgoing filter. By exchanging the
filters, nodes have an overview of what kind of information is
available in what range.

3.1.2 Service Query
Whenever there is a query generated by a client, the node will
check its local cache, which stores the local services. If there is a
match, a response will be sent back to the client. Otherwise, the
query will be hashed into a basic Bloom filter, and compared with
the attenuated Bloom filters from all the neighbors. If there is a
match at any layer of any of those filters, this query will be
propagated to the matching neighbors. Queries are propagated
using unicast, for every neighbor with a match in the Bloom filter
a query message will be sent. An alternative is to use broadcast
for query messages. In that case, a node needs to send a query
message only once, whenever there is a match in the Bloom filter

for at least one neighbor. The disadvantage is that all neighbors
have to receive and process these query messages. Which method
is more efficient in terms of energy usage, depends on the number
of neighbors with a match in the Bloom filter and the total
number of direct neighbors. The nodes that receive a query
message will check both the local cache and stored filters from
their neighbors. If there is any match in their local cache, a
response will be sent back to the originating node. If there is any
match of the stored filters within the query range, this query
message will be forwarded with decremented hop_counter. Note
that a hop_counter is used to restrict the query range. Queries will
only be sent to a limited number of hops away. The original value
of hop_counter equals the depth of the Bloom filters, d. When a
node receives the same query again, as detected by a unique query
identification (Q_ID), it will drop the query. If no match is found,
e.g., because of a false positive match in a node earlier along the
path between the destination node and the client, the query will be
discarded. Nodes keep track of the incoming link for each
forwarded query, so that the response messages can be routed
back along the same path.

3.1.3 Update and Maintenance
Nodes periodically broadcast their attenuated Bloom filters to
keep the other nodes updated. Further, whenever there is any
change in the filter, the node will also broadcast its filter to inform
the neighbors. If a node does not receive a message from one
neighbor for some period, it will consider this neighbor is not
available anymore (e.g. left the network or out of reach) and
delete this neighbor’s information from its filter.

In the situation when nodes are mobile, experiments have shown
us that periodically broadcasting complete attenuated Bloom
filters wastes quite a lot of network bandwidth, especially when
the network does not have frequent changes. We have improved
the protocol by sending keep-alive messages periodically when
there is no change of service information, instead[11]. The
purpose of keep-alive messages is to notify the existence of the
link to neighboring nodes and the continued availability of the
services represented by nodes. A keep-alive message is a short
message, which contains the generation-id of the last broadcasted
attenuated Bloom filter announcement from this node. Nodes
broadcast keep-alive messages periodically, when there is no
change in the network. The smaller message size saves
bandwidth; as otherwise, a complete attenuated Bloom filter
containing the latest changes will be broadcasted. If a node
receives a keep-alive message with different generation-id, it will
know its information is out of date, and send an update request. A
node that receives an update request will send the latest filter to
the requesting node.

3.2 Introduction to the Analytical Model
In order to evaluate the performance of our service discovery
protocol, we have established an analytical model [14] to
calculate the network cost in Matlab 7.1. In this paper, we are
discussing a network with grid structure, in which each node has 4
direct neighbors in range. In this model, we define two types of
cost in the network: cost for successful querying (a

queringsuccessfulC)

and overhead cost (a
overheadC).1 Successful querying cost is caused

by positive query results while the overhead cost is induced by
the advertisement and false positive queries. Note that in this
model, we focus on a static network, in which mobility and
changes are not considered. The total cost of a node can be
defined as the sum of those two types of cost. Overhead cost is
the sum of advertisement cost (aadcost) and false positive query

cost (afpcost):

a
overhead

a
queryingsuccessful

a CCcost += , (1)

aaa
overhead fpcostadcostC += . (2)

This model focuses on the overhead cost. Since advertisements
are broadcasted periodically at a constant rate, the advertisement
cost can be defined as:

adpackadcost a ⋅= μ , (3)

where μ is the advertisement (update) rate2, and adpack is the
advertisement packet size.

The false positive cost, afpcost , is caused by the false positive
probability of Bloom filters. This cost will be incurred when
query messages are sent due to a false positive match at some
layer in the attenuated Bloom filter, whereas these messages will
not yield any (positive) result. This cost can take place on all links
up to d hops away from the originating node. This can be
calculated as:

∑
=

⋅=
d

1i

a
ifp

a costfpcost ,λ
,

(4)

where λ is the query rate2, and a
ifpcost , denotes the total cost of

all false positive queries transmitted to nodes i hops away from
the node under consideration by nodes i-1 hops away. Such a
transmission, with a packet size qpack, is done if the attenuated
Bloom filter received from the intended receiver (at ith hop) of the
query by the node at i-1 hop gives a false positive in layer d-i.
This cost can be given as:

qpackmissionnumofTransPcost a
ifpidfp

a
ifp ⋅⋅= − ,,, . (5)

Here, a
ifpmissionnumofTrans , denotes the potential number of

transmissions caused by false positives level i. These are the
transmissions of the nodes i-1 hops away from the node under
consideration to their neighbors. Therefore, we have:

1 The superscript a is used when a symbol refers to the analytical

model. The superscript s is used to refer to the simulation
model. When the superscript is omitted, the symbol applies to
both.

2 Note that only the rate is relevant here. Our result for the
(average) cost is valid for any distribution of the actual time
between consecutive advertisements or queries.

() () () .
11121414
14

,
⎩
⎨
⎧

>−⋅=−⋅−⋅
=

=
iii
i

missionnumofTrans ifp
 (6)

Further, the advertisement and query packet size are counted as:

,dwheaderheaderheaderheaderadpack ADUDPIPMAC ×++++= (7)

.wheaderheaderheaderheaderqpack QUDPIPMAC ++++= (8)

Finally, idfpP −, represents the false positive probability of the
layer d-i. This can be defined as [14]:

,}{} | {
),min(

1
, ∑

⋅

=

=⋅==
wxb

k
jjjfp

j

kmPkmtivefalse posiPP (9)

where w denotes the width of Bloom filter; b stands for the
number of hash functions used; xj indicates the number of services
represented in layer j; mj represents the number of bits actually set
in the layer j. For a grid structured network,

()()121 ++⋅= jjsx j , where s is the number of services offered
per node. [14] has proven that formula (9) can be rewritten as:

∑

∑
⋅

=
+⋅

⋅

=
⋅

−
⋅⋅⋅⋅=

−
⋅⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛=

),min(

1
)1(

),min(

1
,

)!(
!),(1

)!(
!),(

wxb

k
j

b
xb

wxb

k
xb

jb

jfp

j

j

j

j

kw
wkxbSk

w

w
kw

wkxbS

w
kP

, (10)

where

jxb
k

l

lk
j l

l
k

k
kxb ⋅

=

− ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅=⋅ ∑

1
)1(

!
1),(S (11)

is called the Stirling number of the 2nd kind.

Formula (10) is computationally complex, and can cause
numerical problems for larger values of d. Therefore we are
looking for a good approximation for it. In [14], we have posed
that for b·xj is small compared to w, we can estimate the false
positive probability by:

()bwxb

bxb

jfp
j

j

e
w

P /*
, 1111 ⋅−

⋅

−≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−≈ . (12)

Note that in literature (e.g. [4]), the first approximation step is
sometimes presented as being exact. This is not the case, as we
have shown in [14]. In order to evaluate the accuracy of the
approximation, we do some numerical test for realistic parameter
values. We use parameter value j = 2 and s = 1, so that xj = 13, so
13 services are represented in the Bloom filter. For simplicity, we
denote 2,fpP and *

2,fpP as P_fp and P_fp*, respectively. Figure 1
shows the exact P_fp using formula (10) and the approximate
P_fp* using formula (12) as a function of w, for several values of
b. P_fp decreases for increasing w. The exact P_fp from formula
(10) is slightly higher than the approximate one, especially for
low w. However, the difference between the exact and
approximate P_fp is getting smaller as w increases. This can also
be observed from Figure 2, which depicts the relative inaccuracy

of the approximation, (P_fp - P_fp*) / P_fp, for increasing w.
When b·xj is small compared to w, we obtain a small P_fp, and
formula (12) is a very good approximation of formula (10). In the
optimal situation, we are seeking for a reasonable size of
attenuated Bloom filters (w and d) with a certain capacity (b and
xj) that causes few false positives without generating large packets
to be advertised. Therefore, formula (12) can be used to estimate
the minimal overhead network cost in our model.

 Figure 1. Comparison between the exact and approximate

formulas for false positive probability

Figure 2. Relative inaccuracy of false positive probability

3.3 Introduction to the Simulation Model
To be able to compare the analytical model from Section 3.2 with
the simulation model as introduced in [11] we have to set up the
simulation with the same parameters as much as possible.
Therefore we also use nodes in a network with a grid structure
and every node has 4 direct neighbors in transmission range. We
have 61 nodes in such a grid structure, which results in the center
node being able to reach any node in the network in a maximum
of 5 hops. The simulation model has been implemented in the
discrete event simulator OPNET Modeler [15] version 11.5. A
MANET node from the OPNET model library was modified to
also support our protocol, consistent with Section 3.1. All nodes
use the IEEE802.11b [17] standard for communication with each
other. The maximum communication range is 300 meters. To
allow for a good comparison with the analytical model, it is
assumed that nodes beyond these 300 meters are not interfered by
the transmission, nor will they carrier sense the transmission.
Collisions can occur when multiple nodes are transmitting at the

same time and for broadcast packets there is no retransmission
mechanism. Therefore we desynchronize messages being sent by
introducing randomness in the timing. All protocol messages for
the discovery protocol are encapsulated in a UDP packet and sent
over IPv4.

In the simulator every node can offer one or more services. These
services are randomly generated and as such for every simulation
run with a different seed, the services offered will be different. All
nodes in the network will advertise their services, if any, to their
direct neighbors, together with any service information received
from neighbors before.

To generate services and queries we first generate a random text
string. This random text string is then converted into a Bloom
filter by using b independent hash functions. Each hash function
uses universal hashing [5] to distribute the bits set in the Bloom
filter uniformly over the entire width of the Bloom filter.

Queries are generated randomly using the same random number
generator. We can select what node will try to send queries and at
which rate it should generate them. A generated query will only
result in a query message being sent when there is a match in a
Bloom filter representing the services reachable through one of
the direct neighbors.

We will be looking at the cost of false positives as well as the cost
of sending advertisement messages from the point of view of the
center node.

4. EXPERIMENTAL RESULTS
In this section, we show our experimental results. Three basic
experiments have been done to compare the results of the
analytical model and the simulation model as described in Section
3. Experiment 1 demonstrates the evaluation of network cost for
varying width (w) of Bloom filters of both models. Experiment 2
verifies the optimal value of w and b under certain depth d from
both the analytical model and the simulation model. Experiment 3
compares the network cost of using Bloom filters and two other
conventional discovery mechanisms. Further, experiment 4 shows
the influence of node mobility on the performance of our
discovery mechanism. In the first three experiments, we use the
model without keep-alive messages, while experiment 4 will use
the keep-alive mechanism.

Before describing the experiments in Section 4.2 – 4.5, we
describe the setup of the comparison in Section 4.1.

4.1 Comparison Setup
In order to obtain the overhead network cost of one node, we
count the number of packets sent out by this node in the
simulation, including periodical broadcast packets and query
packets. Note that, on average, counting all query packets sent out
by a single node (which may be originated up to d-1 hops away)
is equivalent to counting all query packets that are sent by nodes
up to d-1 hops away as a result of a query generated in a single
node. The latter approach is taken in the analytical model,
whereas the former approach is taken in the simulation model, so
that we can focus on the center node, disregarding boundary
effects.

We assume there is no queried service information existing in the
network. 10 hours of simulation will be done for each simulation

run. We will observe the behavior of the center node. By dividing
the total number of bits transmitted by the node by the total
simulation time, we will obtain the overhead network cost. Since
services and queries are randomly generated, 100 independent
runs will be done to calculate a 90% confidence interval of the
overhead network cost. The related analytical results will be
compared with the average and confidence interval from the
simulations.

In the basic simulation experiments without mobility, nodes
artificially refresh the attenuated Bloom filters and advertise them
periodically (i.e. without being triggered by the keep-alive
mechanism). We assume the advertisement period is 600 seconds
plus a random time uniformly chosen between 0 and 10 seconds
to reduce collisions, as explained in Section 3.3. During one
advertisement period, 600 queries are sent. Therefore, we have
μ = 1/605sec and λ = 600/605sec on average for the analytical
model. Note that the keep-alive message mechanism is only used
in the mobile scenario.

We implemented the analytical model with approximate false
positive probability (formula (12)) in Matlab 7.1. In order to
evaluate the accuracy of the approximation, we use Maple 9.5 to
calculate formula (10) and achieve the overhead cost with exact
false positive probabilities.3

Some basic experiments parameters are set as follows:
headerMAC = 224 bits; headerIP = 160 bits (assuming the use of
IPv4); headerUDP = 64 bits; headerAD = 32 bits;
headerQ = 192 bits. We assume one service per node so that s = 1.

4.2 Experiment 1
In this experiment, we observe the network cost under different
widths (w) of the Bloom filters for both analytical and simulation
models. Two sets of experiments have been done: experiment (a)
with d = 3 and b = 15 (see Figure 3) and experiment (b) with d =
5 and b = 13 (see Figure 4). The value of b is in both cases the
optimum value for the respective depths d of the Bloom filter.

100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

w

co
st

(b
it/

s)

Approximate formula
Exact formula
Simulation lower bound
Simulation upper bound

Figure 3. Network cost for d = 3, b=15

3 The use of Maple 9.5 enabled us to avoid some of the numerical

problems we had when evaluating formula (10) with Matlab 7.1
at the cost of a longer computation time.

500 550 600 650 700 750 800 850 900 950 1000
0

5

10

15

20

25

w

co
st

(b
it/

s)
,

Approximate formula
Exact formula
Simulation lower bound
Simulation upper bound

Figure 4. Network cost for d = 5, b=13

The figures show that the results from both models are very close.
Simulation results also prove that there exist values of w and b for
a certain value of d which leads to the minimum network load.
The value of w is the same as the one from the analytical model,
which is 288 bits for d = 3 and 768 bits for d = 5. The results
obtained with the approximate formula (12) are very close to
those from the exact formula (10), especially when b·xd is smaller
than w, i.e. when the false positive probability is small. The
results from the exact analytical formula are always in or very
close to the 90% confidence interval of the simulation results.

4.3 Experiment 2
One of the purposes of the analytical models is to help to
determine the optimal attenuated Bloom filters size and the
number of hash functions in use for achieving the minimum
network load. We ran a number of simulations with different
values for the parameters w and b when d equals 3, 4, and 5,
respectively. The results are shown in the following table.

Table 1. Optimal situations when d equals 3, 4, and 5

d w
(bit) b

BF
approximate

cost (bit/s)

BF exact
cost

(bit/s)

Simulation results
90% confidence
interval (bit/s)

3 288 15 2.31 2.32 (2.33, 2. 35)
4 480 13 4.41 4.43 (4.48, 4.54)
5 768 13 7.85 7.87 (7.89, 7.97)

The values of w and b for optimal network load achieved from the
three models are exactly the same. The network cost is slightly
different, due to the false positive probabilities. Experiments
reveal that in the optimal situation, the network cost for the
approximate analytical model is always within 0.5% of the exact
model. The costs from the analytical models are very close to the
90% confidence interval from the simulation results.

The results from Experiment 1 and 2 verify both the analytical
and simulation models. The analytical model can well estimate
the optimal parameter values for specific network situations. Both
approximate and exact analytical model are very precise to
achieve the optimal parameters. Further, the exact analytical
model can achieve more accurate results with non-optimal
parameters. However, the complicated calculation from the exact

model is not convenient for larger networks. In such cases, the
approximate model can be a very good estimation to calculate
optimal parameter values. Furthermore, the simulation model can
be used to test much more complicated situations that analytical
models can not do, such as mobility of nodes.

4.4 Experiment 3
As discussed in [14], the performance of attenuated Bloom filters
is highly dependent on the ratio of query and advertisement rate.
Over a wide range of realistic values for this ratio using
attenuated Bloom filters achieves a lower network cost than other
alternative solutions, such as complete advertisement and non
advertisement. In this experiment, we observe this property of the
proposed mechanism by comparing service discovery using
attenuated Bloom filters with two conventional solutions we
mentioned in Section 2.

As a typical proactive discovery protocol, complete advertisement
floods a complete description of all service information types to
all network nodes within d hops. Advertisement cost is the main
concern in this situation. We assume that each service information
type can be presented in c bits. We assume each node up to d-1
hops away to broadcast the advertisement, so that we have:

)(
1_

csheaderheaderheaderheader

nodesTotalnumofcost

ADUDPIPMAC

dadcompl

⋅++++

⋅⋅= −μ
. (13)

Non advertisement is a typical reactive protocol. In this case,
nodes do not advertise service information types. When a query
comes, nodes forward it to all the neighbors, up to d hops from
the originator. The cost for querying is counted as the cost for
sending queries uni-directionally to all nodes in the network. So,
the number of transmissions also equals the total number of nodes
within d hops minus 1:

()
()cheaderheaderheaderheader

nodesTotalnumofcost

QUDPIPMAC

dadno

++++

⋅−⋅= 1_ λ
. (14)

We assume in this experiment each service information type can
be represented in 32 bits, i.e., c = 32bits. The approximate
analytical model is used in here. The fixed value for
μA = 1/605sec. We vary the value of λA from 10-3/605 sec to
107/605 sec. The comparison has been done for values of d from 3
to 5. Experiments show that the simulation model gives very close
results compared to the analytical models. The conclusion can be
drawn that our protocol performs better than the non
advertisement solution when λA/μA is larger than 0.1; and it
performs better than the complete advertisement solution even if
λA/μA is 108. We conclude that our service discovery mechanism
consumes less network traffic than two conventional approaches
in practical situations. Figure 5 shows the results for d = 3.

-3 -2 -1 0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/ μ

)
,

Analytical BF cost
Complete AD
Non AD
Simulation lower bound
Simulation upper bound

Figure 5. Performance results for λ/μ

4.5 Experiment 4
Mobility is an important aspect regarding the performance of our
protocol. See [11] for more information about the impact of
mobility. In order to investigate the impact of mobility, and to
verify the performance of the proposed mechanism for topologies
more general than the grid structure that was used in the previous
experiments, we do an additional experiment with the simulation
model. In this experiment we use the simulation model to show
the network cost consisting of advertisement cost, keep-alive cost,
and false positive query cost. We place 25 mobile nodes
uniformly distributed in a simulation area of 1500x1500 meters.
All nodes move according to a random waypoint pattern, thus for
each node a destination is chosen uniformly distributed over the
simulation area and nodes move towards that destination with a
speed randomly chosen between 0.1 and maxspeed m/s. Upon
arrival at this destination, after a random waiting period between
0 and 30 seconds, nodes pick a new destination. Nodes send
advertisement messages to each other when changes in available
services have been detected and otherwise keep-alive messages to
save bandwidth. The period of the keep-alive messages is 15
seconds. Each node will advertise one service to its neighbors.
The depth of the attenuated Bloom filter d equals 3, the width w
equals 288, and b is set to 15. Note that these are the optimal
values found in Experiment 2. For all nodes the query rate λ is set
to 1 query per second. We do 100 runs with 10 hours of
simulation time each. As before services we query for do not exist
in the network, thus all queries sent are the result of false
positives. We vary the amount of mobility through the value of
maxspeed from 1 to 20 m/s. In Figure 6, we plot the network cost
as a function of the speed of the mobile nodes. Note that the size
of the 90% confidence interval of the displayed average value for
the cost of broadcast and keep-alive messages was below 1%. In a
static situation, i.e. maxspeed = 0 m/s, we have only keep-alive
messages and no advertisements. This clearly shows the
advantage of using small keep-alive messages to detect changes,
rather than exchanging the lengthier advertisements periodically.
As the speed increases more advertisement messages are needed
to inform neighbors about new nodes and services. Also with
increasing mobility, the number of false positives increases as on
average the number of services in the Bloom filters increases; old
information is not removed immediately, while new information
is being added promptly. The decision to remove old information

can only be made after at least one keep-alive message has been
missed. Due to the unreliable nature of ad-hoc networks in
practice it is better to wait for at least two keep-alive periods. In
essence for higher mobility a different value of w is more optimal.
Results from Experiment 1 show that there are two segments for
the change of network cost separated by the optimal value for the
width (wo). If w is smaller than wo, the network cost decreases
exponentially while w is increasing. If w is larger than wo, the
network cost increases almost linearly with very gentle slope. The
number of services and the amount of mobility is hard to predict.
Therefore, we prefer to set w slightly higher than the wo we
calculated for the static situation, as the protocol will then operate
in the linear region. This reduces the false positive cost
significantly in case the node density or the number of services
per node is higher than expected.

Figure 6. Network cost with mobility

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have described analytical and simulation models
for our novel approach of service discovery using attenuated
Bloom filters. We observed the overhead network cost for the two
models in static ad-hoc networks. The results from the analytical
models are always within or very close to the 90% confidence
interval from the simulation model. We conclude that both models
are validated. The analytical model proves to be a very good tool
to compute the proper size of attenuated Bloom filters in order to
achieve optimal network cost. A comparison between
conventional approaches and our protocol has been done as well.
Results from both the analytical model and the simulation model
show that the performance of attenuated Bloom filters highly
depends on the ratio of query and advertisement rate. Compared
to conventional solutions, our approach causes a significantly
lower traffic load over a wide and practical range of parameter
settings. The usage of keep-alive messages, as introduced in this
paper, saves bandwidth compared to using an advertisement only
system, especially when node mobility is not too high.

In the case of more general network topologies and mobility of
nodes the following conclusions can be drawn. For increasing
node speeds, network cost is increasing, but overall the network
cost and especially the cost of false positives remains relatively

low. When mobility is taken into account it appears that the
optimal values of w and b are dependant of this.

Ongoing and future work includes further investigation of
network behavior with mobility and further refinement of a
protocol prototype that we have implemented. Meanwhile,
security is also one of our interests. Further, the quality of our
protocol, in terms of stability and scalability, will also be subject
to further study.

6. ACKNOWLEDMENTS
This work is part of Freeband AWARENESS project
(http://awareness.freeband.nl) and QoS for Personal Networks at
Home project (PN@home, http://qos4pn.irctr.tudelft.nl/).
Freeband is sponsored by the Dutch government under contract
BSIK 03025. QoS for PN@Home is supported by the Dutch
Ministry of Economic Affairs under the Innovation Oriented
Research Program (IOP GenCom).

7. REFERENCES
[1] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and

Lilley, J. The Design and Implementation of an International
Naming System. In Proceedings 17th ACM Symposium on
Operating Systems Principles. SOSP’99, Dec 12-15 1999,
Charleston, South Carolina, United States, ISBN: 1-58113-
140-2, pp. 186-201.

[2] Bloom, B.H. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM 13(7), 422-
426.

[3] Bluetooth Consortium Specification of Bluetooth System
Core Version 2.0: Part C, Service Discovery Protocol
(SDP). November 2004.

[4] Broder, A., and Mitzenmacher, M. Network Application of
Bloom Filters: a Survay In Internet Math, 2003, Vol. 1, No.
1, pp. 485-509.

[5] Carter, J.L., and Wegman, M.N. Universal Classes of Hash
Functions. In Journal of Computer and System Sciences,
1979, vol.18, pp. 143-154.

[6] Chakraborty, D., Joshi, A., Finin, T., and Yesha, Y. GSD: a
Novel Group-based Service Discovery Protocol for
MANETs. In Proceedings 4th IEEE Conference on Mobile
and Wireless Communication Networks, MWCN 2002,
September 9 - 11 2002, Stockholm, Sweden, ISBN 0-7803-
7605-6, pp. 140- 144.

[7] Cheshire, S., and Krochmal, M. Multicast DNS. Draft-
cheshire-dnsext-multicastdns-06.txt (work in progress),
August 2006.

[8] Cheshire, S., and Krochmal, M. DNS-Based Service
Discovery. Draft-cheshire-dnsext-dns-sd-04.txt (work in
progress), August 2006.

[9] Czerwinski, S., Zhao, B., Hodes, T., Joseph, A., and Katz, R.
An Architecture for a Secure Service Discovery Service. In
Proceedings of ACM/IEEE MobiCom Conference,
MobiCom’99, Aug 15-20, 1999, Seattle, Washington, United
States, ISBN:1-58113-142-9, pp. 24-35.

[10] DNS-SD, DNS SRV (RFC 2782) Service Types.
http://www.dns-sd.org/ServiceTypes.html

[11] Goering, P.T.H., Heijenk, G.J., Haverkort B., and Haarman,
R. Effect of Mobility on Local Service Discovery in Ad-Hoc
Networks. To appear in Proceedings of the 4th European
Performance Engineering Workshop, September 27-28,
2007, Berlin, Germany.

[12] Gulbrandsen, A., Vixie, P., and Esibov, L. A DNS RR for
specifying the location of services (DNS SRV). RFC 2782,
February 2000.

[13] Hoebeke, J., Moerman, I., Dhoedt, B., and Demeester, P.
Analysis of Decentralised Resource and Service Discovery
Mechanisms in Wireless Multi-hop Netowrks. In
Proceedings Third International Conference on
Wired/Wireless Internet Communications. WWIC2005, May
11-13 2005, Xanthi, Greece, Springer Verlag 3510/2005,
ISSN 0302-9743, ISBN 3-540-25899-X, pp. 117-127.

[14] Liu, F., and Heijenk, G. Context Discovery Using Attenuated
Bloom filters in Ad-hoc Networks. In Journal of Internet
Engineering, 2007, Vol. 1, No. 1, pp. 49-58.

[15] OPNET modeler software, available:
http://www.opnet.com/products/modeler.

[16] Rhea, S., and Kubiatowicz, J. Probabilistic Location and
Routing. In Proceedings 21st Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM
2002, June 23-27 2002, New York, United States, ISSN 0-
7803-7476-2, vol.3, pp. 1248-1257.

[17] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE std. 802.11b, 1999.

