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ABSTRACT 
A protocol for service discovery using attenuated Bloom filters 
has been proposed for ad-hoc networks. Based on our study, it can 
well save network bandwidth compared to conventional 
approaches. We have built both an analytical model and a 
simulation model to evaluate the performance of our novel 
discovery mechanism. A comparison of these two models shows 
that the analytical model yields very accurate results. Further, an 
extension to the discovery protocol is introduced, and shown to 
yield significant performance gains. Finally, the impact of node 
mobility on the performance of our discovery mechanism is 
evaluated, and shown to be moderate.   

Categories and Subject Descriptors 
C.2.2 [Network protocols]: Network protocols – General; C.4 
[Computer Systems Organization]: Performance of Systems – 
Design studies 

General Terms 
Performance, Design, Verification. 

Keywords 
service discovery, attenuated Bloom filters, ad-hoc networks. 

1. INTRODUCTION 
Multi-hop ad-hoc networks (MANETs) as non-infrastructure 
wireless networks are widely used in emergency and temporary 
scenarios. The nodes participating in ad-hoc networks are mostly 
lightweight battery-supported devices. How to minimize the 
network traffic and processing power for nodes is one of the 
major challenges to ad-hoc networks. Considering those 
questions, we have proposed a novel service discovery 
mechanism for ad-hoc networks by using attenuated Bloom filters 
in [14][11]. A Bloom filter [2] is a bit vector for representing a set 
to support membership queries.  It can represent sets of service or 
context information in a simple and efficient way. Attenuated 
Bloom filters are layers of Bloom filters, which summarize 
service information based on the distance (number of hops). By 
using attenuated Bloom filters, our mechanism supports 
probabilistic querying with a small probability of false positives. 

In this paper, we use the term service discovery, although the 
discovery mechanism described here can also be used for context 
discovery. 

We have built an analytical model [14] and a simulation model 
[11] to evaluate the performance of our mechanism. The research 
in [14] shows that, compared to conventional solutions, using 
attenuated Bloom filters to discover service information can well 
save traffic load in practical situations in a fully distributed static 
ad-hoc network. Further, research in [11] shows that our approach 
gives nodes a good view of the services in their neighborhood, 
even if nodes are moving. 

The contributions of this paper are the following. (1) We 
investigate the accuracy of an approximation that has been used in 
literature to express the false positive probability of Bloom filters. 
(2) We evaluate the accuracy of the analytical model we have 
proposed by comparing it with simulation results. (3) We examine 
the impact of an extension to the discovery protocol, replacing 
periodic broadcast messages with keep-alive messages. Finally (4) 
we investigate the impact that mobility of nodes has on the 
performance of our service discovery mechanism. 
The paper is structured as follows. Chapter 2 will introduce 
related work on service discovery mechanisms. Chapter 3 will 
give a brief explanation of our algorithm, its extension, and both 
analytical and simulation models. Chapter 4 will show the 
experimental results for the comparison of both models and for 
the impact of node mobility on the performance. In Chapter 5 we 
will conclude the validation and propose future work. 

2. RELATED WORK 
Service discovery is one of the major challenges in ad-hoc 
networks, due to their distributed infrastructure, mobility, and 
limited resources. The conventional approaches can be 
categorized into two types: proactive discovery and reactive 
discovery. In a proactive approach, nodes keep a table or list that 
describes the location of service information in a part of or the 
entire network. In the rest of this paper, we call this approach 
complete advertisement protocol. In contrast, in a reactive 
approach, nodes do not have any idea about the service 
information in the network. A query is sent to all the nodes in the 
network whenever information is required. We name this 
approach non advertisement protocol. The choice of reactive 
versus proactive approach depends significantly on the network 
and service context and on the interaction with the underlying 
routing protocol [13]. 

Research has been done to improve the conventional approaches. 
Client-server approaches are used in some protocols, such as 
Bluetooth Service Discovery Protocol (SDP) [3]. An SDP server 
is normally used to register or store service information. Clients 
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can obtain the service information via SDP servers. This kind of 
approach is not suitable for a fully distributed ad-hoc network. 
Cluster-based approaches are also often used in ad-hoc networks, 
such as the Intentional Naming System (INS) [1]. Nodes in one 
cluster are aware of all information from all nodes in the cluster 
and usually a service directory is used to support inter-cluster 
queries. Further, a hierarchical approach is also one of the popular 
ways to improve the discovery in ad-hoc network, like Group-
based Service Discovery protocol (GSD) [6]. Services are 
described in a class/subclass hierarchy to support selectively 
forwarding queries. Periodical advertisement and peer-to-peer 
caching are used in GSD. 

However, none of the protocols mentioned above really 
contributes to saving bandwidth which is a requirement for usage 
in an ad-hoc network. A Bloom filter, as a space saving data 
structure, is often used to enhance the membership query for a set 
of information, such as spell check or web cache. It can also be 
used for service discovery. In [9], Bloom filters have been 
proposed to be used for a secure Service Discovery Service 
(SDS). Services were stored with Bloom filters locally to speed-
up queries. In contrast, attenuated Bloom filter have been 
introduced in [16] to enhance the location mechanism for peer-to-
peer networks especially while the required location is nearby. It 
consists of layers of basic Bloom filters used to provide 
probabilistic location and routing to enhance querying within a 
small range. Nodes exchange and update the attenuated Bloom 
filters with neighbors directly. By updating the filters, nodes have 
the knowledge of the information further away with decreased 
accuracy. Based on this idea, we have proposed a fully distributed 
and lightweight service discovery protocol using attenuated 
Bloom filters for ad-hoc networks in [14][11]. 

3. SERVICE DISCOVERY USING 
ATTENUATED BLOOM FILTERS 
A Bloom filter is a bit array of w bits. All bits are set to 0 by 
default. Each piece of information, i.e. a string describing a 
service, is coded with b independent hash functions over the range 
{1…w} agreed upon globally. The hash results are used as bit 
positions. All the bits in those positions are set to 1. As a result, 
this bit vector summarizes the collection of service information. 

The string describing a service can be defined according to DNS 
SRV records [12]. This is also used in Apple’s Bonjour service 
discovery protocols, Multicast DNS [7] and DNS-SD [8]. A 
hierarchy of domain name, transport protocol, service type and 
instance are used to define a service name. In [7], the domain 
name is “.local” and the transport protocol can be either tcp or 
udp. The service type registry is maintained and published by 
[10]. The instance is a user-friendly name, intended to be used 
while browsing for services. The transport protocol and service 
type are prefixed by an underscore to distinguish them from the 
domain name part of the service name. An example of a service 
name would be: “Color Printer._printer._tcp.local.”.  

Querying can be easily performed by hashing the query string and 
comparing the results with the Bloom filter. If all the bit positions 
of the query indicated to one are also set to one in the Bloom 
filter, the queried information is most likely (but not certainly) 
contained by the filter, with small false positive probability. A 
false positive occurs if a service is not stored in the filter, but each 

hash result for the queried services equals a hash result of any of 
the stored services. In this case the corresponding bits are set in 
the Bloom filter, although the service is not present. Otherwise, 
the filter definitely does not contain the queried information; there 
is no false negative in Bloom filters.  

We use independent Bloom filters to represent the reachable 
service information for each number of hops away. These layers 
of Bloom filters, all with the same width w, are called attenuated 
Bloom filters, of which the ith layer filter contains the service 
information i hops away. We use d to indicate the depth or 
number of layers an attenuated Bloom filter consist of. d is also 
the maximum number of hops a query will be forwarded. Context 
aggregation can be easily performed by using attenuated Bloom 
filters. To aggregate two filters A and B, each layer of filter A 
needs to be bitwise OR’d with the corresponding layer of filter B. 
The result is the aggregated filter of A and B. Attenuation of the 
Bloom filter is done by moving all layers one layer down (i.e. 
layer i becomes layer i + 1) and discarding the last layer (layer d). 
In our proposal, nodes spread information on available services 
by aggregating attenuated Bloom filters received from their 
neighbors, attenuating them, and applying the hash results for 
their own offered services to the first layer of the attenuated filter. 
The resulting attenuated Bloom filter is broadcasted to all direct 
neighbors. 

3.1 Introduction to the Protocol 
The service discovery protocol can be defined in three critical 
phases: service exchange, service query, and update and 
maintenance. Note that the first two phases have been proposed in 
earlier work [14], whereas the method proposed for the third 
phase is new here. 

3.1.1 Service Exchange 
Each node stores several attenuated Bloom filters: a Bloom filter 
containing the services from the node itself, a separate attenuated 
Bloom filter for each direct neighbor, and one outgoing filter 
which attenuates and merges all filters from neighbors and its own 
filter. Nodes periodically broadcast their Bloom filters and a 
generation-id to uniquely identify the information in the Bloom 
filters. Whenever a node receives a filter from an unknown node, 
it will establish a link for this node, update its filter by 
aggregating the current filter with the one received from this new 
neighbor, and broadcast the new filter to all its neighbors. Any 
node receiving updates from neighbors will also aggregate the 
changes and generate one new outgoing filter. By exchanging the 
filters, nodes have an overview of what kind of information is 
available in what range. 

3.1.2 Service Query 
Whenever there is a query generated by a client, the node will 
check its local cache, which stores the local services. If there is a 
match, a response will be sent back to the client. Otherwise, the 
query will be hashed into a basic Bloom filter, and compared with 
the attenuated Bloom filters from all the neighbors. If there is a 
match at any layer of any of those filters, this query will be 
propagated to the matching neighbors. Queries are propagated 
using unicast, for every neighbor with a match in the Bloom filter 
a query message will be sent. An alternative is to use broadcast 
for query messages. In that case, a node needs to send a query 
message only once, whenever there is a match in the Bloom filter 



for at least one neighbor. The disadvantage is that all neighbors 
have to receive and process these query messages. Which method 
is more efficient in terms of energy usage, depends on the number 
of neighbors with a match in the Bloom filter and the total 
number of direct neighbors. The nodes that receive a query 
message will check both the local cache and stored filters from 
their neighbors. If there is any match in their local cache, a 
response will be sent back to the originating node. If there is any 
match of the stored filters within the query range, this query 
message will be forwarded with decremented hop_counter. Note 
that a hop_counter is used to restrict the query range. Queries will 
only be sent to a limited number of hops away. The original value 
of hop_counter equals the depth of the Bloom filters, d. When a 
node receives the same query again, as detected by a unique query 
identification (Q_ID), it will drop the query. If no match is found, 
e.g., because of a false positive match in a node earlier along the 
path between the destination node and the client, the query will be 
discarded. Nodes keep track of the incoming link for each 
forwarded query, so that the response messages can be routed 
back along the same path. 

3.1.3 Update and Maintenance 
Nodes periodically broadcast their attenuated Bloom filters to 
keep the other nodes updated. Further, whenever there is any 
change in the filter, the node will also broadcast its filter to inform 
the neighbors. If a node does not receive a message from one 
neighbor for some period, it will consider this neighbor is not 
available anymore (e.g. left the network or out of reach) and 
delete this neighbor’s information from its filter. 

In the situation when nodes are mobile, experiments have shown 
us that periodically broadcasting complete attenuated Bloom 
filters wastes quite a lot of network bandwidth, especially when 
the network does not have frequent changes. We have improved 
the protocol by sending keep-alive messages periodically when 
there is no change of service information, instead[11].  The 
purpose of keep-alive messages is to notify the existence of the 
link to neighboring nodes and the continued availability of the 
services represented by nodes. A keep-alive message is a short 
message, which contains the generation-id of the last broadcasted 
attenuated Bloom filter announcement from this node. Nodes 
broadcast keep-alive messages periodically, when there is no 
change in the network. The smaller message size saves 
bandwidth; as otherwise, a complete attenuated Bloom filter 
containing the latest changes will be broadcasted. If a node 
receives a keep-alive message with different generation-id, it will 
know its information is out of date, and send an update request. A 
node that receives an update request will send the latest filter to 
the requesting node. 

3.2 Introduction to the Analytical Model 
In order to evaluate the performance of our service discovery 
protocol, we have established an analytical model [14] to 
calculate the network cost in Matlab 7.1. In this paper, we are 
discussing a network with grid structure, in which each node has 4 
direct neighbors in range. In this model, we define two types of 
cost in the network: cost for successful querying ( a

queringsuccessfulC ) 

and overhead cost ( a
overheadC ).1 Successful querying cost is caused 

by positive query results while the overhead cost is induced by 
the advertisement and false positive queries. Note that in this 
model, we focus on a static network, in which mobility and 
changes are not considered. The total cost of a node can be 
defined as the sum of those two types of cost. Overhead cost is 
the sum of advertisement cost ( aadcost ) and false positive query 

cost ( afpcost ): 

a
overhead

a
queryingsuccessful

a CCcost += , (1) 

aaa
overhead fpcostadcostC += . (2) 

This model focuses on the overhead cost. Since advertisements 
are broadcasted periodically at a constant rate, the advertisement 
cost can be defined as: 

adpackadcost a ⋅= μ , (3) 

where μ is the advertisement (update) rate2, and adpack  is the 
advertisement packet size. 

The false positive cost, afpcost , is caused by the false positive 
probability of Bloom filters. This cost will be incurred when 
query messages are sent due to a false positive match at some 
layer in the attenuated Bloom filter, whereas these messages will 
not yield any (positive) result. This cost can take place on all links 
up to d hops away from the originating node. This can be 
calculated as: 

∑
=

⋅=
d

1i

a
ifp

a costfpcost ,λ
, 

(4) 

where λ is the query rate2, and a
ifpcost ,  denotes the total cost of 

all false positive queries transmitted to nodes i hops away from 
the node under consideration by nodes i-1 hops away. Such a 
transmission, with a packet size qpack, is done if the attenuated 
Bloom filter received from the intended receiver (at ith hop) of the 
query by the node at i-1 hop gives a false positive in layer d-i.  
This cost can be given as: 

qpackmissionnumofTransPcost a
ifpidfp

a
ifp ⋅⋅= − ,,, . (5) 

Here, a
ifpmissionnumofTrans ,  denotes the potential number of 

transmissions caused by false positives level i. These are the 
transmissions of the nodes i-1 hops away from the node under 
consideration to their neighbors. Therefore, we have: 

                                                                 
1 The superscript a is used when a symbol refers to the analytical 

model. The superscript s is used to refer to the simulation 
model. When the superscript is omitted, the symbol applies to 
both.  

2 Note that only the rate is relevant here. Our result for the 
(average) cost is valid for any distribution of the actual time 
between consecutive advertisements or queries. 
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Further, the advertisement and query packet size are counted as: 

,dwheaderheaderheaderheaderadpack ADUDPIPMAC ×++++=  (7) 

.wheaderheaderheaderheaderqpack QUDPIPMAC ++++=  (8) 

Finally, idfpP −,  represents the false positive probability of the 
layer d-i. This can be defined as [14]:  
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where w denotes the width of Bloom filter; b stands for the 
number of hash functions used; xj indicates the number of services 
represented in layer j; mj represents the number of bits actually set 
in the layer j. For a grid structured network, 

( )( )121 ++⋅= jjsx j , where s is the number of services offered 
per node. [14] has proven that formula (9) can be rewritten as:  
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is called the Stirling number of the 2nd kind. 

Formula (10) is computationally complex, and can cause 
numerical problems for larger values of d. Therefore we are 
looking for a good approximation for it. In [14], we have posed 
that for b·xj is small compared to w, we can estimate the false 
positive probability by:  

( )bwxb

bxb

jfp
j

j

e
w
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⎠
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⎞
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⎝
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Note that in literature (e.g. [4]), the first approximation step is 
sometimes presented as being exact. This is not the case, as we 
have shown in [14]. In order to evaluate the accuracy of the 
approximation, we do some numerical test for realistic parameter 
values. We use parameter value j = 2 and s = 1, so that xj = 13, so 
13 services are represented in the Bloom filter. For simplicity, we 
denote 2,fpP  and *

2,fpP  as P_fp and P_fp*, respectively.  Figure 1 
shows the exact P_fp using formula (10) and the approximate 
P_fp* using formula (12) as a function of w, for several values of 
b.  P_fp decreases for increasing w. The exact P_fp from formula 
(10) is slightly higher than the approximate one, especially for 
low w. However, the difference between the exact and 
approximate P_fp is getting smaller as w increases. This can also 
be observed from Figure 2, which depicts the relative inaccuracy 

of the approximation, (P_fp - P_fp*) / P_fp, for increasing w. 
When b·xj is small compared to w, we obtain a small P_fp, and 
formula (12) is a very good approximation of formula (10). In the 
optimal situation, we are seeking for a reasonable size of 
attenuated Bloom filters (w and d) with a certain capacity (b and 
xj) that causes few false positives without generating large packets 
to be advertised. Therefore, formula (12) can be used to estimate 
the minimal overhead network cost in our model. 

 
 Figure 1. Comparison between the exact and approximate 

formulas for false positive probability 

 
Figure 2. Relative inaccuracy of false positive probability 

3.3 Introduction to the Simulation Model 
To be able to compare the analytical model from Section 3.2 with 
the simulation model as introduced in [11] we have to set up the 
simulation with the same parameters as much as possible. 
Therefore we also use nodes in a network with a grid structure 
and every node has 4 direct neighbors in transmission range. We 
have 61 nodes in such a grid structure, which results in the center 
node being able to reach any node in the network in a maximum 
of 5 hops. The simulation model has been implemented in the 
discrete event simulator OPNET Modeler [15] version 11.5. A 
MANET node from the OPNET model library was modified to 
also support our protocol, consistent with Section 3.1. All nodes 
use the IEEE802.11b [17] standard for communication with each 
other. The maximum communication range is 300 meters. To 
allow for a good comparison with the analytical model, it is 
assumed that nodes beyond these 300 meters are not interfered by 
the transmission, nor will they carrier sense the transmission. 
Collisions can occur when multiple nodes are transmitting at the 



same time and for broadcast packets there is no retransmission 
mechanism. Therefore we desynchronize messages being sent by 
introducing randomness in the timing. All protocol messages for 
the discovery protocol are encapsulated in a UDP packet and sent 
over IPv4. 

In the simulator every node can offer one or more services. These 
services are randomly generated and as such for every simulation 
run with a different seed, the services offered will be different. All 
nodes in the network will advertise their services, if any, to their 
direct neighbors, together with any service information received 
from neighbors before. 

To generate services and queries we first generate a random text 
string. This random text string is then converted into a Bloom 
filter by using b independent hash functions. Each hash function 
uses universal hashing [5] to distribute the bits set in the Bloom 
filter uniformly over the entire width of the Bloom filter. 

Queries are generated randomly using the same random number 
generator. We can select what node will try to send queries and at 
which rate it should generate them. A generated query will only 
result in a query message being sent when there is a match in a 
Bloom filter representing the services reachable through one of 
the direct neighbors.  

We will be looking at the cost of false positives as well as the cost 
of sending advertisement messages from the point of view of the 
center node. 

4. EXPERIMENTAL RESULTS 
In this section, we show our experimental results. Three basic 
experiments have been done to compare the results of the 
analytical model and the simulation model as described in Section 
3. Experiment 1 demonstrates the evaluation of network cost for 
varying width (w) of Bloom filters of both models. Experiment 2 
verifies the optimal value of w and b under certain depth d from 
both the analytical model and the simulation model. Experiment 3 
compares the network cost of using Bloom filters and two other 
conventional discovery mechanisms. Further, experiment 4 shows 
the influence of node mobility on the performance of our 
discovery mechanism. In the first three experiments, we use the 
model without keep-alive messages, while experiment 4 will use 
the keep-alive mechanism. 

Before describing the experiments in Section 4.2 – 4.5, we 
describe the setup of the comparison in Section 4.1. 

4.1 Comparison Setup 
In order to obtain the overhead network cost of one node, we 
count the number of packets sent out by this node in the 
simulation, including periodical broadcast packets and query 
packets. Note that, on average, counting all query packets sent out 
by a single node (which may be originated up to d-1 hops away) 
is equivalent to counting all query packets that are sent by nodes 
up to d-1 hops away as a result of a query generated in a single 
node. The latter approach is taken in the analytical model, 
whereas the former approach is taken in the simulation model, so 
that we can focus on the center node, disregarding boundary 
effects. 

We assume there is no queried service information existing in the 
network. 10 hours of simulation will be done for each simulation 

run. We will observe the behavior of the center node. By dividing 
the total number of bits transmitted by the node by the total 
simulation time, we will obtain the overhead network cost. Since 
services and queries are randomly generated, 100 independent 
runs will be done to calculate a 90% confidence interval of the 
overhead network cost. The related analytical results will be 
compared with the average and confidence interval from the 
simulations.  

In the basic simulation experiments without mobility, nodes 
artificially refresh the attenuated Bloom filters and advertise them 
periodically (i.e. without being triggered by the keep-alive 
mechanism). We assume the advertisement period is 600 seconds 
plus a random time uniformly chosen between 0 and 10 seconds 
to reduce collisions, as explained in Section 3.3. During one 
advertisement period, 600 queries are sent. Therefore, we have 
μ = 1/605sec and λ = 600/605sec on average for the analytical 
model. Note that the keep-alive message mechanism is only used 
in the mobile scenario. 

We implemented the analytical model with approximate false 
positive probability (formula (12)) in Matlab 7.1. In order to 
evaluate the accuracy of the approximation, we use Maple 9.5 to 
calculate formula (10) and achieve the overhead cost with exact 
false positive probabilities.3  

Some basic experiments parameters are set as follows: 
headerMAC = 224 bits; headerIP = 160 bits (assuming the use of 
IPv4); headerUDP = 64 bits; headerAD = 32 bits; 
headerQ = 192 bits. We assume one service per node so that s = 1. 

4.2 Experiment 1 
In this experiment, we observe the network cost under different 
widths (w) of the Bloom filters for both analytical and simulation 
models. Two sets of experiments have been done: experiment (a) 
with d = 3 and b = 15 (see Figure 3) and experiment (b) with d = 
5 and b = 13 (see Figure 4). The value of b is in both cases the 
optimum value for the respective depths d of the Bloom filter.  
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Figure 3. Network cost for d = 3, b=15 

                                                                 
3 The use of Maple 9.5 enabled us to avoid some of the numerical 

problems we had when evaluating formula (10) with Matlab 7.1 
at the cost of a longer computation time. 
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Figure 4. Network cost for d = 5, b=13 

The figures show that the results from both models are very close. 
Simulation results also prove that there exist values of w and b for 
a certain value of d which leads to the minimum network load. 
The value of w is the same as the one from the analytical model, 
which is 288 bits for d = 3 and 768 bits for d = 5. The results 
obtained with the approximate formula (12) are very close to 
those from the exact formula (10), especially when b·xd is smaller 
than w, i.e. when the false positive probability is small. The 
results from the exact analytical formula are always in or very 
close to the 90% confidence interval of the simulation results. 

4.3 Experiment 2  
One of the purposes of the analytical models is to help to 
determine the optimal attenuated Bloom filters size and the 
number of hash functions in use for achieving the minimum 
network load. We ran a number of simulations with different 
values for the parameters w and b when d equals 3, 4, and 5, 
respectively. The results are shown in the following table.  

Table 1. Optimal situations when d equals 3, 4, and 5 

d w 
(bit) b 

BF 
approximate 

cost (bit/s) 

BF exact 
cost 

(bit/s) 

Simulation results 
90% confidence 
interval (bit/s) 

3 288 15 2.31 2.32 (2.33, 2. 35) 
4 480 13 4.41 4.43 (4.48, 4.54) 
5 768 13 7.85 7.87 (7.89, 7.97) 

 

The values of w and b for optimal network load achieved from the 
three models are exactly the same. The network cost is slightly 
different, due to the false positive probabilities. Experiments 
reveal that in the optimal situation, the network cost for the 
approximate analytical model is always within 0.5% of the exact 
model. The costs from the analytical models are very close to the 
90% confidence interval from the simulation results.  

The results from Experiment 1 and 2 verify both the analytical 
and simulation models. The analytical model can well estimate 
the optimal parameter values for specific network situations. Both 
approximate and exact analytical model are very precise to 
achieve the optimal parameters. Further, the exact analytical 
model can achieve more accurate results with non-optimal 
parameters. However, the complicated calculation from the exact 

model is not convenient for larger networks. In such cases, the 
approximate model can be a very good estimation to calculate 
optimal parameter values. Furthermore, the simulation model can 
be used to test much more complicated situations that analytical 
models can not do, such as mobility of nodes. 

4.4 Experiment 3   
As discussed in [14], the performance of attenuated Bloom filters 
is highly dependent on the ratio of query and advertisement rate. 
Over a wide range of realistic values for this ratio using 
attenuated Bloom filters achieves a lower network cost than other 
alternative solutions, such as complete advertisement and non 
advertisement. In this experiment, we observe this property of the 
proposed mechanism by comparing service discovery using 
attenuated Bloom filters with two conventional solutions we 
mentioned in Section 2. 

As a typical proactive discovery protocol, complete advertisement 
floods a complete description of all service information types to 
all network nodes within d hops. Advertisement cost is the main 
concern in this situation. We assume that each service information 
type can be presented in c bits. We assume each node up to d-1 
hops away to broadcast the advertisement, so that we have: 

)(
1_

csheaderheaderheaderheader

nodesTotalnumofcost

ADUDPIPMAC

dadcompl

⋅++++

⋅⋅= −μ
. (13) 

Non advertisement is a typical reactive protocol. In this case, 
nodes do not advertise service information types. When a query 
comes, nodes forward it to all the neighbors, up to d hops from 
the originator. The cost for querying is counted as the cost for 
sending queries uni-directionally to all nodes in the network. So, 
the number of transmissions also equals the total number of nodes 
within d hops minus 1: 
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QUDPIPMAC
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++++

⋅−⋅= 1_ λ
. (14) 

We assume in this experiment each service information type can 
be represented in 32 bits, i.e., c = 32bits. The approximate 
analytical model is used in here. The fixed value for 
μA = 1/605sec. We vary the value of λA from 10-3/605 sec to 
107/605 sec. The comparison has been done for values of d from 3 
to 5. Experiments show that the simulation model gives very close 
results compared to the analytical models. The conclusion can be 
drawn that our protocol performs better than the non 
advertisement solution when λA/μA is larger than 0.1; and it 
performs better than the complete advertisement solution even if 
λA/μA is 108. We conclude that our service discovery mechanism 
consumes less network traffic than two conventional approaches 
in practical situations. Figure 5 shows the results for d = 3. 
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Figure 5. Performance results for λ/μ 

4.5 Experiment 4  
Mobility is an important aspect regarding the performance of our 
protocol. See [11] for more information about the impact of 
mobility. In order to investigate the impact of mobility, and to 
verify the performance of the proposed mechanism for topologies 
more general than the grid structure that was used in the previous 
experiments, we do an additional experiment with the simulation 
model. In this experiment we use the simulation model to show 
the network cost consisting of advertisement cost, keep-alive cost, 
and false positive query cost. We place 25 mobile nodes 
uniformly distributed in a simulation area of 1500x1500 meters. 
All nodes move according to a random waypoint pattern, thus for 
each node a destination is chosen uniformly distributed over the 
simulation area and nodes move towards that destination with a 
speed randomly chosen between 0.1 and maxspeed m/s. Upon 
arrival at this destination, after a random waiting period between 
0 and 30 seconds, nodes pick a new destination. Nodes send 
advertisement messages to each other when changes in available 
services have been detected and otherwise keep-alive messages to 
save bandwidth. The period of the keep-alive messages is 15 
seconds. Each node will advertise one service to its neighbors. 
The depth of the attenuated Bloom filter d equals 3, the width w 
equals 288, and b is set to 15. Note that these are the optimal 
values found in Experiment 2. For all nodes the query rate λ is set 
to 1 query per second. We do 100 runs with 10 hours of 
simulation time each. As before services we query for do not exist 
in the network, thus all queries sent are the result of false 
positives. We vary the amount of mobility through the value of 
maxspeed from 1 to 20 m/s. In Figure 6, we plot the network cost 
as a function of the speed of the mobile nodes. Note that the size 
of the 90% confidence interval of the displayed average value for 
the cost of broadcast and keep-alive messages was below 1%. In a 
static situation, i.e. maxspeed = 0 m/s, we have only keep-alive 
messages and no advertisements. This clearly shows the 
advantage of using small keep-alive messages to detect changes, 
rather than exchanging the lengthier advertisements periodically. 
As the speed increases more advertisement messages are needed 
to inform neighbors about new nodes and services. Also with 
increasing mobility, the number of false positives increases as on 
average the number of services in the Bloom filters increases; old 
information is not removed immediately, while new information 
is being added promptly. The decision to remove old information 

can only be made after at least one keep-alive message has been 
missed. Due to the unreliable nature of ad-hoc networks in 
practice it is better to wait for at least two keep-alive periods. In 
essence for higher mobility a different value of w is more optimal. 
Results from Experiment 1 show that there are two segments for 
the change of network cost separated by the optimal value for the 
width (wo). If w is smaller than wo, the network cost decreases 
exponentially while w is increasing. If w is larger than wo, the 
network cost increases almost linearly with very gentle slope. The 
number of services and the amount of mobility is hard to predict. 
Therefore, we prefer to set w slightly higher than the wo we 
calculated for the static situation, as the protocol will then operate 
in the linear region. This reduces the false positive cost 
significantly in case the node density or the number of services 
per node is higher than expected. 

 
Figure 6. Network cost with mobility 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have described analytical and simulation models 
for our novel approach of service discovery using attenuated 
Bloom filters. We observed the overhead network cost for the two 
models in static ad-hoc networks. The results from the analytical 
models are always within or very close to the 90% confidence 
interval from the simulation model. We conclude that both models 
are validated. The analytical model proves to be a very good tool 
to compute the proper size of attenuated Bloom filters in order to 
achieve optimal network cost. A comparison between 
conventional approaches and our protocol has been done as well. 
Results from both the analytical model and the simulation model 
show that the performance of attenuated Bloom filters highly 
depends on the ratio of query and advertisement rate. Compared 
to conventional solutions, our approach causes a significantly 
lower traffic load over a wide and practical range of parameter 
settings. The usage of keep-alive messages, as introduced in this 
paper, saves bandwidth compared to using an advertisement only 
system, especially when node mobility is not too high.  

In the case of more general network topologies and mobility of 
nodes the following conclusions can be drawn. For increasing 
node speeds, network cost is increasing, but overall the network 
cost and especially the cost of false positives remains relatively 



low. When mobility is taken into account it appears that the 
optimal values of w and b are dependant of this. 

Ongoing and future work includes further investigation of 
network behavior with mobility and further refinement of a 
protocol prototype that we have implemented. Meanwhile, 
security is also one of our interests. Further, the quality of our 
protocol, in terms of stability and scalability, will also be subject 
to further study. 
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