
The synthesis of a hardware scheduler for Non-Manifest Loops

Omar Mansour Egbert Molenkamp Thijs Krol
University of Twente, Department of Computer Science

P.O. Box 217, 7500 AE Enschede, the Netherlands
Phone: +31 (0)53 4894178 Fax: +31 (0)53 4894590

E-mail: {mansour,molenkam,krol}@cs.utwente.nl

Abstract

This paper1addresses the hardware implementation
of a dynamic scheduler for non-manifest data dependent
periodic loops. Static scheduling techniques which are
known to give near optimal scheduling-solutions for
manifest loops, fail at scheduling non-manifest loops, since
they lack the run time information needed which makes a
static schedule feasible. In this paper a dynamic scheduling
approach was chosen to circumvent this problem. We
present a case study using VHDL were the focus lies on
implementations with minimal memory usage and low
communication overhead between various components
of the architecture. This has resulted in an efficient and
synthesisable system.

Keywords: non-manifest loop scheduling, dynamic hard-
ware scheduling.

1 Introduction

High-level synthesis translates behavioral descriptions
written in a high level language (HLL) such as C or C++ into
hardware structures described by VHDL, or Verilog. This
translation starts by converting the behavioral description to
a control data flo w graph CDFG [4] and then performing a
number of optimization’s such as dead code removal, con-
stant propagation, common sub-expression elimination, tree
height reduction, code motion, loop unrolling, in-lining and
finally scheduling and allocation onto hardware resources.
In digital signal processing (DSP) and video signal process-
ing (VSP) applications, many algorithms have a repetitive
and periodic nature [2] the same computations must be ex-
ecuted on arrival of each new data sample or block of sam-
ples. Some loops within a computation require a constant

1This research is supported by PROGRESS, the embedded systems re-
search program of the Dutch organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the Technology Foundation
STW.

number of clock iterations in their loop-body and their num-
ber of iterations is fix ed, they thus have a fix ed total execu-
tion length. Such loops are called manifest-loops. Non-
manifest data dependent loops, on the other hand, are those
where the number of iterations required in order to perform
a computation is data dependent and hence have a variable
execution length which is not known at compile time. The
Euclidian gcd(x,y) algorithm shown in Fig.1 is a typical ex-
ample of such loops. For 16 bit input values the algorithm
requires a variable number of iterations ranging from 1 upto
23 cycles. Where the actual number of iterations is a func-
tion of the input values x and y.

int gcd(int x, int y){
int g;

assert ((x>0) && (y>0));
g = y;
while (x > 0){

g = x;
x = y % x;
y = g;

}
return (g);

}

Figure 1. gcd algorithm

Functional units can be classified into two classes. Func-
tional units which are (1) analytic and (2) non-analytic or
soft functions. Analytic functions are those that have one
exact answer and in order to calculate that answer a vari-
able number of clock cycles, which is dependent of the input
data, is needed. Non-analytic functional units, on the other
hand, converge to the required result in time. The quality
of the result is improved upon in each iteration. Examples
of such units are the Taylor expansion series, MPEG decod-
ing, and the CORDIC-rotation algorithm. When scheduling
loops of non-analytic functions one can statically schedule
the loop and set its execution to a fix ed number of iterations.
The quality of the result in the case of too few iterations
would be sacrificed and in the case of too many iterations
we lose the remaining valuable clock cycles. This shows

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

us that static scheduling of non-manifest non-analytic func-
tional operations is not without cost. Formal techniques for
solving the scheduling problem of manifest loops using In-
teger Linear Programming (ILP) have been devised in [2].
By modeling the periodicity of operations using a bounded
period vector denoting the periods between two consecu-
tive iterations, determining a start time and processing unit
on which the operation is to be executed, a feasible schedul-
ing solution under area-, processing unit-, and timing- con-
straints could be found. Since the ILP technique requires
prior knowledge of the operation’s duration in order to per-
form, this technique is infeasible for the scheduling algo-
rithms with non-manifest loop behavior. We must men-
tion that the loop algorithms operate on data input streams
(block’s) with no data dependencies between various loop-
computations. In other words each input value results in a
separate, non-manifest, computation independent of previ-
ous computations. In [1] the underlying theory of the formal
scheduling problem was constructed. In section 2 we men-
tion some related work on hardware schedulers and variable
latency components. A summary of the derived definitions
and formula s is given in section 3. In section 4 we de-
scribe the basic hardware architecture of the scheduler. In
section 5 we provide a case study were memory usage of
the scheduler and the communication overhead between the
resources of the scheduler and the controller have been op-
timized. Section 6 provides some experimental results and
finally the conclusions and future work are provided in sec-
tions 7, and 8.

2 Related Work

Variable latency components are in a way similar to non-
manifest loops. Both types of components have a data-
dependent latency. In the case of variable latency compo-
nents, the latency of the loop-body is data dependent and
the number of iterations is a constant. In the case of non-
manifest loops, the latency of the loop-body is a constant
and the number of loop iterations is variable based on the
input data.

Silvia M. Mueller [3] addresses the problem of dy-
namically scheduling the body-part of a variable latency
functional-unit. In her work she mentions that the schedul-
ing of multiple functional units can be split up into two
parts: (a) Global scheduling, this scheduling governs the
interaction between the functional units. Many scheduling
algorithms can not cope with variable latency units as they
require prior knowledge of the latency and the required re-
sources. However schedulers based on the Tomasulo algo-
rithm make no prior assumption of the functional units la-
tency and hence are suited for the global scheduling prob-
lem. (b) Local scheduling, which is the scheduling of re-
sources within a variable latency unit. Due to multiple paths
within the body-part of a variable latency unit, a situation

can exist were instructions would compete for resources,
it is the task of the local scheduler to ensure that within a
functional unit there are no contentions on the busses, and
that no data is lost. The local scheduler devised, schedules
instructions competing for a resource based on their age.
The oldest instruction in the stream gets the resource. This
ensures that the latency of the functional units is never in-
creased as in the case of simple FIFO queues based sched-
ulers.

Vijay Raghunathan, Srivaths Ravi, and Ganesh Laksh-
minarayana [6] address the problem of integrating variable
latency components into high-level synthesis. In their work
they show that with variable latency components throughput
could be gained if the components were properly placed on
the critical paths. Improper placement of the components
could lead to decreased throughput. Since extra overhead
imposed by variable latency components usually leads to
increased chip area, they present a technique to further re-
duce the chip area overhead. This technique is based on the
concept of reduced latency units.

L. Benini, E.Macii, M.Poncino, and G.De Micheli [7]
address the performance issues related to the optimization
of VLSI designs. In their work they introduce the concept
of telescopic units, which is in essence another term for
variable latency units. They show that every constant la-
tency unit can be transformed into a variable latency unit by
adding a signal for detecting completion. In this case the
output of the circuit is available as soon as it is ready as op-
posed to being constrained by the worst case delay of the
circuit.

3 Background Theory

In a real time embedded system the latency of the indi-
vidual computational units play a big role and it is important
to know the latency of the system in advance. If the compu-
tational units of the system have a non-manifest behavior,
it is difficult to statically determine the latency. The ap-
proach presented in this paper is to determine the required
latency and the number of computational resources based
on prior knowledge of the work load needed in order to pro-
cess the input data. In [1] the following formal problem
description was presented: Given an input data stream with
known maximum workload bound B on a stream window
of size m, hence WL(t, m) ≤ B, and a data dependent non-
manifest loop algorithm A with known bounds CLminA

and
CLmaxA

, devise a real time hardware scheduler that will
meet the workload WL(t, m) of the system, produce an out-
put that is synchronous with the input in a time frame of at
most m time units, and finally determine the resources of
the system and their allocation.

Further in the problem formulation it is assumed that
each time unit is equivalent to a single computation cycle
of the non-manifest loop and that each resource, is capa-

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

ble of performing one computation cycle within one time
unit. CLA(v) denotes the number of computation cycles
algorithm A would require in order to perform its computa-
tion on the input value v. CLmaxA

is the maximum number
of computation cycles needed by algorithm A. WL(t, m)
is the accumulated workload on an input stream-window of
length m for a given algorithm A. B is the maximum, or
upper bound, of the accumulated workload.

The following relations hold:

WL(t,m) =
t+m−1∑

j=t

CLA(vj) ∀t, m ∈ N (1)

WL(t, m) ≤ B (2)

And finally we state that:

m ≥ CLmax +
⌊

B − CLmax + Nres×(Nres−1)
2

Nres

⌋
−Nres

(3)

Nres ≤ CLmax (4)

Where Nres is the number of resources available to the
scheduler. For proof of equation 3 see [1].

In order to devise a hardware scheduler for a given al-
gorithm A and known CLmax value we iterate on various
values of m and Nres until an optimum solution, in terms
of either window size or minimum number of resources, is
found which will satisfy equation 3.

4 Initial hardware model

This section presents the initial hardware model of the
scheduler and its resources. We describe the model by
means of an illustrative example.
Example: An algorithm A has to process input samples
on each clock cycle. From the specification of the data
input stream we know that the accumulated work load on
a window of length 14 clock cycles is less than the upper
bound B which is 30 clock cycles, hence WL(t, 14) ≤ 30,
and the specification of algorithm A specifies that the max-
imum number of iterations needed for a single computa-
tion CLmaxA

is 10 clock cycles. In order to find the re-
quired number of resources which are capable of handling
the specified workload we iterate on Nres in equation 3 we
find that Nres must be at least 3 (See table 1).

Figure 2 presents a block model of the constructed hard-
ware scheduler and its resources. The model consists
mainly of the following parts:

• data queue

• time queue

• time counter register

Table 1. The scheduling constraints, input
data stream specifications

Load type range units

CL(v) 1..10 CLKs
WL(t, 14) ≤ 30 CLKs

m 14 CLKs

• start time resource registers

• computation resources {R1 . . . R3}

• address selection unit

• FIFO reorder buffer

• data routing multiplexers

Since execution of a computation has a variable length.
Some computations will produce their output at an earlier
stage than their predecessor computations. If this occurs,
the produced output stream is out of order. It is the func-
tionality of the address selection unit and the FIFO-reorder
buffer to ensure synchronization in such a way that the out-
put stream is in order with the input stream. This is accom-
plished by writing the result at different addresses within
the reorder buffer based on the actual amount of clock cy-
cles consumed by the resource during its computation.

The model behaves as follows, on each clock cycle the
time register is incremented; the input data will be allocated
to either the wait queue or to a free resource if available. If
the input data is allocated to the wait queue the accompany-
ing value of the Time register is stored in the time queue,
this ensures that we preserve the time of arrival, of the input
data. Depending on the number of free resources, one, two
or three data items will be allocated to the free resources. If
the resources have produced their outputs the address selec-
tion will take place and either one, two, or three data values
will be written to the reorder buffer at different addresses.
The reorder buffer positions are shifted, one place, and the
value of reorder buffer at position zero will become the out-
put of the system, which basically forms the output stream.
Address selection is accomplished by the following equa-
tion:

Ad = m− | Tcurrent − Tstart | (5)

5 Generic scheduler case study

This basic hardware model has a number of short com-
ings. First, if the incoming data cannot directly be allocated
to a resource, because all resources are occupied with pre-
vious computations, it will be placed in an input queue to-
gether with the time of its arrival. And once a resource is

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

D
at

a
Q

ue
ue

T
im

e
Q

ue
ue

R1

Start 1

R2

Start 2

R3

Start 3

A
dd

re
ss

 s
el

ec
tio

n

R
eo

rd
er

 B
uf

fe
r

Output

stream

Ad1

Ad2

Ad3

D1

D2

D3

Time

R1
W
 R3
 R2

M
ux 1

M
ux 2

M
ux 1

Input stream

Figure 2. The hardware model of the sched-
uler, the controller and all control signals are
omitted from the fig ure for simplicity reasons

free this input data will be allocated to the free resource for
processing. The resource will be busy with the processing
for at most CLmax cycles. The number of memory places
within the reorder buffer is equivalent to the latency of the
system which is m. This implies that, if an input data is
in the wait queue there is always a free place for that data
within the reorder buffer. The basic hardware model does
not make use of this property and hence there is a mem-
ory overhead within the system. Secondly, if we devise a
system were the number of memory elements is equal to
the latency m, and by allowing the outputs and inputs to be
read and then written to each memory element in a cyclic
fashion, we can get rid of the input queue, time queue, and
address selection unit of Fig.2.

In this section we examine an improved model. The
scheduling system operates (see Fig.3) as follows: assume
we have n memory elements organized as a cyclic queue
and that first and last are indices within the range [1 . . . n].
At the beginning of the system first and last will point to
the same memory address. The scheduler performs the fol-
lowing tasks in a cyclic fashion.

First, the scheduler will read the value within memory
element first and produce that value on the output stream
of the system.

Second, the scheduler will scan the resources to see
whether they are done with their previous computations.
If some resources have completed their computation, the
scheduler will write their outputs into the memory array us-
ing the information stored in an allocation table.

Third, the scheduler will try to allocate the input data to
a free resource. If there are no free resources, the newly
received input data will be written to the memory element
indexed by first (in this case the memory behaves as an
input queue) and the first index will be updated such that it
points to the next memory element of the array in a cyclic

fashion. If there are free resources, the scheduler will iterate
on the waiting data, which is the data within the consecutive
memory range of indices last and first , assigning them to
the free resources. Once data has been assigned to a free
resource the scheduler will maintain this information in the
allocation table.

Finally if there are still free resources and there is no
more data waiting within the memory (indicated by last and
first), the scheduler will allocate the received input data to a
free resource and maintain this information in the allocation
table. The resources will then perform the required compu-
tation, within at most CLmax clock cycles. The resources
will indicate whether they are active or not using an active
signal, which is monitored by the scheduler. The scheduler
uses the active signal, of the resources, and the information
in the allocation table to decide whether a resource is avail-
able or not.

data_in[i]

data_out[i]

R1

R2

Rk

8

3

7

5

.

.

n

r1

r2

r3

r4

.

.

rk

allocation

table

1

2

3

4

.

.

.

.

.

.

.

.

n

mem

scheduler

first

last

Figure 3. The new hardware model

Communication between the scheduler and the resources
commence via a number of separate busses. The bus-signals
are depicted in Fig.4.

scheduler
 R [i]

sched2res [i]

res2sched [i]

wr

data

data

active

Figure 4. Communication busses between
controller and resource

One of the problems we face is the communication over-
head between the resources and the scheduler. If the com-
munication is synchronous, it will take one clock cycle ex-
tra for each wr action. If we assume that each iteration of
a non-manifest computation takes one clock cycle, than the
complete computation will take at most CLmax + 2 clock
cycles. This means that the scheduler will not meet the la-
tency m shown in equation 3. One solution to this problem
is to modify equation 3 accordingly:

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

m ≥

CLmax + 2 +
⌊

B−(CLmax+2)+
Nres×(Nres−1)

2
Nres

⌋
−Nres

This will allow us to maintain synchronicity at the cost
of extra latency. Another solution is to design the resource
as a Mealy model and the scheduler as a Moore model (see
Fig.5).

C

R
 C

scheduler

R

C

resource

Figure 5. Communication model between
scheduler and resource using Mealy and
Moore models

In this model, communication within one clock cycle
will have a path with only one register which is within the
scheduler. This means that if a computation takes one itera-
tion it will consume one clock cycle2.

5.1 Implementation of the resource

In this subsection we describe how to implement the re-
source as a Mealy model. The specificati on of the resource
is as follows: The resource will behave as a non-manifest
loop and at the same time, the number of loop computations
must be controlled by the input data. Hence, if the sched-
uler provides the data value v where v ∈ [1 . . .CLmax] the
resource will consume the amount v iterations (clock cy-
cles) during its computation. The result of the computation
is always the same value v provided as its input.

This allows us to test the scheduler under various load
conditions by providing an input stream with known com-
putation load (the sum of the input values is the provided
load of the system, see equation (1)). Table 2 shows the
specification of the required resource.

In Fig.6 the unfolded version and in Fig.7 the folded ver-
sion of a generic resource are shown. The design process
starts by unfolding the specification in time, and in order to
design the resource as a Mealy model, the path from input
to output, for a single iteration computation, must be within
the same time unit. In other words providing an input to
the resource at time ti where the resource would provide its
output at time ti+1 is not allowed.

2Note: Although the communication overhead is lower than the syn-
chronous communication solution, the critical path is probably longer.

Table 2. Specification of the resource
control action

datai = dataIn
wr & - counti = dataIn

active = dataIn > 1
dataOut = dataIn

datai = datai−1

wr&active counti = counti−1 − 1
active = counti−1 > 1

dataOut = datai−1

datai = datai−1

wr&active counti = counti−1

dataOut = datai−1

data_(i - 1)
 count_(i-1)

wr

dataIn

1
 1
 0
0

- 1

>1

active

t0

dataOut

0
1

wr

dataIn

1
 1
 0
0

- 1

>1

active

t1

dataOut

0
1

wr

dataIn

1
 1
 0
0

- 1

>1

active

t2

dataOut

0
1

data_i

data_(i+1)

data_(i+2)

count_i

count_(i+1)

count_(i+2)

Figure 6. Generic resource unfolded in time

The second step is to fold the resource in time. Regis-
ters will be added to data signals which cross the time line.
Finally we give names to all the internal signals and write
the VHDL description of the resource based on the folded
version of the resource shown in Fig.7.

In the VHDL implementation of the resource we use
the data type DataTp this is declared in the package type
shown in Fig.9. The package mainly contains the needed
data structures and some functions used by the scheduler.

5.2 Implementation of the scheduler

The scheduler’s VHDL code is shown in Fig.10. It con-
sists of a memory array which is used to store the data, an

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

wr

dataIn

1
 1
 0
0

- 1

>1

active

dataOut

count
data_i

0
1

c_reg

d_reg

xi
yi

ixi

active_i

Figure 7. Folded version of the generic re-
source

ENTITY res IS
PORT(clk : in std_logic;

reset : in std_logic;
wr : in std_logic;
active : out boolean;
DataIn : in DataTp;
DataOut : out DataTp);

END res;

architecture behavior of res is
signal d_reg : DataTp;
signal c_reg : DataTp;
signal xi : DataTp;
signal yi : DataTp;
signal active_i : boolean;
signal ixi : DataTp;
begin
process (clk, reset)
begin
if rising_edge(clk) then

c_reg <= ixi;
d_reg <= yi;

end if;
end process;
xi <= dataIn when wr=’1’ else c_reg;
yi <= dataIn when wr=’1’ else d_reg;
active_i <= (xi > 1);
dataOut <= yi;
ixi <= xi - 1 when active_i = true else xi;
active <= active_i;

end behavior;

Figure 8. VHDL code of a generic resource

allocation table, for keeping track the computations resul-
tant memory address.

The controller basically performs the following tasks in
a repetitive manner.

• write the result data on to the output stream

• store the valid data from the resources to their appro-
priate memory locations

• allocate waiting data to free resources

The scheduler configuration is given in Fig.11. It basi-
cally describes how the connections between the scheduler
and the resources are established.

6 Experimental results

In this section we show scheduling-simulation results for
the gcd resource shown in Fig.12. Using the simulation
tool ModelSim from Model technology [5] the simulation

PACKAGE types IS
CONSTANT Nres : positive := 3; -- number of resources
CONSTANT M : positive := 14; -- Latency

--- Data dependent properties
CONSTANT maxint : integer := 2**4-1;
SUBTYPE int0tomax IS integer RANGE 0 TO maxint;
TYPE DataTpIn IS ARRAY(0 TO 1) OF int0tomax;
SUBTYPE DataTpOut IS int0tomax;

-- Memory for storing data
TYPE Storage IS RECORD
inp : DataTpIn;
outp : DataTpOut;

END RECORD;
TYPE MemoryTp IS ARRAY(0 TO M-1) OF Storage;

-- Type used for data transport between resources and scheduler
TYPE DataVecTpIn IS ARRAY (0 TO Nres-1) OF DataTpIn;
TYPE DataVecTpOut IS ARRAY (0 TO Nres-1) OF DataTpOut;
TYPE IndexVecTp IS ARRAY (0 TO Nres-1)
OF integer RANGE 0 TO M;
TYPE DataSchedResTpIn IS RECORD

Data : DataTpIn;
wr : std_logic;

END RECORD;
TYPE DataSchedResVecTpIn IS ARRAY(0 TO Nres-1)
OF DataSchedResTpIn;

TYPE DataSchedResTpOut IS RECORD
Data : DataTpOut;
active : boolean;

END RECORD;

TYPE DataSchedResVecTpOut IS ARRAY(0 TO Nres-1)
OF DataSchedResTpOut;

-- synthesisable functions.
FUNCTION incr_mod(i,max : IN integer) RETURN integer;
FUNCTION my_mod(a, b: IN integer) RETURN integer;

END types;

PACKAGE BODY types IS
FUNCTION incr_mod(i,max : IN integer) RETURN integer IS
VARIABLE res : integer;

BEGIN
IF i < max-1 THEN
res:=i+1;

ELSE
res:=0;

END IF;
RETURN res;

END incr_mod;

FUNCTION my_mod(a, b: IN integer) RETURN integer IS
BEGIN
IF a-b < 0 THEN
RETURN a;
ELSE
RETURN (a - ((a/b) * b));

END my_mod;
END types;

Figure 9. The data and bus types

results in Fig.13 were produced. The wave form is a sim-
ulation of the scheduler using three gcd resources. From
the simulation set we can see that the active signal of a re-
source directly follows the wr signal (This can be seen at
clock value 150ns) and that consecutive writes to the same
resource are handled by the system without any extra de-
lays. Which indicates that we do not lose extra clock cy-
cles for writing the data to and form the resource. This
scheduler was also synthesized for a 0.5µ technology using
the LeonardoSpectrum synthesis engine from Exemplar
Logic. Preliminary synthesis results3indicated that we were
able to obtain a clock frequency of 113.4Mhz .

3For synthesis we used the my mod function, see Fig.9, since the mod
function provided by the language is not synthesisable.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

ENTITY scheduler IS
PORT (clk : IN std_logic;

reset : IN std_logic;
data : IN DataTpIn;
Sched2Res : OUT DataSchedResVecTpIn;
Res2Sched : IN DataSchedResVecTpOut;
result : OUT DataTpOut
);

END scheduler;

ARCHITECTURE behaviour OF scheduler IS
SIGNAL Sched2Res_int : DataSchedResVecTpIn;
SIGNAL free, store : std_logic_vector(0 TO Nres-1);

BEGIN
PROCESS(Res2Sched,Sched2Res_int,free)
BEGIN
store <= (OTHERS=>’0’);
FOR i IN Res2Sched’RANGE LOOP
IF NOT Res2Sched(i).active THEN
store(i)<=Sched2Res_int(i).wr OR NOT free(i);

END IF;
END LOOP;

END PROCESS;

PROCESS(clk, reset)
VARIABLE first, last : integer RANGE 0 TO M-1;
VARIABLE memory : MemoryTp;
VARIABLE last_handled : boolean;
TYPE LutTp IS ARRAY (0 TO Nres-1) OF integer RANGE 0 TO M-1;
-- stores the index in memory of the result.
VARIABLE Lut : LutTp;

BEGIN
IF reset=’1’ THEN
last:=0; first:=0;
Sched2Res_int <= (OTHERS => ((0,0),’0’));
free <= (OTHERS => ’1’);
last_handled:=false;
lut := (OTHERS => 0);

ELSIF rising_edge(clk) THEN
result <= memory(first).d1;
-- store valid data from resources to memory
FOR i IN 0 TO Nres-1 LOOP
IF store(i)=’1’ THEN
-- memory.d1 is used for both input and output data
memory(Lut(i)).d1:=Res2Sched(i).Data;
free(i)<=’1’;

END IF;
END LOOP;
-- assign data to resources
Sched2Res_int <= (OTHERS => ((0,0),’0’));
memory(first):=data;
last_handled:=false;
FOR i IN free’RANGE LOOP
IF (free(i)=’1’ OR store(i)=’1’) AND NOT last_handled THEN
-- If resource is free (’0’) then it can be used again.
-- But if store is ’1’ then the resource has just
-- finished a job and can allocated to a new one.
Sched2Res_int(i) <= (memory(last),’1’);
Lut(i) := last;
free(i)<=’0’;
last_handled:=last=first;
last := incr_mod(last, M);

END IF;
END LOOP;
first := incr_mod(first, M);

END IF;
END PROCESS;
Sched2Res <= Sched2Res_int;

END behaviour;

Figure 10. A resource independent scheduler
implementation

7 Conclusions

In this paper, the design and implementation of a hard-
ware dynamic scheduler for non-manifest loops was de-
scribed. By letting the input data and the output data share
the same memory buffer, the total memory space required
by the scheduling system was reduced to a single memory
buffer. The memory buffer has a length which is equivalent

ENTITY system IS
PORT (clk : IN std_logic;

reset : IN std_logic;
data : IN DataTpIn;
result : OUT DataTpOut);

END system;

ARCHITECTURE structure OF system IS
component scheduler IS
PORT (clk : IN std_logic;

reset : IN std_logic;
data : IN DataTpIn;
Sched2Res : OUT DataSchedResVecTpIn;
Res2Sched : IN DataSchedResVecTpOut;
result : OUT DataTpOut
);

END component;
component resource is
port(DataIn : DataSchedResTpIn;

DataOut : out DataSchedResTpOut;
clk : std_logic;
reset : std_logic);

end component;
SIGNAL Sched2Res : DataSchedResVecTpIn;
SIGNAL Res2Sched : DataSchedResVecTpOut;

BEGIN
sched:scheduler

PORT MAP (clk,reset,data,Sched2Res,Res2Sched,result);
resources:FOR i IN Sched2Res’RANGE GENERATE
--inst:resource

inst:res
PORT MAP (Sched2Res(i),Res2Sched(i),clk,reset);

END GENERATE;
END structure;

Figure 11. The scheduler configur ation

entity resource is
port(DataIn : DataSchedResTpIn;

DataOut : out DataSchedResTpOut;
clk : std_logic;
reset : std_logic);

end resource;

architecture test of resource is
alias x : integer is DataIn.Data.d1;
alias y : integer is DataIn.Data.d2;
alias wr : std_logic is DataIn.wr;
alias z : integer is DataOut.data;
alias active : boolean is DataOut.active;
signal active_i : boolean;
signal xreg,yreg,ixreg,iyreg,zi,xi,yi : int0tomax;
function module(x,y : integer) return integer is
begin
if y=0 then
report "right operand 0" severity note;
return x;

else
return x mod y; -- for simulation
-- return my_mod(x,y); -- for synthesis

end if;
end module;

begin
process(clk,reset)
begin
if rising_edge(clk) then
if active_i then
xreg <= ixreg;
yreg <= iyreg;

end if;
end if;

end process;
xi <= x when wr=’1’ else xreg;
yi <= y when wr=’1’ else yreg;
zi <= module(yi,xi);
ixreg <= zi;
iyreg <= xi;
active_i <= not(zi=0);
active <= active_i;
z <= xi;

end test;

Figure 12. The gcd(x,y)resource implementa-
tion

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

{0
 0

}
{7

 1
3}

{5
 1

1}
{3

 1
1}

{7
 1

4}
{1

0
5}

{6
 6

}
{7

 7
}

{8
 8

}
{9

 9
}

0 {{
{0

 0
}

0}
 {

{0
 0

}
0}

 {
{0

 0
}

0}
}

{{
{7

 1
3}

 1
}

{{
0

0}
 0

}
{{

0
0}

 0
}}

{{
{0

 0
}

0}
 {

{5
 1

1}
 1

}
{{

0
0}

 0
}}

{{
{0

 0
}

0}
 {

{0
 0

}
0}

 {
{3

 1
1}

 1
}}

{{
{7

 1
4}

 1
}

{{
0

0}
 0

}
{{

0
0}

 0
}}

{{
{1

0
5}

 1
}

{{
0

0}
 0

}
{{

0
0}

 0
}}

{{
{0

 0
}

0}
 {

{6
 6

}
1}

 {
{0

 0
}

0}
}

{{
{7

 7
}

1}
 {

{0
 0

}
0}

 {
{0

 0
}

0}
}

{{
{8

 8
}

1}
 {

{0
 0

}
0}

 {
{0

 0
}

0}
}

{{
{9

 9
}

1}
 {

{0
 0

}
0}

 {
{0

 0
}

0}
}

{{
0

0}
 0

}
{{

7
13

}
1}

{{
0

0}
 0

}
{{

7
14

}
1}

{{
10

 5
}

1}
{{

0
0}

 0
}

{{
7

7}
 1

}
{{

8
8}

 1
}

{{
9

9}
 1

}

{0
 0

}
{7

 1
3}

{0
 0

}
{7

 1
4}

{1
0

5}
{0

 0
}

{7
 7

}
{8

 8
}

{9
 9

}

{{
0

0}
 0

}
{{

5
11

}
1}

{{
0

0}
 0

}
{{

6
6}

 1
}

{{
0

0}
 0

}

{0
 0

}
{5

 1
1}

{0
 0

}
{6

 6
}

{0
 0

}

{{
0

0}
 0

}
{{

3
11

}
1}

{{
0

0}
 0

}

{0
 0

}
{3

 1
1}

{0
 0

}

{{
0

fa
ls

e}
 {

0
fa

ls
e}

 {
0

fa
ls

e}
}

{{
7

tr
ue

}
{0

 fa
ls

e}
 {

0
fa

ls
e}

}
{{

6
tr

ue
}

{5
 tr

ue
}

{0
 fa

ls
e}

}
{{

1
fa

ls
e}

 {
1

fa
ls

e}
 {

3
tr

ue
}}

{{
7

fa
ls

e}
 {

1
fa

ls
e}

 {
2

tr
ue

}}
{{

10
 tr

ue
}

{1
 fa

ls
e}

 {
1

fa
ls

e}
}

{{
5

fa
ls

e}
 {

6
fa

ls
e}

 {
1

fa
ls

e}
}

{{
7

fa
ls

e}
 {

1
fa

ls
e}

 {
1

fa
ls

e}
}

{{
8

fa
ls

e}
 {

1
fa

ls
e}

 {
1

fa
ls

e}
}

{{
9

fa
ls

e}
 {

1
fa

ls
e}

 {
1

fa
ls

e}
}

{0
 fa

ls
e}

{7
 tr

ue
}

{6
 tr

ue
}

{1
 fa

ls
e}

{7
 fa

ls
e}

{1
0

tr
ue

}
{5

 fa
ls

e}
{7

 fa
ls

e}
{8

 fa
ls

e}
{9

 fa
ls

e}

0
7

6
1

7
10

5
7

8
9

{0
 fa

ls
e}

{5
 tr

ue
}

{1
 fa

ls
e}

{6
 fa

ls
e}

{1
 fa

ls
e}

0
5

1
6

1

{0
 fa

ls
e}

{3
 tr

ue
}

{2
 tr

ue
}

{1
 fa

ls
e}

0
3

2
1

0
20

0
40

0
60

0
80

0
1

us

/s
ys

te
m

/c
lk

/s
ys

te
m

/r
es

et

/s
ys

te
m

/d
at

a
{0

 0
}

{7
 1

3}
{5

 1
1}

{3
 1

1}
{7

 1
4}

{1
0

5}
{6

 6
}

{7
 7

}
{8

 8
}

{9
 9

}

/s
ys

te
m

/r
es

ul
t

0

/s
ys

te
m

/s
ch

ed
2r

es
{{

{0
 0

}
0}

 {
{0

 0
}

0}
 {

{0
 0

}
0}

}
{{

{7
 1

3}
 1

}
{{

0
0}

 0
}

{{
0

0}
 0

}}
{{

{0
 0

}
0}

 {
{5

 1
1}

 1
}

{{
0

0}
 0

}}
{{

{0
 0

}
0}

 {
{0

 0
}

0}
 {

{3
 1

1}
 1

}}
{{

{7
 1

4}
 1

}
{{

0
0}

 0
}

{{
0

0}
 0

}}
{{

{1
0

5}
 1

}
{{

0
0}

 0
}

{{
0

0}
 0

}}
{{

{0
 0

}
0}

 {
{6

 6
}

1}
 {

{0
 0

}
0}

}
{{

{7
 7

}
1}

 {
{0

 0
}

0}
 {

{0
 0

}
0}

}
{{

{8
 8

}
1}

 {
{0

 0
}

0}
 {

{0
 0

}
0}

}
{{

{9
 9

}
1}

 {
{0

 0
}

0}
 {

{0
 0

}
0}

}

(0
)

{{
0

0}
 0

}
{{

7
13

}
1}

{{
0

0}
 0

}
{{

7
14

}
1}

{{
10

 5
}

1}
{{

0
0}

 0
}

{{
7

7}
 1

}
{{

8
8}

 1
}

{{
9

9}
 1

}

.d
at

a
{0

 0
}

{7
 1

3}
{0

 0
}

{7
 1

4}
{1

0
5}

{0
 0

}
{7

 7
}

{8
 8

}
{9

 9
}

.w
r

(1
)

{{
0

0}
 0

}
{{

5
11

}
1}

{{
0

0}
 0

}
{{

6
6}

 1
}

{{
0

0}
 0

}

.d
at

a
{0

 0
}

{5
 1

1}
{0

 0
}

{6
 6

}
{0

 0
}

.w
r

(2
)

{{
0

0}
 0

}
{{

3
11

}
1}

{{
0

0}
 0

}

.d
at

a
{0

 0
}

{3
 1

1}
{0

 0
}

.w
r

/s
ys

te
m

/r
es

2s
ch

ed
{{

0
fa

ls
e}

 {
0

fa
ls

e}
 {

0
fa

ls
e}

}
{{

7
tr

ue
}

{0
 fa

ls
e}

 {
0

fa
ls

e}
}

{{
6

tr
ue

}
{5

 tr
ue

}
{0

 fa
ls

e}
}

{{
1

fa
ls

e}
 {

1
fa

ls
e}

 {
3

tr
ue

}}
{{

7
fa

ls
e}

 {
1

fa
ls

e}
 {

2
tr

ue
}}

{{
10

 tr
ue

}
{1

 fa
ls

e}
 {

1
fa

ls
e}

}
{{

5
fa

ls
e}

 {
6

fa
ls

e}
 {

1
fa

ls
e}

}
{{

7
fa

ls
e}

 {
1

fa
ls

e}
 {

1
fa

ls
e}

}
{{

8
fa

ls
e}

 {
1

fa
ls

e}
 {

1
fa

ls
e}

}
{{

9
fa

ls
e}

 {
1

fa
ls

e}
 {

1
fa

ls
e}

}

(0
)

{0
 fa

ls
e}

{7
 tr

ue
}

{6
 tr

ue
}

{1
 fa

ls
e}

{7
 fa

ls
e}

{1
0

tr
ue

}
{5

 fa
ls

e}
{7

 fa
ls

e}
{8

 fa
ls

e}
{9

 fa
ls

e}

.d
at

a
0

7
6

1
7

10
5

7
8

9

.a
ct

iv
e

(1
)

{0
 fa

ls
e}

{5
 tr

ue
}

{1
 fa

ls
e}

{6
 fa

ls
e}

{1
 fa

ls
e}

.d
at

a
0

5
1

6
1

.a
ct

iv
e

(2
)

{0
 fa

ls
e}

{3
 tr

ue
}

{2
 tr

ue
}

{1
 fa

ls
e}

.d
at

a
0

3
2

1

E
nt

ity
:s

ys
te

m
 A

rc
hi

te
ct

ur
e:

st
ru

ct
ur

e
 D

at
e:

 M
on

 F
eb

 2
5

12
:4

1:
03

 W
. E

ur
op

e
D

ay
lig

ht
 T

im
e

20
02

R

ow
: 1

 P
ag

e:
 1

Figure 13. Simulation results

to the calculated latency of the system m in equation 3. In a
synchronous communication between the scheduler and its
resources, 2 extra clock cycles are required for writing the
data from the scheduler to a resource and reading the result
from the resource back again. By letting the scheduler have
a Moore machine implementation and the resource a Mealy
machine implementation the communication path between
the scheduler and the resource only has one register and the
rest is combinatorial logic. Hence computations which can

be performed in one clock cycle will not have extra clock
delays for writing and reading the data. Although the num-
ber of clock cycles is reduced the length of the critical path
can be longer. Current synthesis tools will normally select
a clock frequency such that the clock period is longer than
the longest critical path within the system. The hardware
scheduler presented in this paper allows us to build exe-
cution units which are capable of handling an input data
stream with known throughput. If the computational load
of the window is known before hand we can calculate the
exact number of resources that are needed and the latency
of the system using equation 3.

8 Future work

In high-throughput applications loop computations with
data dependencies among various computations are also
plausible. It is usually the case that manifest and non-
manifest computations with and without dependencies
amongst them, co-exist in one implementation. In order to
synthesis a scheduler which is capable of handling all kinds
of different programs, the scheduler must be able to cope
with data dependencies amongst different computations and
still ensure efficient use of the resources within the system.

References

[1] O.Mansour, S.Etalle, T.Krol, ”Scheduling and Allocation of Non-
Manifest Loops on Hardware Graph Models”, PROGRESS Proceed-
ings, 2001, ISBN 90-73461-26-x

[2] W. Verhaegh, ”Multidimensional Periodic Scheduling”, Ph.D Thesis,
University of Eindhoven, The Netherlands, 1995, ISBN 90-74445-21-
7

[3] Silvia M. Muller, ”On the Scheduling of Variable Latency Functional
Units”, 11th ACM Symposium on Parallel Algorithms and Architec-
tures SPAA’99

[4] D. Gajski, N.Dutt, A. Wu, S. Lin, ”High-level synthesis: Introduction
to chip and system design”, Kluwer, ISBN 0-7923-9194-2, 1992

[5] ModelSim from Model technology, www.model.com

[6] Vijay Raghunathan, Srivaths Ravi, Ganesh Lakshminarayana, ”In-
tegrating Variable-Latency Components into High-Level Synthesis”,
IEEE Transactions on computer-aided design of integrated circuits and
systems, October 2000

[7] L. Benini, E.Macii, M.Poncino, and G.De Micheli, ”Telescopic units:
A new Paradigm for performance optimization of VLSI designs”
IEEE, Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 19, No. 10, October 2000

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

