
A Database Interface for Complex Objects
Marcel Holsheimer

�
Centrum voor Wiskunde en Informatica (CWI)
Postbus 4079
1009 AB Amsterdam
The Netherlands
marcel@cwi.nl
Rolf A. de By
Computer Science Department
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands
deby@cs.utwente.nl

Hassan Aı̈t-Kaci �
School of Computing Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6, Canada
hak@cs.sfu.ca

Abstract

We describe a formal design for a logical query language using � -terms as data
structures to interact effectively and efficiently with a relational database. The
structure of � -terms provides an adequate representation for so-called complex
objects. They generalize conventional terms used in logic programming: they
are sorted attributed structures, ordered thanks to a subsort ordering. Unification
of � -terms is an effective means for integrating multiple inheritance and partial
information into a deduction process. We define a compact database representation
for � -terms, representing part of the subsorting relation in the database as well.
We describe a retrieval algorithm based on an abstract interpretation of the � -term
unification process and prove its formal correctness. This algorithm is efficient in
that it incrementally retrieves only additional facts that are actually needed by a
query, and never retrieves the same fact twice.

The difficulty lay in the form and economy of it,
so to dispose such a multitude of materials as not
to make a confused heap of incoherent parts but
one consistent whole.

EPHRAIM CHAMBERS, Cyclopaedia�
Work done at University of Twente.�
Work done at Digital’s Paris Research Laboratory.

1 Introduction

1.1 Motivation and contribution

The combination of logic programming languages and database systems has been
a research theme for the last decade in both logic programming and database
communities. The interest from a logic programming perspective came when the
need was felt for manipulating large sets of facts. Usually Prolog was coupled
with a relational database. In [9], Ceri et al. provide an excellent overview of work
in this area. In the database community, it was felt that the logic programming
paradigm offers interesting opportunities as a database query language. This
resulted in logical query languages like ����� [14] and NAIL! [13].

So-called complex objects have recently been studied for use in database
systems [7, 8]. Much of what has been proposed in those studies is derived from
earlier work extending first-order terms to � -terms [1]. The latter notion has had a
more direct application in programming language design [4, 2, 6] than in database
systems. Still, the functionality and naturalness of deductive queries over � -terms
is a strong motivation for providing a logic programming language using � -terms
with an effective means to access large volumes of data and knowledge stored in a
database (see [5] for a convincing example).

We propose a formal design for an effective coupling of such a language with
a relational database. For the purpose of our presentation and experimentation, we
use the specific language LIFE [2], but this implies no loss of generality. Indeed,
although we formulate it using � -terms, our design is directly applicable to any
logical query language with complex objects represented as Prolog terms or as data
structures à la [7, 8], since all these models turn out to be special cases of � -terms.
We present the theoretical view of our proposed database support of that language
and discuss the results. Our theoretical design was put into practice as the basis of
an experimental implementation [12].

Although our experiment may be categorized as providing database support to
a logic programming language, it goes beyond previous research in that it considers
a language with sorts and attributed terms, which can be arbitrarily nested, and
provide multiple inheritance. As will be shown, due to the specific characteristics
of LIFE’s sort system, our experiment has yielded a form of database support that
not only allows querying for facts, but also posing abstract queries, that is, queries
that ask for general knowledge as opposed to factual knowledge.

1.2 Organization of paper

Before we delve into technicalities, here is a brief introductory overview of the
paper. Our system is organized as sketched in Figure 1 and consists of three
subsystems; namely, the LIFE system, an interface written in LIFE, and an external
relational database. The coupled system is intended to represent the facts of LIFE
in the database and to retrieve these facts, when needed by the LIFE system.

Hence, the functionality of the interface is twofold. Firstly, it provides a
compact database representation for logical facts. As we shall see in Section 2,
these facts are ordered by a subsumption relation induced by a subsort ordering

LIFE system
relational
databaseinter

face

��
query

data

Figure 1. Architecture of the system.

on functors. In Section 3, we propose to group facts into what we call qualified
segments, such that the subsort relationships involving symbols in these facts are
implicitly represented. We also compress segments before storage in the database.

Secondly, for the retrieval of facts, we use a tight coupling [15, 16], where
facts are loaded when needed by the LIFE system. In Section 4, we describe an
abstraction of the unification process, where qualified segments in the database are
approximated by a set of generalizations, called qualifier. If facts from the database
are requested, we use the qualifier and the current goal, a term, to construct a
candidate: a selection condition on the segment, retrieving all facts that unify with
this goal. In Section 5, we show that not all subsort relationships need to be stored
in the LIFE-system, since some are implicitly represented in the database. In
Section 6, we optimize the retrieval process, by storing loaded facts in the internal
database and retrieving each fact only once. We conclude with Section 7, with a
recapitulation of our work and a brief overview of the perspectives it offers. No
particular background is required to understand the technical contents of this paper
other than elementary discrete algebra, shreds of logic programming, and basic
notions of relational and deductive databases.

2 The facts of LIFE

LIFE (Logic, Inheritance, Functions, Equations) is a logic programming language
extending Prolog terms as described in [2, 4, 6]. The user can specify inclusion
relationships between functor symbols, thus enabling the direct representation
and use of taxonomic information. Thus, functors are called sorts and no longer
differentiated from values. For example, we can state that apples is a subsort of
food, so that a fact likes

�
mary � food � , stating that mary likes food, implies that

mary likes apples as well.
To make use of a subsorting relation in a logic programming language, the

unification operation must be redefined. The subsorting relation generates a partial
order on the set of all terms called term subsumption. Unification of two terms
computes their greatest lower bound (GLB) with respect to term subsumption.
Failure of unification is denoted by a special term: the symbol � (‘‘bottom’’).

For the purpose of our presentation, it will suffice to assume that a LIFE
program P consists of the specification of the subsort ordering, and logical rules
in the form of Horn-clauses. The essential point to keep in mind is that the

literals making up a program’s clauses are � -terms rather than conventional Prolog
terms. Hence, as is the case in deductive database languages, the Horn clauses
are separated into the extensional database (EDB)---i.e., the facts containing no
variables---and the intensional database (IDB)---the rest.

Our idea is to represent the (presumably numerous) facts of a LIFE program’s
EDB as flat relations to store in an external relational database. Then, designing an
interface amounts to defining an intermediate representation allowing to translate
from facts of LIFE (i.e., � -terms) to database tuples and back. To be correct, a
database retrieval algorithm responding to a LIFE query through this interface must
be sound (i.e., retrieve no irrelevant tuples) and complete (i.e., retrieve all relevant
tuples). Hence, the interface design and the correctness of retrieval depend in some
essential way on the formalization of � -terms. This section is meant to give all
the preliminary formalities that we use, introducing basic and disjunctive � -terms,
sort signatures, subsumption, and related notions. From this point on, whenever
we say ‘‘term’’ we shall mean (possibly disjunctive) ‘‘ � -term.’’1

2.1 Terms

A basic term is built out of sort symbols and attribute labels. Let � be the set of
all attribute labels, and � the set of all sort symbols, including � (‘‘top’’) and �
(‘‘bottom’’).

Definition 1 (Basic term) A basic term p is an expression of the form:

s
�
l1 � p1 ������� � ln � pn � � n � 0 �

where:

� s �	� is the root symbol of p, denoted by root
�
p � .

� l1 ����� � ln � � are pairwise distinct attribute labels.

� p1 ������� � pn are terms: the subterms of p.

If n
 0, p is is said to be atomic, and simply written as s. Otherwise, p is said
to be attributed. The attribute-subterm list is unordered. A term with at least one
occurrence of the symbol � is considered to be equal to the term � . We call � the
set of all basic terms that can be constructed from sort symbols in � and labels in
� .

Example 2.1 An example of a basic term is:
likes

�
who � mary �
born � date

�
day � 24 �
month � january �
year � 1965 � �

what � apples ���
1More precisely, we shall mean
 -terms without variables since only EDB facts will be considered.

The root symbol is likes; it has three subterms with attribute labels who, born and
what. The sort symbols are likes, mary, date, 24, january, 1965, and apples. The
attribute labels are who, born, day, month, year, and what. �

We shall use a more convenient mathematical characterization of a basic term
that is formally equivalent to their syntactic representation of Definition 1. It sees
a term as a mapping from a set of occurrences (i.e., strings of labels in the free
monoid ���) to � , assigning sort symbols to each of these occurrences.

Definition 2 (Occurrence) An occurrence is a string formed by concatenating
labels, separated by ‘.’. The root label is denoted by the empty string � . The set of
all occurrences � � is inductively defined as � � :
�� � � � � � , where a ���
�� � a
 a
for any occurrence a.

In what follows, every time we refer to term p, we mean the generic one in
Definition 1.

Definition 3 (Occurrence domain) The set of occurrences actually appearing in
a term p is the occurrence domain � p: the smallest subset of ��� for which:

� � �	� p and

� li � a �	� p iff li is the label in p denoting the subterm pi, and a �	� pi.

Definition 4 (Sort function) To each term p there corresponds a sort function
� p : � ��
 � which assigns a sort symbol to each occurrence:

� p

�
a �

�
�
� � if a ��	� p

root
�
p � if a
��

� pi

�
a � � if a
 li � a �

Hence, a basic term is formally characterized as a pair p
���� p � � p � .
Example 2.2 Referring to the term in Example 2.1, the domain is ��� , who,
born, born � day, born �month, born � year, what � . The sort function is defined as:

� � � �
 likes � � �
who �
 mary � � �

born �
 date � � �
born � day �
 24, etc. Note

that the sort function returns the � -symbol for any occurrence not in the occurrence
domain, for example � �

day � what �
 � . �
2.2 A short terminological digression

For the sake of self-containment and to settle some terminology, we indulge in a
brief intermezzo defining a few general basic order-theoretic notions that we shall
use in the rest of this paper. All definitions in this short digression will refer to a
partially-ordered set, or poset, � S ��� � .

Recall that a chain of S is a totally ordered subset of S. Let us also recall the
notion of cochain, a dual of the more familiar notion of chain:

Definition 5 (Cochain) A cochain C of S is a subset of S where all distinct elements
are mutually incomparable. Formally, C � C ���
 1C.2

2Where 1X �! #" x $ x %'& x (X) is the identity relation on X.

The set of all cochains of S is denoted as coc
�
S � . The set coc

�
S � is itself

partially ordered as follows.

Definition 6 (Cochain ordering) � C1 � C2 � coc
�
S � � C1 � C2 iff � x1 � C1 ��

x2 � C2 : x1 � x2.

Note that the empty set ∅ is a cochain. In particular, the empty set is the least
element in coc

�
S � ; that is, � C � S : ∅ � C.

Note also that singletons of elements of S are cochains too. In fact, the cochain
ordering � coincides with � on singletons; namely, � x � x � � S : � x � � � x � � iff
x � x � . For this reason, an element x of S may be identified with the singleton � x � .
Hence, the cochain ordering � is a ‘‘natural’’ extension of the base ordering � and
so we shall use only one symbol

� � � indifferently on base elements or cochains of
S without risk of confusion.

It will be convenient to refer, for a given element of S, to specific subsets of its
upper bounds or lower bounds. The following definitions introduce a few that we
will use. In what follows, x and x � denote elements of such a set S.

Definition 7 (Ancestors) The set of ancestors of x is the set anc
�
x � of elements

greater than, or equal to x:

anc
�
x �
 � x � � S

�
x � x � � �

Definition 8 (Descendants) The set of descendants of x is the set des
�
x � of

elements smaller than, or equal to x:

des
�
x �
 � x � � S

�
x � � x � �

Given S ��� S, let � S ��� (resp., � S ��) denote the set of all its maximal (resp., minimal)
elements.3 We define parents and children, as well as maximal common lower
bounds and minimal common upper bounds, in terms of ancestors and descendants
as follows.

Definition 9 (Parents and children) The parents of x are its immediate upper
bounds; i.e., the minimal ancestors, excluding x itself:

par
�
x �

� anc

�
x ��� � x �
	

Dually, the children of x are its immediate lower bounds; i.e.,

chi
�
x �

� des

�
x ��� � x �
�

Definition 10 (Maximal common lower bounds) The set of maximal common
lower bounds of x and x � is denoted as x � x � , and defined as:

x � x �
�� des
�
x � � des

�
x � ��� �

3To be well-defined, this requires that S not contain infinitely ascending (resp., descending) chain.
So we shall implicitly assume this. In fact, all the posets on which we will use these operations will
be finite.

Definition 11 (Minimal common upper bounds) Dually, the set of minimal com-
mon upper bounds of s and s � is denoted x � x � , and defined as:

x � x �
 �
anc

�
x � � anc

�
x � ��� �

Note that all the sets introduced by the four previous definitions are cochains.
Finally, given two functions f and f � from a set A to a poset � S ��� � , we say that

f � f � whenever � a � A : f
�
a � � f � �

a � .
This concludes our terminological digression. We now return to our topical

considerations.

2.3 Sort signature

The set of sort symbols � comes with a subsort ordering � . The set � and the
ordering form a sort signature, a poset �
 � � ��� � . We may assume the sort
signature to be fixed.

Definition 12 (Sort signature) A sort signature � is a poset � � ��� � , where:

� � is the set of sort symbols, containing top symbol � and bottom symbol � .

� � � � � � is a partial order---the subsorting---on � such that � s � � :
� � s � � .

Example 2.3 All the examples to follow will use a sort signature consisting of a set
�
 � � , � , student, emp, mary, likes, food, apples, sweets, cookies, chocolate � ,
and for subsorting the least ordering such that apples � food, sweets � food,
cookies � sweets and chocolate � sweets, expressing that apples and sweets are
food, and cookies and chocolate are sweets; and such that mary � student and
mary � emp, expressing that mary is both a student and an employee. This sort
signature will be referred to as � and is depicted in Figure 2. �
2.4 Term subsumption

The partial order � on sort symbols extends to the set of all terms as follows:

Definition 13 (Basic term subsumption) The basic term subsumption relation �
on the set of all basic terms � is defined as p � p � iff p
 � or � p � � p � .
Example 2.4 The term p1
 likes

�
who � mary � what � apples � is subsumed

by the term p2
 likes
�
who � mary � what � food � since apples � food.

Term p1 is also subsumed by the term p3
 likes
�
who � mary � since the

sort symbol is � for any occurrence that is not in the occurrence domain; i.e.,
� p1

�
what �
 apples � � p3

�
what �
 � . Thus any basic term is subsumed by �

and subsumes � . �
Note since � is a subset of � , � coincides with � on it. Therefore, � can

be seen as a ‘‘natural’’ extension of the subsort ordering � and therefore we shall
again use only one symbol

� � � indifferently on sort symbols or basic terms without
risk of confusion.

As expected, we now extend terms to cochains of terms.

�

student emp likes food

mary apples sweets

cookies chocolate

�

�������
����

� � � �
� � � ��� ���

� � �
���

� � �
� � � � �

						 ����
�������

Figure 2. The sort signature
 .

Definition 14 (Disjunctive terms) A disjunctive term is a cochain of basic terms.

Term subsumption is naturally extended to disjunctive terms as the cochain
ordering of basic term subsumption. Hence, by ‘‘term’’ we now shall mean basic
or possibly disjunctive term.

As usual, a singleton disjunctive term � p � is identified with the basic term p.
In particular, the singleton set � � � is identified with the basic term � . This is
natural since they are both greatest elements for term subsumption. Similarly, � � �
is identified with the basic term � . Note that this is natural since they are both
least elements. However, the empty set ∅ is also the least element of coc

�
� � , and

hence we can identify all three: �
 � � �
 ∅.
The following is a particular case of a more general result in [1].

Theorem 1 The poset � coc
�
� � ��� � is a lattice.4

Proof Greatest lower bounds are constructed as follows. For basic terms p and p � ,
the (possibly disjunctive) term p � p � is the set of maximal elements of the set of
all basic terms u
 � � u � � u � such that:

� � u
 � p � � p � ,
� � a �	� u : � u

�
a � � � p

�
a ��� � p � �

a � .

For (possibly singleton) disjunctive terms C � C � , it is given by C � C �

� � p � p � � p �
C � p � � C � �
� �

Dually, least upper bounds (LUB) are constructed as follows. For basic terms
p and p � , the (possibly disjunctive) term p
 p � is the set of minimal elements of the
set of all basic terms u
 � � u � � u � such that:

4Recall that a lattice L is a poset where a unique greatest lower bound and a unique least upper
bound both exist in L for any finite non-empty subset of L.

� � u
 � p � � p � ,
� � a �	� u : � u

�
a � � � p

�
a � � � p � �

a � .

For (possibly singleton) disjunctive terms C � C � , it is given by C
 C �

� � p
 p � � p �
C � p � � C � �
	 �

It is easy to verify that these operations are lattice operations with respect to
term subsumption.

Note that if the sort signature � is a lattice, then so is � , and moreover, it is
then a sublattice of coc

�
� � .

Example 2.5 The GLB of terms p1 and p2 in Example 2.4 is p1, since p1 � p2.
The GLB of likes

�
who � student � and likes

�
who � emp � is likes

�
who � mary � .

Their LUB is likes
�
who � � � . The GLB of atomic terms food and student is � ;

i.e., we cannot unify these. �
3 Representation in a database

We now discuss the storage of facts in an external relational database.

3.1 Qualified segments

In a relational database, identically formed objects are grouped together in a
relation. We must define a similar grouping on facts that we store in the external
database. We must also find a way to represent subsort information relevant to
sort symbols in these facts in the database as well as there is no evident way to
express subsumptionin relational algebra. Therefore, if a fact is stored in a database
relation, it should imply that particular subsort relationships are defined for symbols
in this fact. Thus we should group facts with similar subsort relationships for its
symbols, for example symbols with the same parents or children or both. However,
there is a trade-off: the more subsort information is implicitly represented, the
more database relations are needed to store all facts.

We choose to group facts with the same set of parents for all symbols at each
given occurrence. It turns out that this is a natural choice since sharing parents is
the most immediate commonality, akin to values being of the same sort. These sets
are called qualified segments:

Definition 15 (Qualified segment) A qualified segment Q is a set of non-bottom
facts such that all facts have the same set of parents for the sort symbol at each
occurrence:

� f � f � � Q � � a �	� f : par
� � f

�
a � �
 par

� � f � �
a � �

With some easy thinking, one can convince oneself that all facts in Q must
necessarily be identically formed. Indeed, the occurrence domain is the same for
all facts in a qualified segment, since parents are the same for symbols at each
occurrence. For a qualified segment Q, the common occurrence domain of all facts
is denoted � Q.

For a program P, we can use multiple qualified segments to store part of the
facts in P in the database. We store each qualified segment in a separate database
relation, and in the interface we store a description of the contents of each segment,
called the qualifier. A qualifier is a set of terms, that are generalizations of all facts
in the qualified segment:

Definition 16 (Qualifier) To a qualified segment Q corresponds a qualifier,
denoted qua

�
Q � , which is the LUB of all facts in Q.

Example 3.1 Let us assume the two facts of LIFE likes
�
who � mary � what �

sweets � and likes
�
who � mary � what � apples � . Since both facts have the same

parents for all sort symbols, we can represent them in a qualified segment Q
� likes
�
who � mary � what � sweets � � likes

�
who � mary � what � apples ��� . The

qualifier is qua
�
Q �
 likes

�
who � mary � what � food � . �

An important remark is that the qualifier of a qualified segment is always a
strict generalizer of all facts of the segment. This is a consequence of having
grouped facts in the same qualified segment if and only if the sort symbols at all
their occurrences shared the same parents.5 And thus, as we will see in Section 5, a
qualifier and the terms in the corresponding segment, implicitly represent subsort
relationships.

3.2 Database relations

A relational database consists of database relations:

Definition 17 (Database relation) A database relation RT is a set � r1 � r2 ������� � rm � ��
m � 0 � of n-ary tuples

�
n � 1 � and is identified by its relation name R and a

set of attribute names T
�� t1 � t2 ������� � tn � . For a particular tuple r, the value of
attribute t is denoted as r � t.

We store a qualified segment Q in database relation RT by representing each
fact in Q as a tuple in RT . We represent fact f as a tuple r by flattening the fact; i.e.,
we define a bijective function v---called attribute function---that maps occurrences
in the occurrence domain � f to attribute names in T. Then, for each occurrence
a �	� f , we store sort symbol � f

�
a � in attribute v

�
a � in tuple r.

This representation is sound, but it can be compressed by recognizing that for
particular occurrences in the occurrence domain, symbols are the same in all facts
in the segment. For example, the symbol at the who occurrence in Example 3.1 is
mary for all facts in Q. This (possibly empty) set of occurrences is the fixed symbol
set:

Definition 18 (Fixed symbol set) For qualified segment Q we define the fixed
symbol set DQ � � Q as:

DQ
 � a �	� Q
� � f � f � � Q : � f

�
a �
 � f � �

a ���
5More precisely, this is true if the qualified segment is not reduced to only one fact. But then, as

we shall see, there is no relation to store in the database.

Symbols at occurrences in the fixed occurrence set DQ are the same for all facts
in qualified segment Q, hence, we do not have to store them in the database. We
only store symbols at occurrences not in DQ and use any basic term in the qualifier
to represent the missing symbols. Indeed, for each basic term q in the qualifier, the
sort symbol � q

�
a � for each occurrence a in the fixed symbol set DQ is their LUB

and thus the same as the symbol at this occurrence for all facts in Q.
The correspondence between qualified segment Q and database relation RT is

defined by a data definition:

Definition 19 (Data definition) Given segment Q, the corresponding database re-
lation RT is defined by a data definition given by the quadruple � qua

�
Q � � R � v � DQ � .

Data definitions are stored in the interface, thus enabling the representation of facts
in segment Q as tuples in RT . With each fact f
 � � f � � f � � Q corresponds a
unique tuple r � RT , defined by:

� t � T : r � t
 � f

�
v �

1
�
t � �

Conversely, each database tuple r � RT represents a fact f
 � � Q � � f � , where
the sort function � f is defined as:

� f

�
a �

�
�
� � if a ��	� Q

� q

�
a � if a � DQ

r � v
�
a � otherwise

where q � qua
�
Q � .

Example 3.2 The qualifier for qualified segment Q from Example 3.1 is� likes
�
who � mary � what � food ��� , and the fixed symbol set is DQ
 ��� � who � .

If we represent Q as a database relation RT , we only need to store the symbols at
occurrence what, so we need a relation with a single column, say T
 � foodname � .

We define the attribute function v as: v
�
what �
 foodname. The representation

of Q as a database relation is RT
 � � sweets � ��� apples � � . �
Note, for the sake of consistency, that in the already mentioned degenerate

case of a qualified segment reduced to only one fact, all the information goes into
the fixed address set and the qualifier, leaving nothing to be stored in the external
database.

4 Retrieval algorithm

For the retrieval of facts from the database, we use a tight coupling, where we load
facts from the database whenever needed by the inference engine. For a particular
goal g, we load the subset Q[g] from segment Q, containing all facts in Q that unify
with g:

Q[g]
 � f � Q
�
f � g �
 � �

Qualified segment Q is stored in the database, so we do not know its actual
contents, hence we cannot compute Q[g] by simply unifying all facts in Q with the
goal. So, we need another technique to compute Q[g], independent of the contents
of Q. We use an abstract interpretation [11] of the inference process, where we
use qualifiers instead of facts. In this abstraction, unification of facts in Q with
goal g is an operation on the qualifier and the goal, resulting in a term---called the
candidate---which approximates the subset of Q of all facts unifiable with g. We
describe the construction of candidates. First, we define the unifiable set U

�
s � ,

the set of all sort symbols that unify with symbol s; i.e., symbols for which the
maximal common subsort with s is non-bottom:

Definition 20 (Unifiable set) For a sort symbol s in � , we define the unifiable set
U

�
s � as:

U
�
s �
 � s � �	�

�
s � s � �
 � � � �

A candidate is defined such that any fact in the qualified segment subsumed by
a basic term in the candidate, unifies with goal g:

Definition 21 (Candidate) Given a goal g, a basic term, the candidate C is the
set of all maximal terms c
 � � Q � � c � that can be constructed from a term q in
the qualifier qua

�
Q � that is unifiable with g, as follows. � a �	� Q :

� c

�
a �
�

 � if a �� DQ, or � q

�
a � � � g

�
a � ,

� chi � � q

�
a ��� � U � � g

�
a ��� otherwise.

Example 4.1 Assume the goal g1
 likes
�
what � cookies � and qualified segment

Q as in Example 3.2. By Definition 21, we construct a candidate C1
 �
�
who �

� � what � sweets � . For goal g2
 likes
�
who � student � what � food � , we

construct candidate C2
 �
�
who � � � what � � � . For goal g3
 likes

�
who �

peter � what � apples � , we construct candidate C3
 ∅. �
Thus a candidate contains terms, identically formed to the facts in the segment,

and consisting of � -symbols and immediate subsorts of symbols in the qualifier;
i.e., symbols that appear in facts in Q. If candidate C is empty, the symbols in the
terms in the qualifier and the goal do not unify, then the qualified segment does
not contain any facts that unify with the goal. We have to prove that any fact f
in qualified segment Q that unifies with goal g, is subsumed by a basic term c in
candidate C.

Theorem 2 A fact f in qualified segment Q unifies with goal g iff it is subsumed
by a basic term c in candidate C; namely,

f � g �
 ��� f � c

Proof By Definition 13 and Theorem 1, we can rewrite the above to a condition
on sort symbols, � a � � � :

� f

�
a � � � g

�
a � �
 � � ��� � f

�
a � � � c

�
a �

We first prove that if the maximal common subsort of two symbols � f

�
a � and

� g

�
a � is non-bottom, then we can construct a term c such that � f

�
a � is smaller

than the corresponding symbol � c

�
a � in c.

Symbols � f

�
a � and � g

�
a � unify, so � f

�
a � is in the unifiable set U

� � g

�
a � � .

Symbol � q

�
a � is larger than � f

�
a � , and thus unifies with � g

�
a � as well: � g

�
a � �

U
� � g

�
a � � . So, by definition, � c

�
a � is not the symbol � . Assume that occurrence

a is in the fixed occurrence set DQ. By definition, � c

�
a �
 � and thus symbol

� f

�
a � is smaller than the symbol � c

�
a � in c. Alternatively, if occurrence a is not in

the fixed symbol set DQ, symbol � f

�
a � in fact f is a child of � q

�
a � . We also know

that � f

�
a � is in U

� � g

�
a � � , thus we can construct a term c where � c

�
a �
 � f

�
a � .

So we can construct a term c larger than any fact f that unifies with goal g.
We also prove that if fact f in Q does not unify with goal g, we cannot

construct a term c larger than f . Fact f and term g do not unify, so for at least
one occurrence a, the maximal common subsort of � f

�
a � and � g

�
a � is the bottom

symbol. We prove that, for this occurrence, we cannot construct a candidate c with
� f

�
a � � � c

�
a � .

The symbol � q

�
a � is a supersort of � f

�
a � . If q and g do not unify, the candidate

is empty. Thus, it does not subsume any fact. If q and g unify then � q

�
a � is in

U
� � g

�
a � � , for all occurrence a in � Q. Symbol � g

�
a � cannot be a supersort of

� q

�
a � , otherwise, � g

�
a � would be a supersort of � f

�
a � as well, and their maximal

common subsort would be � f

�
a � . Moreover, occurrence a cannot be in the fixed

symbol set DQ, otherwise � f

�
a �
 � q

�
a � , contradicting that � q

�
a � is not in the

unifiable set U
� � g

�
a � � . Hence, the symbol � c

�
a � in c is not � .

If we can construct a term c larger than f , symbol � c

�
a � would be a child

of � q

�
a � and a member of the unifiable set U

� � g

�
a � � . Since occurrence a

is not in the fixed occurrence set, � f

�
a � is also a child of � q

�
a � . So the

only child of � q

�
a � , larger than � f

�
a � , is � f

�
a � itself. However, � f

�
a � is

not in the unifiable set U
� � g

�
a � � , so we cannot construct a term c, where

� c

�
a � � chi

� � q

�
a � � � U

� � g

�
a � � , that is larger than fact f .

Corollary 1 If fact f is subsumed by a basic term c in candidate C, all symbols in
c are either the top symbol, or equal to the corresponding symbol in fact f .

Proof Follows directly from the above proof, since � c

�
a � is either � , or a child

of the symbol � q

�
a � in the qualifier. For these symbols, occurrence a is not in the

fixed occurrence set, thus symbol � f

�
a � in term f is also a child of � q

�
a � .

The corollary is important, since it states that we can compute Q[g] by
a selection with the candidates, where � is the wild card argument and non-
top symbols are selection arguments. With a candidate C for data definition
D
 � F � RT � v � DQ � , there corresponds a selection condition T[C] that is true for all
elements of the set Q[g] and false for any other element of Q:

T[C]

�
T[c1] � or ����� or

�
T[cp] �

where C
 � c1 ������� � cp � . For each term ci we construct a selection condition:

T[ci]
 � v �
a1 �
 � c

�
a1 � �

and �����
and � v �

an �
 � c

�
an � �

where a1 ������� � an are the occurrences with non-top symbols in term ci. We select
the tuples that represent facts in Q[g] with a simple SQL-query:

select t1 ������� � tn
from R
where T[C]

The retrieved tuples are then translated to facts, as stated in Section 3.2.

Example 4.2 For the candidate C1 of Example 4.1, we construct a selection
condition T[C1]

�
v

�
what �
 � c1

�
what � �

�
foodname
 sweets � . The query

is:
select foodname
from R
where foodname
 ’sweets’

and returns the tuple � sweets � , which is transformed to the fact likes
�
who �

mary � what � sweets � . �
5 Reduced sort signature

For the construction of candidates, we use sort signature � . Part of the subsort
relationships are implicitly represented in the database, that is, for each fact in
a qualified segment, the parents of all symbols at occurrences not in the fixed
symbol set DQ are stored in the qualifier. We do not store these ‘implicit’ subsort
relationships in the LIFE system, but add them when facts are loaded.

The remaining subsort relationships have to be stored in the LIFE system,
since we have to be able to reconstruct the entire sort signature. However, part of
the subsort relationships implicitly stored in the database are needed to construct
candidates. Thus we should either retrieve these relationships at run-time from the
database, or simply duplicate the necessary relationships in the LIFE system, or
use a combination of both techniques.

We will adopt the second strategy, which is simple, and probably non-optimal:
we store sufficient subsort relationships in the LIFE system to compute candidates
for any goal and qualifier in program P. We construct a reduced sort signature� �
 � � � ��� � � , where � � � � and � � � � .

Definition 22 (Reduced sort signature) Given �
 � � ��� � , the reduced sort
signature � �
 � � � ��� � � is such that � � is the subset of � , where we may exclude
least sorts (parents of bottom) with a single parent, stored in a database relation,
and not in a term in a qualifier. The reduced subsort relation � � is the subset of � ,
induced by the set � � :

� �
 � �	� � � � � �

�

student emp likes

mary

food

sweets

cookies chocolate

�

�������
����

� � � �
� � � ���

� � �
���

� � �
� � � � � ����

�������

food

apples sweets

� � � �
����

qualified segment Q

Figure 3. Reduced sort signature � � .

Example 5.1 The reduced sort signature � � is depicted in Figure 3. The least
sorts with a single parent are the symbols likes � apples � cookies and chocolate. The
symbols in the database are apples and sweets. The symbols not in a qualifier are
student � emp � apples � sweets � cookies and chocolate. Hence, the only symbol that is
a least sort, in a database relation and not in a qualifier is apples. �

We have to prove that the reduced sort signature is complete; that is, all subsort
relationships are represented either in the database or in the reduced sort signature.
Moreover, we have to prove that we construct the same candidates with the reduced
sort signature.

Theorem 3 All subsort relationships are either represented in the LIFE system or
implicitly in the database.

Proof Assume a subsort relation s � s � where s is not in � � . By definition, s is a
symbol in a database relation, and not a symbol in a qualifier. So there is a symbol
s ��� � � � at the corresponding occurrence in the qualifier for this database relation,
so s � s ��� is a relation implied by this segment. Since s and s ��� are in � � , s ��� � � s � .
So we can reconstruct s � s � , since s � s ��� and s ��� � � s � .

Now assume the relation s � s � where s � is not in � � . Since only least sorts are
not stored in � � , s must be the bottom symbol, and � � s � is implicitly defined by
the sort signature for any s � �	� .

Theorem 4 If we exchange � for � � , we construct the same candidates for a goal
g and a qualifier qua

�
Q � .

Proof To construct candidates, we compute the unifiable set U
�
s � for any symbol

s in the goal. We define U � �
s � as the set containing all symbols in ��� that unify

with s � � � , as defined by the subsort relation � � . For the correct construction of
candidates, U � �

s � should contain all symbols in U
�
s � that are also in � � , that is:

� s � s � �	� � : s � � U � �
s � � s � � U

�
s �

Symbol s � is in U
�
s � if the maximal common subsort of s and s � is non-bottom.

We prove that for any s � s � in � � , maximal common subsorts s � s � form a subset of
� � , and thus that s � is in U � �

s � if s � is in U
�
s � . The set s � s � is either � s � or � s � � ,

or a set of symbols, smaller than both s and s � . These symbols are all in � � , since
we excluded only symbols with a single parent, thus symbols that can never be a
maximal common subsort of two other symbols.

Moreover, if s � s �
 � � � (i.e., s � �� U
�
s �), than s � is not in the unifiable set

U � �
s � as well, since the subsort relation � � in the reduced sort signature form a

subset of the subsort relation � .
As can be seen in Example 5.1 and Figure 3, simply duplicating all necessary

subsorting information works fine for qualified segments containing a large number
of facts with least sort symbols (i.e., data typically found in databases), since these
symbols are not stored in the reduced sort signature. However, we stress that
the above solution is non-optimal, since the reduced sort signature � � contains
more subsort information than actually needed. We believe it is possible to further
‘strip-down’ the reduced sort signature. We think of a technique called segment
guessing, where less subsort information is needed, and the retrieval algorithm
queries any database relation that might contain unifiable facts, based on available
subsort information.

6 Optimization

To reduce database interaction, we assert loaded facts in the internal LIFE database,
instead of retrieving the same facts over and over again. However, if we assert
facts in the internal database, we should retrieve each fact only once. Thus when
querying the database for all unifiable facts for goal gi in segment Q, we should
exclude all facts loaded from Q for previous goals g1 ������� � gi

�
1.

As we stated in Section 4, we can describe each subset Q[gi] with a selection
condition T[Ci]. Thus we can exclude any subset with the negation of its selection
condition. We select the tuples from the database with an SQL-query:

select t1 ������� � tn
from R
where T[Ci] and not

�
T[C1] �

and �����
and not

�
T[Ci

�
1] �

The set of all candidates for previous goals forms an abstract cache, storing the
results of previous abstract computations; i.e., all constructed candidates. This is
also known as the caching of queries, as described by Ceri et al. in [10]. However,
storing all these candidates is expensive, and therefore we will shortly mention a
few optimizations.

Instead of storing all previous candidates, we use a single set---called look-up
set to represent that part of the qualified segment that has been loaded:

Definition 23 (Look-up set) For a segment Q, we define the look-up set L[i] as
the set, formed of the maximal terms in the union of candidates c1 ������� � ci.

A look-up set is an equivalent, but more compact notation for a set of candidates,
since any term subsumed by another term, is removed. The SQL-query reduces to:

select t1 ������� � tn
from R
where T[Ci] and not

�
L[i � 1] �

Another optimization consists of posing only queries that might retrieve any
tuples, that is, we exclude queries with a contradicting selection condition. This
occurs when the current query is subsumed by a previous query, as described
in [10]. The subsumption of queries is defined by the subsort relation � on
candidates. That is, all facts for goal gi have been loaded if any term c in candidate
Ci is subsumed by some term c � in the look-up set: � c � Ci � � c � � L[i � 1] : c � c � .

A third optimization is the partial exclusion of previous queries. If we retrieve
a set from the database, we only need to exclude previously retrieved sets that
overlap with the current set; i.e., Q[gi] � Q[gj] �
 ∅.

We further like to mention that, since candidates are wild card selections,
testing subsumption and overlapping reduces to simple comparison operations on
the respective sort symbols.

7 Conclusion

We have overviewed a formal design for interfacing a logical query language
with complex objects to a relational database. Our system is an improvement
on previous systems in that it provides database storage for objects ordered
thanks to a subsort hierarchy, representing part of this hierarchy in the database
as well. The representation of the objects is flexible; arbitrarily nested objects
can be represented in a maximally compressed format, where compressing and
decompressing is handled by the interface. The loading algorithm is quite efficient
in that it loads only objects actually needed by the LIFE system, and never loads
the same object twice, thus improving results in [10]. In addition, our design also
improves on previous work by providing for free the ability, intrinsic to � -terms,
to store and query partial information. For example, if all facts in LIFE’s EDB
stipulate that all students are happy, a query requesting to list happy things will
avoid itemizing in extenso all 12,452 tuples of students, giving only the one tuple
corresponding to the intensional LIFE fact happy

�
student � .

LIFE is an extension of logic programming: first-order logic programs are
LIFE programs with a flat sort signature; i.e., all sort symbols---except for � and �
are incomparable. Hence, the retrieval algorithm holds for languages using Prolog
terms as objects as well.

Part of the system described in this paper has been implemented: the LIFE-
-WISDOM system (LIFE With Inheritance Supported Data Object Manage-
ment) implements a database interface for an implementation of LIFE called
Wild LIFE [3], to an ORACLE relational database [12]. The current system

implements both database retrieval and updates, but only for single inheritance and
facts consisting of least sorts.

As for the future, we want to extend this approach to goals with variables.
For example, a goal such as name

�
X � X � must only unify with facts with identical

arguments and should generate database queries retrieving only tuples with identical
values in columns. Then, we may translate entire LIFE rules to complex join
operations on the database. The translation of recursive LIFE rules to extended
relational algebra expressions must also be explored. Another direction of research
consists of weakening the restrictions for the reduced sort signature, by redefining
qualified segments and using other search strategies, such as segment guessing.
Also, we may consider iterating our construction, building multiple levels of
abstractions; i.e., the storage of qualifiers themselves in higher-level qualified
segments.

Acknowledgements

The authors wish to thank Herman Balsters, Jean-Pic Berry, Maurice van Keulen,
and Andreas Podelski for their support and useful remarks.

References

1. Hassan Aı̈t-Kaci. An algebraic semantics approach to the effective resolution of type
equations. Theoretical Computer Science, 45:293--351 (1986).

2. Hassan Aı̈t-Kaci. An introduction to LIFE---programming with logic, inheritance,
functions, and equations. In Dale Miller, editor, Proceedings of the International
Symposium on Logic Programming (Vancouver, BC), pages 52--68, Cambridge, MA
(October 1993). MIT Press.

3. Hassan Aı̈t-Kaci, Bruno Dumant, Richard Meyer, and Peter Van Roy. The Wild LIFE
handbook. PRL Research Report (forthcoming), Digital Equipment Corporation, Paris
Research Laboratory, Rueil-Malmaison, France (1994).

4. Hassan Aı̈t-Kaci and Roger Nasr. LOGIN: A logic programming language with
built-in inheritance. Journal of Logic Programming, 3:185--215 (1986).

5. Hassan Aı̈t-Kaci, Roger Nasr, and Jungyun Seo. Implementing a knowledge-based
library information system with typed Horn logic. Information Processing & Man-
agement, 26(2):249--268 (1990).

6. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, 16(3-4):195--234 (July-August 1993).

7. François Bancilhon and Setrag Khoshafian. A calculus for complex objects. Journal
of Computer and System Sciences, 38(2):326--340 (April 1989).

8. O. Peter Buneman, Susan D. Davidson, and Aaron Watters. A semantics for
complex objects and approximate answers. Journal of Computer and System Sciences,
43(1):170--218 (August 1991).

9. Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer Verlag, Berlin, Germany (1990).

10. Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Interfacing relational databases and
Prolog efficiently. In Larry Kerschberg, editor, Proceedings of the 2nd International
Conference on Expert Database Systems, pages 141--153, Menlo Park, CA (1987).
Benjamin-Cummings.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Pogramming, 13(2-3):103--179 (1992).

12. Marcel Holsheimer. LIFE--WISDOM, a database interface for the LIFE system.
Master’s thesis, Computer Science, University of Twente, Enschede, The Netherlands
(September 1992).

13. Katherine Morris, Jeffrey D. Ullman, and Allen Van Gelder. Design overview of the
Nail! system. In Ehud Shapiro, editor, Proceedings of the 3rd International Confer-
ence on Logic Programming, pages 544--568, Berlin, Germany (1986). LNCS 225,
Springer-Verlag.

14. Shamim Naqvi and Shalom Tsur. A Logical Language for Data and Knowledge Bases.
Computer Science Press, Rockville, MD (1989).

15. Yannis Vassiliou, James Clifford, and Matthias Jarke. How does an expert system get
its data? In Proceedings of the International Conference on Very Large Databases,
pages 70--72 (1983). Extended abstract.

16. Yannis Vassiliou and Matthias Jarke. Databases and expert systems: Opportunities
and architectures for integration. In New Applications of Databases, pages 185--201,
London, UK (1984). Academic Press.

