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system. Therefore, there is a practical need to develop tools that assist databasedesigners in the selection of physical schemas. In the literature, a signi�cant numberof e�orts has been reported to develop such tools [2, 4, 6, 7, 8, 11, 18]. Most of thee�orts implicitly apply a number of heuristics to avoid the evaluation of all schemas.Uncertainty and ignorance, which characterize many of these heuristics, are not takeninto account.In this paper, we present an approach that explicitly models a rich set of heuristics|used for the selection of an e�cient schema| into production rules to which ameasure of uncertainty is attached. These heuristics can be loaded in a knowledgebase that might be used in physical database design tools.We have studied about 60 heuristics that are used by database administrators invarious companies in the Netherlands and observed that most of the rules contain adegree of uncertainty, ignorance, and qualitative notions. An example of a typicalheuristic is: "A Heap storage structure is in 90% of the cases adequate for smallrelations". The percentage 90% in this heuristic implies a certain degree of uncertaintyand small is a qualitative notion. If we asked the database administrators what storagestructure is a candidate in the case that a Heap is not chosen for a small relation,it appeared that all possible storage structures might be a choice. This implies thatignorance also plays a role in the �eld of physical database design.To capture uncertainty and ignorance in the heuristics, we have used the Dempster-Shafer theory. This theory, also known as the theory of belief functions, has beenintroduced by Dempster [9] and mathematically founded by Shafer [19]. It can beregarded as a generalization of probability theory and also as a theory for dealingwith evidence [12]. For our purpose, we regard to the theory as a theory of evidence.The theory o�ers an attractive formalism to represent relevant notions as `Thebelief in A on the basis of evidence E'. A central instrument in the Dempster-Shafertheory is the rule of Dempster, which is used to combine several evidences. In Ar-ti�cial Intelligence, Dempster-Shafer theory has attracted much attention. Variantsof the theory have been applied as a tool to handle uncertain information in manyapplications, see among others [3, 10, 16, 17]. In the �eld of Database technology,the theory is also receiving attention. In [1, 14, 15], it has been used to extend therelational model. We note that the authors in [1] take the view that their extensionof the relational model is based on probability theory and on the so-called concept of`missing probabilities'. However, they are presumably not aware that their concept of`missing probabilities' is covered by the Dempster-Shafer theory.The remainder of this paper is organised as follows. In two consecutive sections,the problem of physical database design and the notion of physical schema will bediscussed in more detail. In Section 4, we study a set of heuristics that are used bydatabase administrators to select a physical schema. In Section 5, we model the heuris-tics into knowledge rules with the Dempster-Shafer theory and propose a Dempster-Shafer approach for physical database design. Finally, Section 6 concludes the paper.32
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(Isam, Hash)Figure 1: Several kind of storage structures2 Physical database designAs already noticed, the outcome of physical database design is a physical schema.In the selection of a physical schema, the operations de�ned on the data, called theworkload, play a crucial role. A physical schema that may be good or optimal for acertain workload, may be bad for another workload.Basically, we may distinguish four kinds of database operations on a relationalschema1 namely, insertions, deletions, updates, and queries. Insertions are used toinsert new tuples in a relation, deletions are used to delete tuples, updates are usedto change the values of some attributes, and queries are used to derive a relation .In general, a number of operations of each type are de�ned on a relational schema.To each operation a weight is assigned, which is based on the frequency and theimportance of the operation. A high weight implies that once an operation is startedto be processed, this should be done fast, while a low weight implies that there arehardly any conditions for the processing time.Based on the relational schema, the workload, and some other database charac-teristics, such as the cardinality of a relation, length of a tuple, number of pages tostore a relation, etc., a storage structure and a set of indices should be selected foreach relation. A storage structure determines the order of the tuples of a relation ondisk. If this order is determined by an attribute, this attribute is called the orderingattribute. An index is a set of pairs (key value, TID-list). The key values are a subsetof the domain of the indexed attribute, and a tuple identi�er (TID) in the TID-listidenti�es a tuple possessing the key value.An index on an ordering attribute is called a clustering index and an index on anon-ordering attribute is called a secondary index. We note that a storage structureis also associated with each index.In Figure 1, we depict how the notions storage structure, ordering attribute, andclustering index are related. Furthermore, for a number of storage structures, wehave indicated between brackets whether they have an ordering attribute or not. If astorage structure has an ordering attribute, we have indicated whether the orderingattribute is indexed or not. For example, the storage structure Heap does not havean ordering attribute, and, therefore, it is unordered. Storage structures that have an1A relational schema is a set of relations. A relation R is de�ned over some attributes �1; �2; :::; �n,and is a subset of the Cartesian product dom(�1) � dom(�2) � ::: � dom(�n), in which dom(�j) isthe domain of attribute �j . 33



ordering attribute are Isam, Btree, and Hashing [13].In general, the way a clustering index is organized depends on the storage structureto which the clustering index is related. For example, the storage structure Btree inIngres allocates an index to the ordering attribute (resulting into a clustering index),and to this clustering index a pre-de�ned storage structure is assignedIn the remainder of this paper, we focus on the selection of a storage structure anda set of indices for each relation, and refer to it as physical database design. Althoughour description does not cover the overall problem of physical design, it covers themost di�cult and crucial parts [6].3 Physical schemaIn this section, we formalize the notion of physical schema. First, we outline theassumptions on which the de�nition of a physical schema is based.We assume that either a secondary index or a clustering index can be allocatedon an attribute (but not both). The way a clustering index is stored is assumed to be�xed.Exactly one storage structure can be assigned to a relation. The storage structuresthat are considered are Heap, Isam, Btree, and Hashing. Since these storage structuresare concerned with the arrangement of tuples of a single relation on disk, we do notconsider the possibility to absorb a relation in another relation. As a consequence, weassume that a page contains tuples of exactly one relation.A last assumption is that indices and ordering attributes concern single attributes.A physical schema for a single relation is now de�ned as follows.Def. 1 Let R be a relation with attributes �1; �2; :::; �n. A physical schema pR cor-responding to R is an element of PR, in whichPR = f(x0(A0); fxi(Ai) j i = 1; 2; ::;mg) j m 2 IN ;8i; j 2 f0; 1; 2; :::mg : i 6= j ) Ai \Aj = ;;jA0j � 1;8i > 0 : jAij = 1;8i � 0 : Ai � f�1; �2; :::; �ng;x0; xi are storage structures; jA0j = 0) x0 = HeapgThe expression x0(A0) means that a relation is stored as x0 and ordered on the setof attributes A0. We note that if a relation is stored as Heap, then A0 is the emptyset, else A0 contains exactly one element. The expression xi(Ai) represents that asecondary index is allocated to the set of attributes Ai and is stored as xi. Note, Aiconsists of exactly one element, since we restrict ourselves to single attribute indices.So, extension of Def. 1 by multi-attribute indices is straightforward.An (overall) physical schema for a set of relations is de�ned as the union of theselected physical schema for each relation.We note that the selection of physical schemas per relation is justi�ed in [20, 6].The following example illustrates the notion of physical schemas. Since the num-ber of elements of a set Ai; i � 0, is zero or one, we write xi() and xi(�i) instead of34



Heuristic 1:IF a relation is small (< 6 pages)THEN Heap is often (90%) an adequate storage structureHeuristic 2:IF the more the percentage of operations that changesthe value of an attribute in a workload exceeds 10%THEN the more this attribute is not an index candidateFigure 2: Examples of some heuristicsxi(fg) and xi(f�ig) respectively. For convenience's sake, the set brackets are omitted.Example 1 Let us consider the following relational schema:Person(per#, �rst name, last name, birth date, city),Vehicle(veh#, model, color, doors, body, manufacturer)Owns(per#, veh#, money paid)Two overall physical schemas for the above-mentioned relational schema are givenbelow.In the �rst overall physical schema, the relation Person is stored as Heap andtwo secondary indices, both stored as Btrees, to the attributes city and last namerespectively are allocated. The relation Vehicle is hashed on the attribute veh#. Therelation Owns is stored as Heap.In the second overall physical schema, the relations Person and Vehicle are storedas Heap. The relation Owns is stored as Btree, ordered on attribute per#, and asecondary index, stored as Btree, to money paid is allocated.1. ( (Heap(),fBtree(city), Btree(last name)g), (Hash(veh#), fg), (Heap(),fg) )2. ( (Heap(),fg), (Heap(),fg), (Btree(per#), fBtree(money paid)g) ) 24 HeuristicsAfter analysing about 60 heuristics used by experts for physical database design, wehave observed the following. First, the heuristics consist of a condition and conclusionpart (see Figure 2). Second, experts have apparently no di�culties to translate quali-tative notions into quantitative measures. In general this is a tough task. In Heuristic1 of Figure 2, a quanti�cation of the notion small is given between brackets. Third,heuristics have an uncertain character. A heuristic works well in many cases but notin all cases. Database administrators are able to estimate in how many percent ofthe cases a heuristic may be successfully applied. For example, applying Heuristic 1of Figure 2 results in 90% of the cases into Heap as storage structure. The heuristicsays nothing about the remaining 10% implying ignorance in these cases. We notethat the latter information is not explicitly captured in Heuristic 1. Fourth, we maydistinguish two types of heuristics. 35



1. The belief in the conclusion(s) is based on the fact whether the condition partis true or not. For example, in Heuristic 1 of Figure 2, the belief that a Heapstorage structure is chosen for a small relation is independent of how small therelation is.2. The belief in the conclusion(s) is dependent of the extent to which a conditionpart is satis�ed. For example, the idea behind Heuristic 2 of Figure 2 is that if thenumber of operations in a workload that changes an attribute �h increases, thenthe belief that �h is not an index candidate grows. To represent this uncertaincharacter, it is not su�cient to represent heuristics only with a condition andconclusion part.For the time being, we represent the heuristics of type 2, thus for which holds that thebelief in the conclusion increases (or decreases) if the extent to which the conditionsare satis�ed increases (decreases), as follows.IF (conditions(y%)) ^ (y � y0) THEN conclusion with belief f(y � y0) (1)We note that y is the actual percentage to which the conditions are satis�ed, y0 is theminimal required percentage in order to draw conclusion, and f(y) is a function of y.The belief in conclusion increases (or decreases) if the value of y� y0 becomes higher(smaller).In the next section, we discuss the Dempster-Shafer theory to capture the uncertaincharacter of both type of heuristics in order to achieve knowledge rules.5 A Dempster-Shafer approach to select physical schemasWe feel that the Dempster-Shafer theory is a suitable theory to capture the uncertaintycontained in the heuristics used by database designers. Before illustrating this, we givea brief description of the theory in the context of physical database design. We startwith de�ning what should be understood by all permitted overall physical schemasfor a relational schema in which r relations are involved.Def. 2 Let PR (see Def. 1)be the set of all permitted physical schemas correspondingto a relation R having attributes �1; �2; :::; �n. The set of permitted overallphysical schemas for a relational schema in which r relations, R1; R2; :::; Rr , areinvolved, called the frame of discernment, is PR1;R2;:::;Rr = PR1�PR2� :::�PRrIn the following, PR1;R2;:::;Rr is abbreviated as PDB.The following example lists all permitted physical schemas corresponding to a singlerelation.Example 2 Consider the relation Owner(per#, veh#, money paid), which has beenintroduced in Example 1. We assume that a relation is either stored as a Heap orhashed on a single attribute. A secondary index is stored as a Btree.In the following, we write pi for the i-th physical schema of relation Owner in-stead of pOwneri . The set of all permitted physical schemas for Owner, is POwner =36



p1 = (Heap(), fg)p2 = (Heap(), fBtree(per#)g)p3 = (Heap(), fBtree(veh#)g)p4 = (Heap(), fBtree(money paid)g)p5 = (Heap(), fBtree(per#), Btree(veh#)g)p6 = (Heap(), fBtree(per#), Btree( money paid)g)p7 = (Heap(), fBtree(veh#), Btree( money paid)g)p8 = (Heap(), fBtree(per#), Btree(veh#), Btree( money paid)g)p9 = (Hash(per#), fg)p10 = (Hash(per#), fBtree(veh#)g)p11 = (Hash(per#), fBtree(money paid)g)p12 = (Hash(per#), fBtree(veh#), Btree( money paid) g)p13 = (Hash(veh#), fg)p14 = (Hash(veh#), fBtree(per#)g)p15 = (Hash(veh#), fBtree(money paid)g)p16 = (Hash(veh#), fBtree(per#), Btree( money paid) g)p17 = (Hash(money paid), fg)p18 = (Hash(money paid), fBtree(veh#)g)p19 = (Hash(money paid), fBtree(money paid)g)p20 = (Hash(money paid), fBtree(per#), Btree(veh#)g )Table 1: All permitted physical schemas for the relation Ownerfp1; p2; p3; :::; p20g. The schemas p1; p2; p3; :::; p20 are listed in Table 1. The physicalschema p1 means that Owner is stored as Heap and no secondary indices are allocated,while p12 means that Owner is hashed on the attribute per# and secondary indices|both stored as Btrees| are allocated to attributes veh# and money paid. 2Def. 3 Let PDB be the set of all permitted overall physical schemas for a relationalschema. Let IP (PDB) be the power set of PDB, then a function m : IP (PDB)![0; 1] is called a basic probability assignment (bpa) wheneverm(;) = 0 and XP�PDBm(P ) = 1The quantity m(P ) is called P 's basic probability number and it is understood to bethe measure of belief that is exactly committed to the set of overall physical schemasP . The total belief in P , (Bel(P )), is the sum of the basic probability numbers of allsubsets PP of P . The following de�nition describes the relation between belief andbasic probability assignment in a formal way. We note that in the de�nition for Pholds that P � IP (PDB).Def. 4 A function Bel is called a belief function over PDB if it is given by the followingequation for some bpa m : IP (PDB)! [0; 1].Bel(P ) = XPP�P m(PP) (2)We note that a basic probability assignment induces a belief function and conversely.In the following, we illustrate how to compute a belief function from a given bpa.37



Example 3 Assume that the following bpa is de�ned on the set of physical schemaslisted in Table 1: m(fp1g) = 0:2; m(fp10g) = 0:2; m(fp6; p10; p18g) = 0:4 ;m(POwner) =0:2, andm(P ) = 0 otherwise. Therefore, the corresponding belief function is: Bel(fp1g) =0:2; Bel(fp10g) = 0:2; Bel(fp6; p10; p18g) = 0:6; and Bel(POwner) = 1. Note that theexpression Bel(fp6; p10; p18g) = 0:6 means that the total belief in the set of schemasfp6; p10; p18g is 0.6. However, we are not able to distribute this belief among theschemas in the set. 2Two other notions that are related with a belief function are plausibility and ig-norance. The plausibility in a set of physical schemas P expresses the maximal beliefin this set, and is de�ned as Pl(P ) = 1�Bel(PC), in which PC is the complement ofP relative to PDB. The ignorance with regard to a set of overall physical schemas P ,is de�ned as Ig(P ) = Pl(P )� Bel(P ).In Section 5.1, we illustrate how the two types of heuristics discussed in Section 4may be modelled as knowledge rules. Then, in section 5.2, we discuss how these rulesmay contribute in solving the problem of physical database design.5.1 Knowledge rulesIn Section 4, it was noted that database experts use heuristics that contain uncertaintyand ignorance for the design of physical schemas. We continue by illustrating how tomodel the heuristics into knowledge rules. A knowledge rule has an antecedent and aconsequent. With the consequent, a bpa is associated that expresses the belief that iscommitted to the consequent.Since the conclusion(s) of both types of heuristics of Section 4 actually support anumber of overall physical schemas, the consequent part of a knowledge rule shouldsupport this property. In the following example, we derive the knowledge rule corre-sponding to Heuristic 1 of Figure 2.Heuristic 1 Suppose that the belief in a Heap storage structure for small tablesis 0.9 and let PRlHeap be the set of all permitted physical schemas storing relation Rl asHeap whatever the set of secondary indices |and their storage structures| is. Wenote that PRlHeap formally means:f(Heap(); fxi(Ai) j i = 1; 2; ::;mg) j m 2 IN ;8i; j 2 f0; 1; 2; :::mg : i 6= j ) Ai \Aj = ;;8i � 1 : (Ai 2 f�1; �2; :::; �ng ^ jAij = 1);xi is a storage structuregWe note that �1; �2; :::; �n are attributes of relation Rl.The knowledge rule (k1) corresponding to Heuristic 1 is given below. In this rulenRlpag represents the number of pages required to store relation Rl.38
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The expression PRl:�h is a shorthand for:f(x0(A0); fxi(Ai) j i = 1; 2; ::;mg) j m 2 IN ;8i; j 2 f0; 1; 2; :::mg : i 6= j ) Ai \Aj = ;;jA0j � 1;8i > 0 : jAij = 1;8i � 0 : Ai � f�1; �2; :::; �ng n f�hg;x0; xi are storage structures; jA0j = 0) x0 = HeapgWe note that the expression PRl:�h � PDBnRl represents the set of physical schemasstoring relation Rl in such a way that Rl is neither ordered on attribute �h nor asecondary index is allocated on �h. 2Modelling mathematical properties in knowledge rules is straightforward. Since math-ematical properties are exact under certain conditions, these properties should be givenfull belief. This means that a knowledge rule that represents a mathematical propertywill be associated with a bpa having the value 1.0. An example is given below.Example 4 Suppose we have derived the following property under some conditionsCon for physical schemas consisting of single relations: `If the addition of a secondaryindex on attribute �h to a physical schema with regard to relation Rl decreases thecost (in handling the workload de�ned on the schema), then this index should beadded to the set of secondary indices [5]'. Let us assume that secondary indices arestored as Btree. Then this property can be modelled as follows:k3: IF Con AND C(pRl:�h[�h) < C(pRl:�h)THEN PRl:�h[�h;Btree; m(PRl:�h[�h;Btree) = 1:0We note that C(:) is a cost function that computes the cost of a physical schema,pRl:�h is a physical schema that neither has �h as ordering attribute nor as index, andpRl:�h[�h is the physical schema pRl:�h to which �h is added as secondary index. ForpRl:�h and pRl:�h[�h holds, pRl:�h 2 PRl:�h;Btree and pRl:�h[�h 2 PRl:�h[�h;Btree, in which thesets PRl:�h;Btree and PRl:�h[�h;Btree represent the physical schemasf(x0(A0); fBtree(Ai) j i = 1; 2; ::;mg) j m 2 IN ;8i; j 2 f0; 1; 2; :::mg : i 6= j ) Ai \Aj = ;;jA0j � 1;8i > 0 : jAij = 1;8i � 0 : Ai � f�1; �2; :::; �ng n f�hg;x0 is a storage structure; jA0j = 0) x0 = Heapgand f(x0(A0); fBtree(Ai) [ Btree(Ah) j i = 1; 2; ::; ng) j m 2 IN ;8i; j 2 f0; 1; 2; :::mg : i 6= j ) Ai \Aj = ;;Ah = f�hg; jA0j � 1;8i > 0 : jAij = 1;8i � 0 : Ai � f�1; �2; :::; �ng;x0 is a storage structure; jA0j = 0) x0 = Heapgrespectively. 2We assume that experts are able to give a reliable belief function for a knowledge40
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m4(P 42 ) = 0:3, and m4(POwner) = 0:1.Combining rules k2 and k3, which are conicting, results in Figure 5. The normal-ization constant is 0.46 and the combined bpa is: m2 �m3(P 31 ) = 0:36=0:46 = 0:78m2 �m3(P 21 ) = 0:06=0:46 = 0:13 m2 �m3(POwner) = 0:04=0:46 = 0:09The combination of m2 �m3 with m4 can be carried out in the same way, andgives the following results.m2 �m3 �m4(fp10; p12g) = 0:64 Bel(fp10; p12g) = 0:64 Pl(fp10; p12g) = 0:83m2 �m3 �m4(fp9; p11g) = 0:11 Bel(fp9; p11g) = 0:11 Pl(fp9; p11g) = 0:20m2 �m3 �m4(P 31 ) = 0:11 Bel(P 31 ) = 0:75 Pl(P 31 ) = 0:83m2 �m3 �m4(P 41 ) = 0:07 Bel(P 41 ) = 0:71 Pl(P 41 ) = 0:95m2 �m3 �m4(P 42 ) = 0:04 Bel(P 42 ) = 0:04 Pl(P 42 ) = 0:05m2 �m3 �m4(P 21 ) = 0:01 Bel(P 21 ) = 0:12 Pl(P 21 ) = 0:20m2 �m3 �m4(POwner) = 0:01 Bel(POwner) = 0:99 Pl(POwner) = 0:99We note that the normalization constant is 0.73 and due to roundings Bel(POwner)and Pl(POwner) take the value 0.99 in stead of 1.0.The highest belief, after combining the three rules, is assigned to the set of schemasfp10; p12g. We note that the high total belief in the sets P 31 , P 41 and POwner is due tothe fact that these sets contain the schemas p10 and p12. 2The combination of three rules has resulted into the support of several physicalschemas with di�erent belief values. If the bpa's assigned to the three knowledge rulesare the real bpa values, there is a high belief that a good physical schema is amongthe schemas p10 and p12. By passing both schemas to the optimizer, we may decidewhich physical schema of two is the best one.6 Conclusions & further researchSince the selection of e�cient physical schemas is a tough process, there is a practicalneed for tools that assist database administrators in this process. A signi�cant numberof research has been reported to develop such tools. Most of the e�orts implicitly applya few heuristics to avoid the evaluation of all schemas, while database administratorsin real-life apply a rich set of heuristics to select physical schemas. Our goal is toexploit this rich set of heuristics in tools for physical database design. Therefore,we have analysed about 60 heuristics used by database administrators in real-life.These heuristics contain a degree of uncertainty and ignorance. We have proposedan approach to model explicitly these heuristics into knowledge rules by using theDempster-Shafer theory, which appeared to be a suitable theory for our purposes.These knowledge rules may be loaded in a knowledge base, which, in turn, can beembedded in physical database design tools as has been demonstrated in [6, 7]. Onthe basis of our approach, we have implemented a prototype tool [6, 7] and we havecompared our results with other approaches. The results obtained by our tool arepromising [6, 7]. 43
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