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ABSTRACT
User trajectories contain a wealth of implicit information.
The places that people visit, provide us with information
about their preferences and needs. Furthermore, it provides
us with information about the popularity of places, for ex-
ample at which time of the year or day these places are
frequently visited. The potential for behavioral analysis of
trajectories is widely discussed in literature, but all of these
methods need a pre-processing step: the geometric trajec-
tory data needs to be transformed into a semantic collection
or sequence of visited points-of-interest that is more suitable
for data mining. Especially indoor activities in urban areas
are challenging to detect from raw trajectory data. In this
paper, we propose a new algorithm for the automated de-
tection of visited points-of-interest. This algorithm extracts
the actual visited points-of-interest well, both in terms of
precision and recall, even for the challenging urban indoor
activity detection. We demonstrate the strength of the algo-
rithm by comparing it to three existing and widely used algo-
rithms, using annotated trajectory data, collected through
an experiment with students in the city of Hengelo, The
Netherlands. Our algorithm, which combines multiple tra-
jectory pre-processing techniques from existing work with
several novel ones, shows significant improvements.
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1. INTRODUCTION
The places a person visits regularly are a strong indication
for personal preferences and needs. A person visiting a
kindergarten each morning most likely has a young child,
and a person visiting a concert hall on a regular basis prob-
ably has a more than average interest in music. This makes
trajectory data a promising source to determine personal
preferences and needs, as discussed in [1]. Furthermore, tra-
jectory data can be used to assess the trustworthiness of
UGC, as discussed in [2]: a negative review of a restau-
rant that the user visited in the past week can probably be
trusted more than a negative review of a person who works
at a nearby competitor. Before we can perform such an anal-
ysis, we need to know which places were visited. We define a
relevant place as a point-of-interest (POI): a location where
goods and services are provided, geometrically described us-
ing a point, and semantically enriched with at least an in-
terest category. The type of trajectory analysis that is used
to extract visited POIs from raw trajectory data has been
discussed in the literature as stop detection, and we follow
the definition of Yan et al. for a stop: a temporary suspen-
sion of the travel for some reason [3]. In this work, we are
particularly interested in those stops that take place at a
pre-defined POI.

Smartphones these days base the location on multiple in-
formation sources: WiFi positioning, (assisted) GPS posi-
tioning and cell phone tower locations. In the algorithm
presented in this paper, we focus on the detection of POI
visits based on the raw smartphone data, which does not
reveal from which source the location was derived. This
POI visit detection is a challenging task, especially for in-
door activities in urban areas, since trajectory data is of-
ten incomplete, due to temporary inability to receive GPS
signals from enough satellites, or imprecise, due to signal
multipath. In the words of Alvares et al.: “to transform
a sample trajectory into a semantic one (sequence of stops
and moves) is not an easy task” [4], or as Yan et al. put
it: “dense urban areas can have several different POIs. (..)
Such large number makes it probabilistically intractable to
infer the exact POI from imprecise location records” [5, 6].
Nevertheless, several attempts have been undertaken to ex-
tract POI visits from trajectory data. There are generally
two ways to do this. The most common way is to detect
POIs from slow movement over a longer period, and defin-
ing the locations at which this happens regularly as the POI



set, as for example by Ashbrook et al. [7] or Zheng et al. [8].
A less common way is to match trajectories with a given, or
specifically collected, POI set, such as the one by Alvares et
al. [9]. The advantage of the latter approach, is that more
information on the matched POI may already be available,
such as a name, address, website, and POI category. This
makes the approach with a given POI set more suitable for
a semantic analysis of the visited POIs, which is why we fo-
cus on this form of POI visit extraction. However, existing
approaches have two important drawbacks: (1) they assume
the availability of the GPS signal while residing at the POI,
and (2) they do not take the accuracy of the GPS samples
into account. The first drawback leads to the non-detection
of indoor POI visits, while the latter leads to false positives
for imprecise signals, as discussed in more detail in Section 2.
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Figure 1: Trajectory annotation using Point-of-Interest Ex-
traction (PIE). Green, blue and red polygons indicate the
footprint of POIs that were extracted as visited. White and
grey polygons were not extracted as visited. For green poly-
gons proof was available of a visit, blue and white polygons
were possibly visited, and red and grey polygons were defi-
nitely not visited in the real world.

In this paper, we present the trajectory annotation algo-
rithm Point-of-Interest Extraction (PIE), illustrated in Fig-
ure 1, which is designed to overcome the aforementioned
problems. In this figure, the circles indicate the trajectory
samples. The green, blue and red areas indicate extracted
POI visits. The PIE algorithm was designed especially for
indoor activities, while using the GPS sensor of mobile de-
vices. In this paper, we also present the results of a com-
parison with the existing algorithms of Alvares [9], Palma
[10], and Rocha [11]. These three methods (especially the
first two), are regularly used for POI extraction, due to their
availability as an extension for the data mining tool Weka
[4, 11]. For this comparison, we set up an experiment with
students of the University of Twente, who used their own
mobile devices as they were invited to visit pre-defined POIs
as part of a treasure hunt game in the city of Hengelo, The
Netherlands.

The remainder of this paper is structured as follows: Sec-

tion 2 provides an overview of related work. The details
of our approach are laid out in Section 3. Our validation
method and results are presented in Section 4. Privacy con-
siderations are discussed in Section 5. Section 6 finally, con-
cludes this paper.

2. RELATED WORK
In this section, we focus on the explanation and illustration
of the approaches with which we compare our work: the
approaches of Alvares, Palma, and Rocha, who (in collabo-
ration with each other) tried to solve the same problem as
we are, using three different approaches. We conclude this
section with a short discussion of other related work.

2.1 Alvares’s IB-SMoT
Alvares’s Intersection-Based Stops and Moves of Trajecto-
ries (IB-SMoT) [4, 9] is the most straightforward of the three
approaches: it intersects the trajectories with the polygons
that represent the POIs, as illustrated in Figure 2a. The
trajectory is split up into intervals that are either a stop at
a POI, or a move between POIs. Those intervals during
which the trajectory intersects with a known polygon are
marked as a stop (illustrated by filled trajectory points in
Figure 2a), and those intervals during which the GPS sam-
ples do not intersect with such a polygon are annotated as
a move (illustrated by empty trajectory points). Besides a
trajectory and a set of disjoint relevant polygons, this ap-
proach takes no input parameters. Drawbacks of Alvares’s
approach are: (1) distortion of the GPS signal, for example
due to signal multipath, can easily lead to false positives,
(2) absence of the GPS signal during indoor activities is not
taken into account, and (3) the accuracy indicator of GPS
signals is ignored, causing imprecise signals to be interpreted
with equal importance as precise ones.

P1 P2 

P3 

(a) Alvares’s IB-SMoT

P1 P2 

P3 

(b) Palma’s CB-SMoT

P1 P2 

P3 

(c) Rocha’s DB-SMoT
Figure 2: Existing POI extraction approaches: circles rep-
resent trajectory points, filled circles represent trajectory
points with significance in the illustrated approach



2.2 Palma’s CB-SMoT
Palma’s Clustering-Based Stops and Moves of Trajectories
(CB-SMoT) [10], illustrated in Figure 2b, is based on a
variation of the well-known clustering algorithm DBSCAN
(Density-Based Spatial Clustering of Applications with Noise)
[12]. Rather than setting the clustering parameter Eps (used
to determine the maximum allowed distance between points
before starting a new cluster) for all trajectories to the same
value, they introduce a quantile function that takes an input
parameter area, and uses this to automatically determine a
proper setting for Eps per trajectory. In this way, trajec-
tories with faster movement have distance threshold values
that are higher than the trajectories of slower moving ones.
Palma et al.’s approach also requires the input parameter
minTime, a minimum time threshold that is used as an al-
ternative for DBSCAN’s minimum number of points to cre-
ate a cluster. The clustered trajectory parts (illustrated by
filled trajectory points) are then intersected with the known
POI polygons. Because of the clustering approach, a reflect-
ing signal while moving past a POI is generally discarded.
However, the second and third drawback of Alvares’s ap-
proach also apply here: due to the absence of GPS signals
inside buildings, the clusters are often located outside the
POIs parcel polygon, and cluster building is disturbed by
imprecise signals.

2.3 Rocha’s DB-SMoT
Rocha’s Direction-Based Stops and Moves of Trajectories
(DB-SMoT) [11], illustrated in Figure 2c, is based on the
notion of heading change: if the direction of a trajectory
frequently changes, this indicates a stop (illustrated by filled
trajectory points). Besides a trajectory, their algorithm
takes three parameters as input: the minimum direction
change minDC, the minimum time interval to build a new
cluster minTime, and the maximum tolerated consecutive
number of trajectory samples that do not exceed minDC in-
side a cluster: maxTol . Rocha et al. validated their method
using the fishing locations of Brazilian vessels, for which
the POI areas are relatively large compared to the inaccu-
racy of the GPS signal. In the application for indoor urban
activity detection, the location accuracy is much lower, as
the receiver often cannot pick the optimal satellite constel-
lation. Furthermore, just like in the other two approaches,
knowledge of the signal’s accuracy is not taken into account,
causing inaccurate points to be regarded relevant for this ge-
ometric analysis.

2.4 Other related work
Besides POI visit extraction, other types of trajectory an-
notation have received their share of attention. Stefanakis
showed for example, how trajectories can be annotated with
geometric properties [13]. These properties can then be used
for trajectory simplification, assisting us to select the rel-
evant sampling points from the trajectories. An example
of a useful trajectory simplification metric is the one from
Chen et al. [14], which we discuss in the next section as a
part of our approach. Guc et al. also annotate trajectories
with POI visits [15], but this annotation is done manually.
SeMiTri of Yan et al. annotates trajectories automatically,
but since they find it probabilistically intractable to infer
the exact POI, they annotate the trajectories with proper-

ties of the region where the trajectory was created [6]. An-
other algorithm that could be used for POI visit detection
is Continuous Nearest Neighbor (CNN) Search by Tao et al.
[16]. However, since by definition, their approach contin-
uously picks the nearest POI, this approach leads to many
false positives, albeit for very short time intervals. The CNN
approach would therefore need to be extended with a filter
of those POIs that should be marked as visited, and those
that were simply nearby for a shorter amount of time. How-
ever, in this paper we prefer to focus on the comparison with
existing algorithms, rather than adaptations of existing al-
gorithms, and therefore we consider it outside the scope of
this paper. Kang et al. [17], to conclude, came up with a
time-based clustering approach based on WiFi positioning
purely for POI visit detection. As stated in the introduction
however, we focus on POI visit detection from smartphone
trajectory data, which may come from multiple sources.

3. APPROACH
Our PIE algorithm is mainly based on four parameters from
the smartphone location sensor readings and its spatio-tem-
poral derivatives: the accuracy of the location samples as
provided by the smartphone OS, reductions in speed, changes
in direction and projection of signals onto parcel polygons.
We begin this section by defining several geometric concepts
that we use as selection filters, and then present the algo-
rithm that combines these.

3.1 Definitions
Trajectory and trajectory sample point
The location signal in a mobile device is only accurate up to
several meters (see for example [18]), depending on several
factors, such as the vicinity of known WiFi networks, the
quality of the GPS sensor, the number of detected satellites
by the GPS sensor, their spatial arrangement in the sky, and
the presence of reflecting surfaces. This is modeled in mobile
devices using an accuracy parameter, measured in meters,
which indicates the radius around the point in which the de-
vice may also be located. Even though the APIs of the large
manufacturers have named this an accuracy parameter, we
prefer to refer to this as an inaccuracy indicator, as its value
increases with increasing inaccuracy.

Definition 1. A trajectory sample point is a spatio-tem-
poral point, associated with an inaccuracy indication, repre-
sented by a tuple p = (x, y, t, i).

We express x, y, and i in meters, and t in seconds. Other
units suitable for distance and time calculation can be used
as well, as long as the thresholds discussed below are set
accordingly.

Definition 2. A trajectory is a chronological sequence
of sample points: T = 〈p0, . . . , pn〉.

Since trajectory samples with a high value for the inaccu-
racy indication are unsuitable for geometric calculations, we
also introduce the inaccuracy threshold value imax.

Staypoint
Li et al. introduced the concept of a staypoint [19]; it is il-
lustrated in Figure 3. Zheng elaborated on this in [8], from



which we follow the definition: a geographical region where
a user stayed over a time threshold Tr within a distance
threshold of Dr. However, the definitions and algorithms of
Li and Zheng do not take maximality into account. This
causes multiple staypoints are created, based on sequences
that contained each other, as for example is the case for p4
and p5 in Figure 3. To avoid this, and let a trajectory sample
, we follow a slightly different definition.

Definition 3. A candidate stop sequence C is a non-
empty subsequence of a trajectory T for which p = 〈pm, . . . , pn〉,
for which ∀m < i 6 n, Dist(pm, pi) 6 Dr, Dist(pm, pn+1) >
Dr or n+ 1 ≥ |T |, and Int(pm, pn) > Tr, where Dist is the
geospatial distance between two sample points and Int is the
time difference between two sample points, |pi.t− pj .t|.

Definition 4. A candidate stop sequence C of a trajec-
tory T is a stop sequence S if and only if no other candidate
stop sequence C′ exists for T that contains all samples con-
tained in C.

Definition 5. A stay point s is defined as the centroid
of a stop sequence S. s is a tuple (x, y, ta, tl, i) where x and
y are the coordinates, ta is the arrival time, td is the time
of departure, and i is the maximum inaccuracy:

(x, y) is the centroid of S,
ta = minp∈S(pi.t),
td = maxp∈S(pi.t),
i = maxp∈S(pi.i).
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Figure 3: A trajectory, where three trajectory points
〈p3, p4, p5〉 form a staypoint s (illustration after [8])

Heading change
Chen et al. introduced several forms of heading change for
their trajectory simplification method proposed in [14]. We
adopt their concept of neighbor heading change, which corre-
sponds with the definition of direction change used by Rocha
in [11]. The heading change is the change in heading that
takes place at a point pi with respect to its direct neighbor
points in the trajectory:

Definition 6. The heading change θ for a point n in the
trajectory T is given by:

θi = 180
π

cos−1
(

a·b
||a||||b||

)◦
,

where a =

[
pi.x− pi−1.x
pi.y − pi−1.y

]
, b =

[
pi+1.x− pi.x
pi+1.y − pi.y

]
.

For the first or last point in a trajectory, the heading change
is defined as θ = 0◦.

Where the algorithm of Rocha et al. looks for repeatedly
changing directions, we are only interested in the direction
change at the selected point. Small direction changes in a
trajectory normally indicate a person travelling, while arriv-
ing at their destination, the movement deviates from this to
enter their destination. Of course, people may have many
other reasons to change direction, such as following a road

network. Therefore, filtering based on direction changes
alone does not suffice, but it is merely one of the features
in our approach to filter out points. To extract those points
where people change direction, we use a direction change
threshold θmin, where 0 6 θmin 6 180◦. Note that a simpli-
fied trajectory is still a trajectory, and this definition there-
fore allows us to filter out sample points prior to applying
this threshold to filter out points.

Parcel polygons and polygons-of-interest
We define a polygon-of-interest (POLOI) as a location where
goods and services are provided, geometrically described us-
ing a polygon, and semantically enriched with at least an
interest category. A parcel polygon is similar to a POLOI,
but does not necessarily describe a location where goods and
services are provided, but may also be another type of par-
cel, such as a residence. In [20], we discussed how a POLOI
can be estimated given a POI set using open data. In the
algorithm presented in this paper, we assume the availabil-
ity of polygons for all nearby parcels as the polygon set P .
Those elements in P that also represent a POLOI are con-
tained in a subset of P , referenced as PPOLOI . The result
of the PIE algorithm, which is the set of visited POLOIs, is
denoted as PVP .

Polygon projection and maximum projection dis-
tance
GPS signals are typically unavailable inside buildings. There-
fore, we use selected points, derived from the GPS signal
right before or right after a stop, to determine which place
has been visited. These points are projected onto the near-
est parcel polygon. We call this polygon projection. To limit
the projection distance, we introduce the absolute maximum
projection distance πmax within which the point is still con-
sidered indicative of a parcel visit.

3.2 Algorithm
In our PIE algorithm, we combine the concepts discussed
above. First, we filter out those points for which the inac-
curacy value exceeds the accuracy threshold imax. These
points are too imprecise to do further calculation with. Sec-
ondly, we extract the staypoints from a trajectory. Then,
we determine the direction change between the staypoints
to determine whether any staypoint is an indication for a
visited location or should be attributed to natural behavior
in traffic. Thereafter, we project the selected points onto
the nearby polygons, taking the maximum projection dis-
tance πmax into account. Those polygons that are POLOIs,
are added to the result set of visited polygons that are not
POLOIs. Note that, unlike in the work of Palma and Chen,
the heading change is taken into account after staypoint
detection: the advantage is that this filters out those stay-
points that were on a relatively straight path with respect
to the previous and next staypoints. This leads to the for-
malization of our algorithm shown in Algorithm 1.

4. VALIDATION
We begin this section with a description of the validation
approach, followed by the way we collected and cleaned the
ground truth data. Then, we discuss the metrics used to
evaluate how our algorithm performs in comparison to ex-



Algorithm 1 Point-of-Interest Extraction (PIE)

input: T // trajectory as sequence of sample points
imax // maximum inaccuracy in meters
Dr // staypoint distance threshold in meters
Tr // staypoint time threshold in seconds
θmin // minimum direction change in degrees
πmax // maximum projection distance in meters
P // set of all existing polygons
PPOLOI // subset of P , containing POLOIs

output: PVP // subset of PPOLOI , containing vst. POLOIs

1: procedure PIE

2: // Select points based on inaccuracy
3: accuratePoints ← { p ∈ T | p.i ≤ imax};
4: // Select points based on staypoints
5: stayPts = stayPointDetection(accuratePoints, Tr, Dr);

6: // Select points based on heading change
7: selectedPoints ← { p ∈ stayPts |
8: headingChange(stayPts, p) ≥ θmin};
9: // Select nearest polygon, apply πmax

10: // and check if it is a POLOI
11: PVP ← { p ∈ selectedPoints |
12: polygon = getNearestPolygon(P, p)
13: ∧ dist(polygon, p) ≤ πmax

14: ∧ polygon ∈ PPOLOI };
15: return PVP

16: end procedure

isting algorithms. Finally, we present the results of the val-
idation with a short discussion.

4.1 Approach
To validate our approach, we rebuilt the approaches of Al-
vares, Palma and Rocha, based on their papers. Just like
our approach, the approaches by Palma and Rocha require
several parameters to be set. For these three approaches,
we used a ten-fold cross validation to detect the proper pa-
rameter settings using a brute force approach. To limit the
number of combinations, we set the parameters imax = 10m,
πmax = 10m, and θmin = 30◦ for the PIE algorithm, while
detecting Tr and Dr automatically.

4.2 Data collection
To collect validation data, we set up an experiment simi-
lar to the one described in [2]. During the welcome week
of the University of Twente, called the Kick-In, the new
students were invited to participate in a treasure hunt-like
game that lasted four hours. The students were supposed
to carry out exercises, and upload a picture of this activ-
ity with the specifically designed mobile application Kick-In
Discover Hengelo, illustrated by the screenshot in Figure 4.
The exercises could be carried out in any given order, and
the best picture was rewarded with a prize.

The application, which was built on the PhoneGap platform
[21], was available on both Android phones and iPhones.
Ten of the 24 exercises had to be carried out at a specific

POI. The employees of these POIs prepared a set-up for the
respective exercise, such as a poker table, or a karaoke set.
The organization of the event, which we had collaborated
with while designing the app, had the possibility to send
messages to all users at once. They used this to motivate the
students to move on to the next exercise roughly every half
hour. In the background of the application, the trajectory
was sampled with explicit prior user consent. The pictures
taken by the students, were linked to their trajectory and
formed a proof of their visit to that specific POI. We used
this proof as a manual ground truth POI visit annotation of
the trajectories.

An unforeseen, yet important side-effect of this data collec-
tion, is that the resulting annotation is not complete: stu-
dents did not upload a picture from their own device at every
location they went to, but at several occasions, one picture
was uploaded with several people on it. We address this
when discussing the validation metrics in Section 4.4.

(a) For each exercise the
students were invited to
upload a picture

(b) A map helped the stu-
dents to move between par-
ticipating POIs

Figure 4: Screenshots from the Kick-In Discover Hengelo
app

For the polygon sets P (and thus PPOLOI ), we used authori-
tative data from a public web feature service, offered by the
Dutch government through the open data initiative Nation-
aal Georegister1. To thoroughly test the algorithms for false
positives, we assumed all parcel polygons in the vicinity of
the event to be POLOIs, and thus in this case: P = PPOLOI .

4.3 Data cleaning
Several pictures were uploaded outside the time window of
the event, due to people playing around with the app before
and after the event. Furthermore, several pictures did not
meet the exercise requirements. For example, exercises were
carried out while not being at the correct location, or the
picture was entirely black. These pictures were discarded
as annotations after manual inspection. Trajectory samples
that were not within the time window of 2 minutes before
the user’s first annotation and 2 minutes after his last an-
notation were discarded as well. Trajectories that did not
contain at least 50 samples with an inaccuracy value below

1http://www.nationaalgeoregister.nl



30 were also excluded from the validation data, as these stu-
dents most likely did not have GPS positioning turned on.
This resulted in 23 valid trajectories from a wide range of
device types, containing a total of 30,500 trajectory samples
and 128 annotations.

4.4 Validation metrics
Our validation metrics are based on those that are com-
monly accepted in information retrieval : precision, recall,
and their harmonic mean F measure. These metrics are in-
dications for the relationship between the numbers of true
positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN). Since the annotations were not entirely
complete (as discussed above), we introduce a new category:
probable positives (PP). These are the locations where stu-
dents may have been, since these POIs participated in the
event, but for which we do not have proof in the form of a
(valid) photo. We extend the notion of precision, the frac-
tion of retrieved POIs that are relevant, accordingly by in-
terpreting PPs as TPs:

OptimisticPrecision =
TP + PP

TP + PP + FP

We also use the more conservative pessimistic precision, in
which we consider PPs as FPs:

PessimisticPrecision =
TP

TP + PP + FP

For the fraction of relevant POIs that are retrieved, or recall,
we use the regular formula:

Recall =
TP

TP + FN

For our validation, we consider precision and recall equally
important, in which case the optimistic and pessimistic F
measures are formally given as:

OF =
2 ∗OptimisticPrecision ∗ Recall

OptimisticPrecision + Recall

and

PF =
2 ∗ PessimisticPrecision ∗ Recall

PessimisticPrecision + Recall

4.5 Results
In Figure 5, we illustrate POI visits as extracted by the
different approaches for the same trajectory. A green poly-
gon indicates a true positive for POI visit extraction, a blue
polygon a probable positive, a red polygon a false positive, a
yellow polygon a false negative, and grey polygon a true neg-
ative. White polygons indicate locations that participated
in the event, but were not visited by this student.

The straightforward intersection-based approach by Alvares
in Figure 5b leads to many false positives, due to the inclu-
sion of location samples where signal multipath was in play.
Similarly, Palma’s clustering-based approach in Figure 5c
suffers from this: detected clusters are often located in front
of the POI, rather than intersecting with the polygon. With-
out a projection on the nearest polygon, this leads to many
false negatives. The direction-based approach of Rocha in
Figure 5d suffers from the constant reflection of signals in
urban areas: many clusters are detected due to inaccuracies

of the signal, rather than actual back-and-forth movement.
As a result, clusters are created that were caused by signal
multipath.

In Figure 6, we show the results of our validation aggre-
gated over all valid trajectories. PIE outperforms the three
existing approaches in pessimistic precision, optimistic pre-
cision, and recall, and as a result in F measure as well. We
are able to extract visited POIs with a precision of 57.9%,
classical precision of 44.7%, and recall 68.0% of the visited
POIs. This corresponds with an optimistic F measure of
0.625, substantially higher than the optimistic F measures
for Alvares (0.441), Palma (0.371), and Rocha (0.443). The
pessimistic F measure for PIE equals 0.540, also substan-
tially higher than those for Alvares (0.335), Palma (0.331),
and Rocha (0.344).

Opt. Precision Pess. Precision Recall OF measure PF measure
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Figure 6: Validation results using described metrics

To give an indication of appropriate parameter settings for
the PIE approach: nine validation batches from the 10-fold
cross validation used a distance threshold 3m 6 Dr 6 5m
and a time threshold 11s 6 Tr 6 14s. We also experi-
mented with a relative value for the πmax parameter, that
relates the projection distance to the distance to the second
nearest parcel, but this led to significantly inferior results.
Another idea we experimented with was to take signal loss
into account, but since this can be caused by several factors,
this turned out to be a rather weak indicator for parcel or
POI visits.

5. PRIVACY CONSIDERATIONS
With great power, comes great responsibility. Algorithms
like ours can be used to the benefit of a user, just as well as
to his discomfort. Users are often careless about the permis-
sions that a mobile application requires. We consider it the
application developer’s moral obligation to reduce the col-
lection of private data to a minimum. Therefore, we share
this algorithm with the following three privacy considera-
tions:

Information ownership
Trajectory data is personal data that belongs to a user.
Therefore, which POI a person visited is information that
shall be available to only that person, unless he agrees to
share this information. Extracted POI visits shall remain
on the device of the user. Only an aggregated profile, based
on numerous POI visits, shall be sent to a service that uses



(a) PIE: clusters outside POLOIs still lead to POI/POLOI
visit detection

(b) Alvares: many false positives due to simple intersection

(c) Palma: missed polygons due to location of clusters out-
side POLOIs

(d) Rocha: missed polygons due to location of clusters out-
side POLOIs; going around a corner also causes cluster cre-
ation

True Positive Probable Positive

False Negative False Positive

True Negative Unvisited game location

Figure 5: POI extraction from trajectory #110 using different algorithms.



these. For example: the fact that a user has children, can be
beneficial to offer the right services at the right time. How-
ever, where his children go to school, is too personal to share.

Informed user consent
For certain services, it is required to know the exact POI
where a person is currently located. One can think of a tag
for social media, or, more importantly, an emergency call
application for an elderly person. In this case, we consider
it reasonable to share the exact POI, but only with the con-
sent of the informed user.

POI set scope
POI sets shall contain only those POIs that increase the
quality of the service. The scope of object types contained
in the POI set shall be carefully selected for each applica-
tion, and shall certainly not contain location types that a
person may not be willing to share in public.

6. CONCLUSION & FUTURE WORK
In this paper, we introduced and validated our POI visit ex-
traction algorithm PIE. Using a combination of several ge-
ometric and spatiotemporal processing steps, we are able to
infer the visited POIs with significantly better results than
those of existing approaches, as this algorithm is specifically
designed for urban indoor trajectory analysis. Even for those
trajectories for which typical challenges for this type of tra-
jectory analysis, such as signal loss and inaccuracy, play a
role, PIE manages to retain a combination of high preci-
sion and high recall. In the near future, it is our aim to
combine this algorithm with POI collection techniques and
POI-to-POLOI transformation techniques to create a holis-
tic framework to transform trajectories into user profiles.
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