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Abstract—Increasing energy prices and the greenhouse effect
lead to more awareness of energy efficiency of electricity supply.
During the last years, a lot of technologies and optimization
methodologies are developed to increase the efficiency, maintain
the grid stability and support large scale introduction of renew-
able sources. In previous work, we showed the effectiveness of our
three-step methodology to reach these objective, consisting of 1)
off-line prediction, 2) off-line planning and 3) online scheduling
[1].

The goal of this paper is 1) to analyze the impact of installing
a local controller in the house and 2) to analyze the stabilizing
effect of the optimization algorithms on a large group of houses.
To investigate whether it is possible to develop a local controller,
a proof-of-concept is built using an embedded PC. The prototype
consumes significantly less power than it can save. The stabilizing
effect is studied by two large scale use cases. The first one
is a simulation of 200 houses that together try to respond on
fluctuation in generation of a windmill park. The second one
is a simulation of a fleet of 100 electrical cars that need to be
charged at night. Using the three step methodology in these two
scenarios, the required balancing power, peaks and fluctuations
in the required generation of the power plants decrease up to
40%.

I. INTRODUCTION

In the last decades, more and more stress is put on the
electricity supply and infrastructure. On the one hand, electric-
ity usage increased significantly and became very fluctuating.
Since the maximum peak usage defines the generation and grid
capacity, the required capacity has increased. Furthermore,
due to the fluctuations in usage (and therefore in required
generation) the generation efficiency decreased [2].

On the other hand, reduction in the CO2 emissions and
introduction of generation based on renewable sources are
important topics today. However, these renewable resources
are mainly given by very fluctuating and uncontrollable sun-
, water- and wind-power. The generation patterns resulting
from these renewable sources may have some similarities
with the electricity demand patterns, but they are not equal.
For this reason, supplemental production is required to keep
the demand and supply in balance, resulting in an even
more fluctuating generation pattern for the conventional power
plants. Finally, the introduction of new, energy efficient tech-
nologies such as electrical cars can result in an even further
fluctuating electricity demand. If electrical cars are charged in
an uncontrolled way, this may result in high peak demands
of electricity since these vehicles often will be charged in
the evening and need to be charged fast to ensure enough
capacity for the upcoming trip. Lowering the peaks in demand

is desirable to improve the usage of the available grid capacity
and maintain a stable and reliable grid.

A solution for these problems may be to transform do-
mestic customers from static consumers into active players
in the production process. More and more new technologies
with controllable load and generation are developed, such as
controllable white goods and micro-generation. Furthermore,
domestic energy storage of both heat and electricity is becom-
ing quite common. Managing these new technologies has a
optimization potential, since by managing these technologies
the consumption pattern of houses can be partially controlled.
The goal of our research is to determine a methodology to use
this optimization potential to 1) optimize efficiency of current
power plants, 2) support the introduction of a large penetration
level of renewable sources (and thereby facilitate the means
that are needed for CO2 reduction) and 3) optimize usage of
the current grid capacity.

In [1] a control strategy is presented to exploit this optimiza-
tion potential in a generic way. The methodology is flexible in
both the optimization objective and the technologies available
within houses. After all, objectives may differ over time and
different houses may have different technologies installed.
This control strategy is explained in more detail in Section II.

The first goal of this paper is to investigate whether it is
possible to develop a local controller. Therefore, a proof-of-
concept is built using an embedded PC. This local controller
should predict the energy production/consumption potential,
optionally communicate with a global controller, monitor and
manage domestic devices and run an optimization algorithm.
It is based on the prototype described in [3], where a desktop
PC is used. The prototype should consume less power than it
can save.

The second goal is to verify the effect of our optimization
methodology when it is applied on a large number of houses.
This is done using a simulator [4]. Small scale scenarios are
simulated and verified in previous work [1], [3] and one large
scale simulation is performed [5]. However, the goal of this
large scale simulation was to investigate whether it is possible
to apply the methodology on a large group of houses and what
the communication requirements are. No extensive verification
of the optimization results are done.

The rest of this paper is built up as follows. The next section
describes the developed optimization methodology with the
underlying model and introduces the test cases. Section III
describes the implemented local controller and the fourth
section describes the simulations and simulation results of the



test cases. In Section V we end up with a discussion.

II. APPROACH

In this section the optimization methodology and the un-
derlying model are explained. Furthermore, the simulated use
cases are introduced. The developed methodology to exploit
the domestic optimization potential consists of three steps.
These steps are explained in the following paragraphs, a
detailed description can be found in [6].

In the first step, a system located at the consumers (local
controller) predicts the production and consumption pattern for
all appliances for the upcoming day. For example, in a normal
household multiple appliances like a TV, washing machine,
central heating are present. For each appliance, based on the
historical usage pattern of the residents and external factors
like the weather, a predicted energy profile is generated. Based
on the expected energy profile and the characteristics of the
devices the scheduling freedom and optimization potentials
are determined. These potentials are aggregated by the local
controller and sent to a global controller. The global controller
is structured as a hierarchical tree for scalability and to reduce
communication. In each node of the tree the received profiles
are aggregated and sent upwards in the tree until the root node.

In the second step, these optimization potentials can be used
by a central planner to exploit the potential to reach a global
objective. The root node determines steering signals based
on the received information and the objective. These steering
signals are distributed via the tree structure, whereby each
node may adjust the steering signals. Adjusted profiles are
determined in the houses, based on the (new) steering signals
and the predictions. These new profiles are again sent upwards.
In this iterative way a near-optimal solution can be found with
a reasonable computational time. Example objectives are peak
shaving or compensating the fluctuation of the production of
renewable sources like wind-parks. The result of the second
step is a plan for each household for the upcoming day and
an overall production/consumption profile.

In the final step a realtime control algorithm decides at
which times appliances are switched on/off, when and how
much energy flows from or to the buffers and when and which
generators are switched on. This realtime control algorithm
uses the steering signals from the global plan as input, but
preserves the comfort of the residents in conflict situations.
The steering signals from the global controller can be based
on the planning as described before, but can also be based
on a realtime algorithm on a global level. In the latter case,
the local controllers send status information to the global
controller. The global controller determines steering signals
based on the status information and optionally on predictions
of the consumption/production. The local controller can also
run autonomously, for example when the connection with the
global controller is lost.

The global controller uses predictions of the consump-
tion/production patterns. For the iterative planning algorithm,
predictions of individual patterns is required. For the realtime
global control algorithm on total pattern might be sufficient.
The actual consumption/production patterns often deviate from
the predicted patterns, the optimization algorithms should be
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Fig. 1. Model of the house

capable of dealing with these prediction errors. Short term pre-
dictions are often more accurate than long term predictions, as
well as predictions of the total pattern are often more accurate
than predictions of individual patterns. However, the short term
patterns and the pattern of the total consumption/production
contain less information and less detailed plans can be made.

To analyze the energy-streams and optimization potential,
a general model of the energy situation in a domestic envi-
ronment has been set up. The basis of this model is a house
with appliances. Since the behavior of individual devices is
optimized, the detail level of the model is on a device level.
Houses contain multiple devices and exchange energy with
the environment (e.g. gas import, electricity import/export).
Multiple houses can be combined in a grid to analyze their
overall behavior. Based on this model, a simulator is built
to be able to quickly simulate different scenarios, house
configurations and device parameters [4]. An example of a
modelled house is shown in Figure 1.

Multiple types of energy can flow in the house (e.g. gas,
electricity, heat). These types of energy are modelled as
streams transporting one type of energy. These energy-types
are converted, buffered and consumed by devices. Further-
more, energy-types can be exchanged with the environment,
which is modelled by exchanging devices. Every device can
have certain energy-streams flowing in and certain energy-
streams flowing out, e.g. a microCHP has a gas stream in
and an electricity and a heat stream out.

Energy flows between devices, i.e. the energy-streams of the
devices are connected with each other. Sometimes the energy
flows directly from one device to one other device (e.g. heat
from the boiler to the central heating) while in other cases
energy can flow from and to multiple devices (e.g. electricity).
Therefore, pools are introduced. Energy-streams of the devices
are connected to a pool. One or more energy-streams can flow
into the same pool and one ore more energy-streams can flow
out of the same pool.

Since a discrete simulation is used, the simulation horizon
is discretisized resulting in a set of consecutive time intervals.
Every time interval the pools in the house need to be in
balance, i.e. as much energy must flow into the pool as flows



out. A detailed description of the model and the simulator can
be found in [4].

The balance in the pools can be reached, both in the
simulation as in real-world scenarios, by using the flexibility of
devices: some devices can vary the amount of energy flowing
in and/or out. For example, a boiler can be switched on or
off, the amount of electricity imported from the grid can
vary, a certain amount of energy can be stored or supplied
by a buffering device and some consuming devices can be
shifted in time. The decisions influence the energy efficiency,
electricity import profile, etc. and therefore some decisions are
more desirable than others. The goal of the local controller is
to make good decisions given a certain objective (e.g. peak
shaving or following a global objective). The local controller
can work independently or cooperating in the global three step
methodology. The steering signals from the global controller
are incorporated as energy import/export prices. When a local
optimization is used, the objective is also incorporated using
the energy import/export prices. The control algorithm used
for this model is based on the control algorithm described in
[7] and is the third step of the methodology.

This control methodology is implemented on a small
embedded PC to verify whether it is possible to run the
methodology on an energy-efficient device. After all, the
additional hardware required for optimization should consume
less energy than is saved. Preferably, the complete methodol-
ogy should eventually be implemented on a device already
available, for example the smart energy meter.

Two large scale use cases are simulated. The first use case
concerns the behavior of a microCHP device in 200 houses and
the second use case concerns charging 100 electrical cars. The
goal of these simulations is on the one hand to verify different
parameters of the optimization methodology and on the other
hand to investigate how much potential can be exploited. The
studied parameters of the optimization methodology are:

• level of optimization - global or local optimization,
planning or realtime optimization

• individual steering signals or one shared steering signal
• the influence of prediction errors

The potential that should be exploited in the first use case
is the ability to shift electricity production in time to reduce
imbalance, for example caused by wind turbines. In the
second use case the total required charge power should be
flattened over the complete night instead of a large peak when
everybody arrives at home at the end of the day.

III. LOCAL NODE

The goal of the three step methodology is to increase the
overall energy efficiency. As a consequence, the introduction
of a control system with distributed control should save more
energy (or increase the efficiency) than requires for itself.
Therefore, a proof of concept distributed control system is
designed which can be placed in buildings. This node can
communicate with all (controllable) appliances and the global
controller. Furthermore, it runs the local control software. In
other words, the node is responsible for the energy profile
predictions, its corresponding optimization potential and the
real time control.

Power consumption of the node, including the control
hardware of the appliances, should be kept low. For our node,
a E-Box 3300 using only 5 W is used in combination with
the PlugWise measuring and switching hardware, using up
to a 9 W in total. Although the system is low-power, it still
has enough computational power to run our algorithms. Our
predictions algorithms require between 4 up to roughly 7000
millisecond to run. Concretely, a complete planning process
can be executed within a couple of minutes. This system
consists of off-the-shelf components, so the power usage could
be reduced even further.

Since this system is switched on continuously, the minimal
saving of the system must be 79 kWh per year. These savings
can be obtained using different kind of techniques. First,
user awareness of their energy consumption already leads
to a reduction of energy usage. Due to the connectivity
possibilities of the node, constant information about the elec-
tricity consumption can be displayed on a TV, LCD display
or be accessed via the web/smart phones etc. Tests in the
Netherlands show that energy aware households can save up to
200 kWh [8]. Furthermore, since the electricity consumption is
analyzed by the node, energy wasted by appliances in stand-by
mode can be reduced by switching them off when people are
not at home. A typical Dutch household consumes 400 kWh
on stand-by appliances, of which 50% can be saved by really
switching of the appliances.

Besides the power savings, using the control box an im-
proved energy profile can be shaped which can be supplied
more efficiently, leading to a reduced CO2 emission while
generating the required electricity. About half of a household’s
electricity demand is dedicated to controllable load (fridges,
heaters, washing machines etc) [9], which could be scheduled
(within certain limits). Thus although no electricity is saved,
less CO2 may be required to generate the same amount of
electricity if the household can be controlled.

Thus although adding a smart energy-management node will
require some extra energy, more energy can be saved with the
system. Furthermore, it allows a large part of the whole energy
consumption to be generated more efficiently. On top of the
environmental benefits, more comfort can be offered to the
residents.

IV. SIMULATIONS

The two simulated uses cases are large scale simulations.
Large scale simulations are more realistic since prediction
errors, peaks, etc. may level out in a large group. We chose
for a group of 200 houses since this is the maximum number
behind one lowest-level-transformer (220V) in the Netherlands
The 100 electrical cars is based on a penetration level of 50%.
Each use case has a certain goal, which we want to verify (e.g.
the influence of prediction errors). Next, each use cases has a
certain optimization objective, the optimization methodology
works towards an objective (e.g. peak shaving). The use
cases are simulated with different levels of optimization and
with and without prediction errors. Since the simulations are
discrete, the simulation horizon is divided in time intervals.

The electricity grid must always be in balance, i.e. as much
generation as consumption. Therefore, all electricity produc-



tion and consumption is planned or predicted on beforehand.
The grid operator makes sure that production and consumption
are equal at all times. A deviation from this plan/prediction
causes an imbalance and penalties for the one causing the
imbalance. For example, the amount of required charge power
for the electrical cars is predicted and a power plant generates
the predicted amount of electricity. A deviation from the
predicted pattern must be solved by the power plant generating
more or less electricity than planned. The microCHP devices
in the houses are in first instance used to supply the heat
demand. Therefore, the electricity production is limited by the
heat demand and the size of the heat buffer (a part of the heat
can be produced before it is consumed). Also these electricity
production patterns are used in the balancing process of the
grid operator so the microCHPs should generate electricity on
the time they predicted.

The first use case concerns 200 houses with a microCHP
device producing heat and electricity simultaneously. The
optimization objective of the first use case is twofold. On
the one hand, a group of houses is planned to produce a
more or less stable (flat) electricity output for a complete day,
which is to be followed by the realtime control mentioned
before. Next to this, part of the scheduling freedom in the
planning process is reserved for the opportunity to balance
unpredictable mismatches in the electricity grid. In this use
case individual steering signals are used (one per house) and
only a global level of optimization since the imbalance is on
a global level. The goal of the simulation is to investigate the
ability to reduce the overall imbalance and the influence of
prediction errors. The time interval length in this use case is
six minutes and the simulation horizon 24 hours.

The second use case concerns charging 100 electrical cars
when they arrive at home in the afternoon/evening. The
optimization objective is to flatten the required charge power
pattern. Without management all cars would start charging
when they arrive at home. The goal is to compare different
levels of optimization and to investigate the ability to flatten
the overall charge pattern, also with prediction errors. One
shared steering signal is used with the global optimization, an
electricity import price. The time interval length is five minutes
and the simulation horizon is 13 hours (5pm to 6am).

Comparing the results of our methodology with other
methodologies is hard since different scenarios and use cases
are used to verify them. Details of the tests are often not given
so it is not possible to use the tests for another methodology.
In [10] microCHPs are also used for compensating imbalance
(caused by wind turbines). But all generation capacity is used
as balancing power without taking into account that the total
electricity generation is fixed and only can be shifted in time
(see description below). Under these assumptions, a reduction
of imbalance power up to 73% is reached.

A. Balancing power by microCHP

The first use case consists of a group of 200 houses, which
is regarded as a local unit behind the lowest transformer
level in the electricity grid. Since this group of houses is
geographically located around the same place, we assume a
high level of similarity between the characteristics of these

houses. For this reason the microCHP and heat buffer that
are used in each house have the same parameter settings. The
heat demand in the houses differs per house; however, the
total demand is similar (the maximum and minimum total
heat demands are 63064 Wh and 43544 Wh respectively). In
all cases the heat demand always has to be fulfilled, meaning
that the limits cannot be violated.

The microCHP that is used produces an electricity output
of 1 kW, with a corresponding heat output of 8 kW. It does
not immediately produce these amounts; a startup period of 12
minutes is modelled, during which the production of heat and
electricity linearly increase from 0 to their respective maximal
values. After the microCHP is switched off, the production
linearly decreases to 0 in a period of 6 minutes. The heat buffer
capacity is 10 kWh; in the planning additional boundaries
of minimally 500 Wh and maximally 9500 Wh are used to
reserve balancing power. Initial buffer levels vary between 1
and 9 kWh, according to the following (in kWh):

i n i t i a l L e v e l = (# house %10) ;
i f (# house%10<5)

i n i t i a l L e v e l ++;

The heat demand is generated as in Algorithm 1 in [11], using
s = 0, w = 4 and Iseason = Iwinter for houses 0 - 99 and
s = 1, w = 4 and Iseason = Iwinter for houses 100 - 199,
resulting in heat demand profiles with two peaks (one around
7-10 am and one around 6-9 pm).

As mentioned before, a more or less stable production
planning is required for the group of houses. A lower bound
is set to 32 kW and an upper bound to 82 kW. These bounds
are used to penalize under- and overproduction. A local search
method based on the iterative use of a Dynamic Programming
method for single houses [12] is used to find an hourly
planning that minimizes the penalties incurred from exceeding
these bounds. The goal for the realtime control is to follow the
planning and utilize the scheduling freedom in this planning.

As explained above, imbalance is a deviation from the
predicted consumption/generation pattern. Since the total elec-
tricity production of a microCHP is fixed (all heat demand
must be supplied), the predicted production pattern of the
houses should be known and published on beforehand. Next,
an imbalance pattern is added, emulating imbalance caused
by prediction errors in the production of wind turbines. This
imbalance pattern is used to verify how much imbalance can
be compensated. No extra or less electricity can be generated
by the houses (heat demand defines the amount of generation),
the generation can only be shifted in time. Therefore, the
sum of the imbalance pattern is set to zero. The imbalance
pattern is generated randomly between +20 kW and -20 kW
and normalized so the sum is zero (as explained earlier).
The eventual imbalance is defined as the deviation from the
predicted generation pattern:

f o r ( i n t i =0 ; i <# t i m e I n t e r v a l s S i m u l a t e d ; i ++)
i m b a l a n c e += ( p l a n n e d P r o d [ i ] − a c t u a l P r o d [ i ] +

i n t r o d u c e d I m b a l a n c e [ i ] ) ˆ 2 ;

For the realtime global optimization all microCHPs send
their status to the global controller. The global controller
selects, based on the imbalance at the moment, a number of



TABLE I
RESULTS USE CASE 1: TOTAL IMBALANCE (IN KW2)

Scenario

Prediction error No imbalance Imbalance Imbalance
in heat consumption introduced no optimization optimization

No 1289 4075 2516
Yes 4004 5975 4833

microCHPs to switch on/off. The individual steering signal of
the selected microCHP devices are changed.

Six different scenarios are simulated:
• No imbalance and no prediction errors - determine the

imbalance caused by simplifications in the models used
for planning

• Imbalance, no imbalance compensation and no prediction
errors - determine the initial imbalance

• Imbalance, imbalance compensation and no prediction
errors - determine imbalance reduction potential

• No imbalance and prediction errors
• Imbalance, no imbalance compensation and prediction

errors
• Imbalance, imbalance compensation and prediction errors
1) Results: All simulation results can be found in Table

I, the planning and actual production of the first and third
scenario are given in Figure 2. As can be seen in the table,
the initial case (no imbalance) already has an imbalance
of 1289 kW2. After adding the imbalance pattern (an extra
2689 kW2) the total imbalance is 4075 kW2. The imbalance
pattern is given in Figure 2. In the third, optimizing scenario
the imbalance is 2516 kW2, a reduction of 38% compared
with the second scenario.

When a prediction error is introduced the initial imbalance
increases significantly (4004 kW2). The local and global
controller do not react on prediction errors, they try to reach
the predicted production pattern anyhow (per individual mi-
croCHP device due to the individual steering signals). The
imbalance pattern increases the imbalance to 5975 kW2,
optimization decreases it to 4833 kW2 (19%).

B. Charging electrical cars
All cars have the same charge current (1.5 kW) but the

required charging time differs between one and four hours
(based on current available electrical cars). The charge time
increases from one hour for the first car to four hours for the
last car with a total charge time of 261 hours (391 kWh):
i f (# ca r >=90)

c h a r g e I n t e r v a l s = 4 8 ;
e l s e

c h a r g e I n t e r v a l s = 12+2∗(# c a r / 5 ) ;
i f (# c a r %2==1) )

c h a r g e I n t e r v a l s ++;

The cars arrive at home between 5pm and 8pm and they
must be charged at 6am the next morning. The charge time
depends on the number of the car, so the arrival time should
be randomly distributed. To randomize the arrival times, the
pseudo-random development of the coefficients of π are used
(so the use case can be reproduced):
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Fig. 2. Use case one: planning and resulting production patterns

a r r i v a l T i m e = 204 + p i Co e f [# c a r ]∗4

With this information the use case (arrival time and charge
time) can be generated. Since the goal is to reduce the peaks,
the results are evaluated based on the average/peak ratio (load
factor, higher is better) of the total charge current (the highest
peak divided by the average) and the imbalance power. The
imbalance power is in this case defined as the deviation from
the average (391 kWh/13 hours ≈ 30 kW, 20 cars charging):

f o r ( i n t i =0 ; i <# t i m e I n t e r v a l s S i m u l a t e d ; i ++)
i m b a l a n c e += ( E l e c t r i c i t y D e l i v e r e d [ i ] − 3 0 . 0 0 0 ) ˆ 2 ;

This use case is simulated with four different levels of opti-
mization. The simulated optimization levels are:

• no optimization - cars start charging when they arrive at
home,

• local realtime optimization - based on the status (re-
quired charge time and time left until 6am) the car-
chargers individually decide when they charge,

• global realtime optimization - every time interval all
cars communicate their status to a global controller, this
global controller distributes a steering signal based on the
status and a prediction of the total required charge power,

• planning - using the iterative approach and predictions
of the arrival and charge time a near-optimal planning is
deducted (based on one shared steering signal per time
interval). Both perfect predictions and prediction errors
are simulated.

1) Results: The results of the simulations are shown in
Figure 3 and Table II and discussed in more details in the
following paragraphs. When no optimization is used, all cars
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RESULTS USE CASE 2
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imbalance 223 364 29 2
(kW2.103)
load factor 0.27 0.20 0.42 0.84

Global realtime optimization
(predicted average number of cars charging)

15 16 17 18 19 20 21 22

imbalance 12 10 7 7 7 11 12 19
(kW2.103)
load factor 0.59 0.59 0.61 0.61 0.65 0.65 0.65 0.63

start charging the moment they arrive at home. This results in
a peak in the begin.

When a local controller is used, no steering signals from the
global controller are incorporated in the decision. The decision
of the local controller whether to shift charging in time or not,
is based on the status of the charger (required charge time
left and the total time left). This results in an inferior charge
pattern (see Figure 3(b)). The states converge for all chargers
since they all use the same decision parameters resulting in
very high peaks when all cars decide to charge at the same
moment. However, when a random factor is added to the cost
function the results are much better. Due to the large number
of cars the randomization results in an uniform distribution
(since the random function is uniform distributed).

The global realtime control algorithm determines every time
interval a steering signal. Based on a prediction of the total
required charge power the average charge power per interval
is determined (one time, at the begin of the optimization
period). Every time interval, all local controllers send their
status to the global controller. Based on this information and
the predicted average charge power the steering signal can be
determined, i.e. determine a signal so that 20 cars will charge.
The status of all chargers are ordered and then the steering
signal is adjusted to the 20th position in the list. Using this
approach, at least 20 cars will charge since the status of at
least 20 cars are such that they react. However, more than 20
cars can react on the steering signal, e.g. when the status of
position 21 in the ordered list is equal to the status of position
20. Furthermore, the prediction of the total required charging
power can be wrong. Therefore, a predicted number of cars
charging between 15 and 22 are simulated. The results of this
simulations are given in Table II. As can be seen, a too low
prediction of the predicted charge power results in a better
performance than a too high prediction (due to the fact that
more than the desired number of charger can react on the
steering signal).

The iterative planning approach has two important param-
eters: the number of iterations and how much the steering
are adjusted per iteration. To find an optimal schedule, first
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Fig. 3. Use case 2: total charge power

the number of iterations is set to 80 and the steering signal
adjustment to 1. This results in an optimum schedule (using
one steering signal) with an imbalance power of 2000 kW2.
However, 80 iterations are not realistic due to the exhaustive
communication this requires. A reasonable tradeoff between
quality of the schedule and communication costs is 20 it-
erations and an adjustment of 2, resulting in an imbalance
of 4000 kW2. On top of this schedule, a prediction error is
introduced. The number of charge intervals is calculated using
the above given function, this number is used as prediction and
during simulation a variation is added to this number. For this
variation the pseudo-random development of the coefficients
of π is again used:

c o r r e c t T o t a l U s a g e = 5 ;
a m o u n t O f V a r i a t i o n = 0 . 2 ;
v a r i a t i o n = ( p i Co e f [# c a r +6] − c o r r e c t T o t a l U s a g e ) ∗

a m o u n t O f V a r i a t i o n ;

The first 6 coefficients are not used to prevent a relation
between starting time and variation (6 is arbitrary chosen,
multiple values are simulated, all with similar results). The pa-
rameter correctTotalUsage defines whether the total charge
power is equal (only variation), lower or higher. Three different
values for the parameter are simulated: 5 (equal usage), 2
(more charge power) and 8 (less charge power). The parameter
amountOfV ariation defines the amount of variation. The
results of these simulation are given in Figure 4. When only
variation is added while the total charge power is equal, the
planning can be followed quite well and only a little extra
imbalance is introduced. The large number of houses levels
out the variation, due to the uniform distributed distribution.
The shared steering signal and the same cost function for every
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Fig. 4. Resulting charge power planning and prediction errors

chargers result in houses with extra charge time react when
houses with less charge power does not react. When the total
charge power also deviates, the imbalance power increases
significantly. Just as with the realtime global control, when
more charge power is required than predicted the errors are
larger than when less charge power is required.

V. DISCUSSION

The implementation of the proof-of-concept local controller
on a embedded PC shows that it is possible to run the
developed algorithms on such rather simple systems. The
energy usage of such a system can already be compensated
by the electricity usage reduction caused by the awareness
of residents. More energy reduction can be reached due
to increasing efficiency of power plants and enabling the
introduction of renewable sources, but how much reduction
is very hard to predict and calculate.

The first use case shows that it is possible to decrease the
imbalance up to almost 40% by only shifting the predicted
electricity generation in time. Generators with a complete
freedom of runtime (e.g. a diesel generator) or a battery can
probably decrease the imbalance even more. The second use
case shows that it is possible to flatten the consumption pattern
of a large group of electrical cars, the load factor increased
from 0.27 to 0.84 (1 is the maximum, higher is better).
Local optimization gives very bad results, due to similarities
between the chargers and situations the optimization functions
converge resulting in very high peaks. Adding randomization
to this local optimization increases the results significantly
(better than no optimization), but this is unpredictable and
uncontrollable. A realtime global control or a global planning
gives the best results but require much more communication.

One steering signal seems to perform better when prediction
errors are introduced. The large number of houses levels
out the prediction errors: a house with a higher usage than
predicted reacts instead of a house with a lower usage than
predicted. On the contrary, when individual steering signals
are used every house tries to reach its individual predicted
pattern resulting in much higher deviations from the pattern.
In this case a realtime algorithm to compensate for prediction
errors is required, preferable on a global level so houses can
compensate for each other. However, with individual steering
signals a more detailed pattern can be reached since multiple
houses can react on one shared signal, as can be seen on the

imbalance in the car charge scenario without prediction errors.
Furthermore, a realtime global controller can react better on

prediction errors than a planning. However, it requires much
more communication and it can only be used in simple cases
(e.g. charging batteries) since no (predicted) information of
individual houses is available, which is required for e.g. the
microCHP planning. The best solution seems to be a combi-
nation of planning and global realtime optimization, but this
requires a lot of communication. Probably the best solution is
planning and re-planning when too much deviation from the
planning is detected, using new, short-term predictions. This
is topic of current research.

Summarizing, it is possible to implement a local controller
that consumes less energy than it saves. Furthermore, simula-
tions show that it is possible to exploit potential and optimize
behavior. A global level of optimization is required and it
seems better to use one shared steering signal since prediction
errors level out for a large group.
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