
On-Line Dependability Enhancement of Multiprocessor
SoCs by Resource Management

T.D. Ter Braak 1, S.T. Burgess 2, H. Hurskainen 2, H.G. Kerkhoff 1, B. Vermeulen 3, X. Zhang 1
1 University of Twente, CTIT,

Enschede, the Netherlands

 2 Tampere University of Technology
 Tampere, Finland

3 NXP Semiconductors,
Eindhoven, the Netherlands

Abstract—

This paper describes a new approach towards dependable
design of homogeneous multi-processor SoCs in an example
satellite-navigation application. First, the NoC dependability is
functionally verified via embedded software. Then the Xentium
processor tiles are periodically verified via on-line self-testing
techniques, by using a new IIP Dependability Manager. Based
on the Dependability Manager results, faulty tiles are
electronically excluded and replaced by fault-free spare tiles
via on-line resource management. This integrated approach
enables fast electronic fault detection/diagnosis and repair, and
hence a high system availability. The dependability application
runs in parallel with the actual application, resulting in a very
dependable system. All parts have been verified by simulation.

I. INTRODUCTION
The advances in digital processors are often related to

many-cores processors1, using more (dual, quad etc.) than
one processor intellectual property (IP) blocks in a processor
system-on-chip (SoC). In order to cope with the huge data
communication requirements between these cores, the cores
are often interconnected by a Network-on-Chip (NoC). If the
cores are identical, they are often referred to as ‘tiles’. In the
case of many embedded processors, very aggressive
nanometer CMOS technology is required, which in turn has
proven to be less reliable than more matured technologies
[1].

On the other hand, these highly complex SoCs are
increasingly used in safety-critical applications, like in the
automotive and medical arena. This demands ultra
dependable processor SoCs [2].

A. A dependable processing platform
Embedded systems tend to become more complex, and

have to interact with an unpredictable environment in a

1 This research is conducted within the FP7 Cutting edge
Reconfigurable ICs for Stream Processing (CRISP) project
(ICT-215881) supported by the European commission.

dynamic fashion [3]. Applications, like e.g. Global
Navigation Satellite Systems (GNNS), thus require a high
degree of flexibility from the underlying processing
platform. Such a platform is developed within the CRISP
project [4]. Figure 1 shows a Multi-Processor SoC (MPSoC),
internally in our project referred to as Reconfigurable Fabric
Device (RFD), consisting of nine reconfigurable processing
tiles, each being a Xentium processor core [5] and its
associated memories, interconnected by a high performance
NoC. The Xentium is a highly reconfigurable, power
efficient, pipelined streaming-data processor core running at
200MHz [6]. Multiple of these MPSoCs can be connected to
a General Purpose Device (GPD). In our case an ARM926-
based SoC has been used. The GPD controls and configures
the individual tiles.

Figure 1 The MPSoC hardware platform

Efficient resource management is required to allow
applications to benefit from the processing capabilities
provided by the platform. The available resources should be
allocated to the active applications based on their

computational needs. The resources should be partitioned in
a way that should shield applications from interference
caused by shared resources [7], but should also protect the
applications from hardware failures in the platform. One
obtains a more dependable processing platform if some
resources are allowed to fail.

One approach to accomplish this goal is the incorporation
of a dedicated Dependability Manager (DM) because of the
many tasks to be performed. As the DM is not related to any
functional task of the SoC, it is referred to as an
Infrastructural IP (IIP). This type of integration allows for a
higher degree of dependability compared to a software-only
or manual approach.

B. The attributes of dependability
Dependability is the extent to which a system can be

relied upon to perform its intended functions under defined
operational and environmental conditions at a given instant
of time or given interval [8]. Dependability is more than just
reliability. Without treating dependability in depth, important
attributes in our case are:

1) Reliability
Reliability of a system can be specified as a number after

a certain life time, e.g. 0.9875 after 20 years; this indicates
that 1.25 percent of the systems are expected to fail after 20
years.

2) Maintainability
In the case of an embedded IP block in an SoC,

maintainability (and potential) repair in the classical sense is
still not feasible. However it is possible in the sense that
faults in an IP block can be detected on-chip, potentially be
internally compensated, or if not feasible, the IP block could
be isolated / bypassed and its function taken over by similar
internal resources via electronic rerouting.

3) (Un)availability
Unavailability can be indicated as an amount of time (s)

in a year or after a fault event; it is the time over lifetime
during which the system is being repaired (and hence
unavailable). Because of the electronic nature of this process
in our approach, the unavailability can be very low, i.e.
within milliseconds.

In the ideal case, the reliability of a fully dependable
system is 1 (100%) during its specified lifetime (e.g. 20
years), and is never unavailable (0 s).

In Section II, state-of-the-art material on the concepts
used to build the platform is provided. We illustrate the use
of the resource manager described in Section III with the
GNSS application from Section IV. The dependability test
applications from Section V and VI are used to detect faulty
resources in the platform. These concepts are illustrated with
some experiments in Section VII.

Finally, conclusions are provided.

II. STATE-OF-THE-ART

A. Network-on-Chip
NoC is proving to be an attractive approach to MPSoC

implementation on account of its inherent high bandwidth
performance, versatility, and scalability, to name just a few
of its merits [3]. This communication-centric paradigm has
consequently created an urgent demand for new
methodologies that focus on the testing of the network itself.
Accordingly, there has been an increasing amount of
attention being given to developing methods for the detection
of faults in the NoC infrastructure which includes both
routers [9] and their interconnecting links [10].

However, practical fault mitigating techniques that seek
to exploit the use of spare NoC resources through run-time
application mapping require a form of testing that not only
can discover the presence but also the location of faults. The
diagnosis of links has been investigated in the form of on-
line testing [11], [12]. In reference [13], a non-scan based
method for locating faulty links inside NoC switches is
presented. However, the disadvantage of each of these, as
well as most other proposals that we are aware of, is the fact
that they either require design-for-test (DfT) structures or are
only effective for limited fault cases, or assume a regular
topology (e.g. 2D mesh). This makes them not ideally suited
to handle the realistic dependability scenarios and/or for
implementation within an arbitrary NoC system.

B. Dependability of IPs
Dependability of large scale MPSoCs is becoming a

critical issue especially when they are used in mission-
critical applications. Previous research studied methods to
enhance the dependability of such an MPSoC. Ideas such as
the Know-Good-Tile concept [14] and majority-voting
among processing tiles [15] have been proposed to
investigate the correctness of an MPSoC given that only
identical processing tiles are used.

These methods rely on an infrastructural IP (IIP) [5] that
is designed and integrated into the MPSoC to perform a
periodic structural scan-based test on the processing tiles.
Since all the tiles in the MPSoC are identical, the same test
responses are expected from all tiles under test if they are
fault-free. If at least three tiles are tested in parallel, one can
identify a faulty tile by differences in its test responses from
the other ones (assuming that only one tile becomes faulty at
a time). Each tile is wrapped in a dependability wrapper that
allows using a tile either in functional mode, or in test mode.

The multiple wrapped, processing tiles in the MPSoC are
interconnected by a packaged-switched NoC. This NoC is
also reused as a Test Access Mechanism (TAM) [16] to
transport test stimuli and test responses when the processing
tiles are being tested at application run-time. Since the total
bandwidth of the NoC is shared between the application data
and the dependability test data, dynamically pausing and
resuming of the scan-based test is used to ensure sufficient
NoC bandwidth is available for the running applications.

C. On-line resource management
Resource management for real-time embedded

applications is conventionally only performed at design-time,
as in [17], [18]. Hansson et al. [7] build composable
platforms using virtual platforms to reason about
applications independently. The flexibility of the application
at run-time then depends on what configurations have been
prepared beforehand. In this approach, it is difficult to deal
with scenarios where many applications co-exist, or when
faulty resources must be considered. Although much effort
may be spent to explore the many possible configurations
and trade-offs, some inherent limitations can only be
overcome by doing online resource management.

When applications can be started and stopped by
externally triggered events, the resource management
problem is a non-clairvoyant scheduling problem, for which
no optimal solutions can be guaranteed [19]. Therefore, most
online resource management approaches use heuristics to
solve this complex problem [20], [21]. In reference [19], the
heuristics are explained used to build the resource manager
described in this paper.

Synchronous Data Flow (SDF) is used to model and
reason about applications; this, in order to provide quality of
service guarantees. Many performance analysis techniques
exist for SDF [22], [23].

III. ON-LINE RESOURCE MANAGEMENT
If a system is capable of monitoring the dependability of

its components, proactive measures can be taken to enhance
the dependability of the entire system. Conventional
embedded systems may have to be decommissioned when
critical components become faulty. The main reason for this
failure is not only the lack of redundancy in resources, but
also the inflexibility in controlling the system; the mapping
of applications to hardware is often still done at design-time
and can not be changed while the system is operational.
Therefore, online resource management is required to benefit
from dependability features built into high demanding
systems. In this section, it is described how dependability
services may interact with an online resource manager to
provide user applications with fault-free resources. The
predictable architecture of the CRISP project allows the
resource manager to provide QoS guarantees to the
applications.

A. Centralized resource management
In demanding systems, single points of failure should be

avoided as much as possible. In most systems however, a
single access point is used to start and stop applications,
either initiated by the system itself or by a physical user. The
platform contains (at least) one GPD, which is running a
Linux kernel controlling the entire platform. The resource
manager maintains a consistent platform state in shared
memory. A larger platform may introduce several of such
control points, and a distributed coherence protocol [24] may
remove this single point of failure.

B. Everything is an application
The resource manager developed in the CRISP project

works on the granularity of applications, while being
unaware of the functionality of the application. Applications
may interact with the resource manager through a limited set
of function calls. Besides the obvious capabilities of
requesting and releasing sets of resources, applications may
provide information about the status of a resource. Using the
same approach, applications may thus perform calculations
on their acquired resources, or test those resources for
correctness.

C. Application structure
An application is described as a task graph. The amount

and type of resources required for operation is specified per
task. One of these tasks is the entry point for the application;
this task is started on the GPD at start-up of the application.
It interacts with the resource manager to request the required
resources for the other tasks in the application.

 Applications thus explicitly have to request a set of
resources, possibly containing memory sizes, processor time,
I/O ports and interconnect facilities. Analogue to the explicit
memory management required in programming languages
such as ‘C’, this request for resources may fail under certain
conditions. If a resource request is rejected, then the
application may revert to a lower QoS level or try again later
in time. The logic to handle a rejection is implemented in the
control task as well. Upon success, the application continues
under normal conditions.

 Once the other tasks are configured and started, the
control task may sleep, monitor the application, or execute
part of the functionality of the application. Afterwards this
task is responsible for stopping the application and releasing
its resources.

Figure 2 The interaction interfaces and control flow in
the resource manager

D. Event-response based interaction
An event-response based interaction between

applications and the resource manager allows for arbitration
over possible multiple, near-simultaneously occurring
events. Events are handled first on their priority, and second
in order of arrival. The type of an event determines its
priority; for example, releasing resources has priority over
allocating new resources. Special applications, such as the
dependability test software, may have a special, configurable
priority that distinguishes them from normal user
applications. This distinction is not required, but it allows for
prioritizing between the intended functionality of the system
and provided services such as the dependability
enhancement.

The interaction flow in the software stack is illustrated in
Figure 2 by three applications; a GNSS application, a NoC
dependability application, and a core test application. For
each application, the internal functionality and concepts are
described first, after which the interaction with the resource
manager is explained.

IV. THE GNSS APPLICATION
Satellite navigation applications of today range from

cheap receivers embedded in mobile phones to expensive
and highly accurate scientific ones. Indeed, there is an
analogy between the scalability of our platform and GNSS
receivers depending on the targeted application.

In the CRISP project, the GNSS application is specified
and designed to support existing GPS (U.S. based
NAVSTAR Global Positioning System) and future Galileo
(European system) signals transmitted in the L1 frequency
band centred at 1.575 GHz. The three main blocks in any
GNSS receiver are identified to be i) a radio front end for
analogue signal processing, ii) a digital baseband processing
part and iii) navigation calculus to determine PVT (position,
velocity and time) from measured pseudo ranges [25]. The
implementation steps towards the CRISP GNSS application
are explained in more details in [26], [27]. Figure 3 shows
the tasks and communication streams of the GNSS
application.

Figure 3 The structure of the GNSS application

The GNSS application is able to solve the PVT of the
receiver if four or more satellites are tracked successfully
[25]. Thus, the receiver application should always (after an
initial acquisition stage) have four or more cores running a
tracking process to enable navigation. If a satellite is lost, no
satellite data is available until the re-acquisition procedure is
again performed and concluded.

A. Dynamic resource allocation
After starting the GNSS application, the navigation task

on the GPD raises an event of type ALLOCATE_RESOURCES
together with a task graph that describes the communication
structure and the required resources for operation. Based on
the event type, the event handler forwards the request to the
mapping and scheduling algorithms after an unpredictable,
but finite delay. While consulting the platform state, a set of
fault-free resources is allocated to the application, such that
the application meets its QoS specification. Through the
platform specific drivers, the configuration layer configures
the newly allocated resources on the platform and starts the
other tasks in the application on their assigned processors.

In the next two paragraphs, the testing of the NoC and
Xentium cores in the MPSoC as used in the GNSS
application will be discussed in detail.

V. THE NOC TESTING APPLICATION
The NoC dependability application is a GPD-hosted

utility for diagnosing faults within the communication fabric.
By using a SW-only approach, the need for specialized DfT
structures within the network has been eliminated. This saves
Silicon area and increases the ease with which the system
may be deployed onto arbitrary platforms.

A. NoC Fault Representation
The domain for NoC testing is understood to be all inter-

router connections (link components) as well as all of the
internal intra-router routing paths (switch components); there
are up to 20 such paths per 5 bi-directional port router used
in our prototype MPSoC platform. We refer to either link or
switch components as path components with the combined
number modelled for our platform being 333.

An arbitrary path through the network can modelled as a
series of interconnected path components, C1 to Cn. The
overall fault status of a path, P(C), may then be expressed as
the logical AND of each constituent path component as
shown by Equation 1, where each C may take on the value of
'1' for good or '0' for faulty.

 P(C) = C1 • C2 • C3 • C4 • • Cn (1)
A faulty path component is assumed to permanently

malfunction by either corrupting the packet payload or
causing the packet itself to be miss-routed and/or dropped.

B. Test Concept
Although there are 2(n-1) possible fault configurations

(where n is the number of components along some arbitrary
route) satisfying the P(C) = 0 condition, the fact is exploited
that there is only a single solution that satisfies P(C) = 1
which occurs if all C = 1. The practical application of this is
that if a packet can be successfully routed over a defined
path it will be known that the specific set of path components
comprising that route are good. The primary task then
becomes one of attempting to successfully route test packets

through each good path component resulting in a diagnosis
rendered on of a faulty until proven good basis.

In the case that the GPD and MPSoC are on separate
dies, the first phase of testing begins by checking the
connectivity between the two devices. This is accomplished
by the GPD injecting one or more packets (as required) into
the MPSoC along a looping path that terminates back at the
GPD as illustrated by route wr0 in Figure 4. The exact route
that these packets follow is based on the principle of a
random self-avoiding walk, which has been constrained by:

• Explicitly defined start and end points
• The physical boundary of the network topology
• A maximum specified number of router hops.

A route so devised provides an effective means for the

discovery of good paths through a network containing
arbitrarily distributed faults. Successful reception by the
GPD of a previously injected packet verifies the link and
enables the testing of the MPSoC communication
infrastructure to proceed.

GPD

Core
rd1

rd2

wr1

wr2

wr0

MPSoC

F NI

R RR

R

R R

R

R

Figure 4 Routing of test packets through the MPSoC

This next testing phase follows a similar approach as
previously employed except that here the test packets are
sent through the network along paths to and from designated
cores in the form of write/read operations. Ports on the
router connected to the core are systematically selected so as
to exercise each core related switch path. Switch paths for all
other input-output combinations (i.e. non-core related) are
exercised indirectly as part of the write/read operations
performed on neighbouring cores. Two example iterations
from the many that are possible for this procedure are also
illustrated in Figure 4. In the first case, the GPD writes data
to the core by way of route wr1 followed by an attempted
read which fails because of a fault along route rd1. During a
subsequent operation data is written to the core by way of
route wr2 which is then successfully read back over route
rd2. This verifies all path components along wr2/rd2 which
is also seen to include certain sections of the previously
unverified rd1.

Upon complete execution of this algorithm, the expected
result is that all good network path components will have
been identified leaving what is left to be deemed the faulty
elements.

A final post processing procedure is performed whereby
the resulting link and switch path based diagnosis result is
transformed into a link-only representation for compatibility
with the real-time mapping resource manager.

VI. THE XENTIUM CORE TESTING APPLICATION
The core testing application is an essential part of the

dependability enhancement approach for the MPSoC. The
application consists of dependability software running on the
GPD and extra hardware, such as the infrastructural IP (DM)
and the dependability wrappers around the Xentium tiles.

The IIP shown in Figure 5 consists of a test pattern
generator (TPG), a test responses evaluator (TRE) and a
finite state machine (FSM). The FSM controls the IIP and
communicates with the dependability software running on
the GPD. Deterministic test patterns for the Xentium tile
(with 32 parallel scan-chains) have been generated at design-
time using a commercially-available ATPG tool [5]. The
TPG in the IIP reproduces these deterministic test patterns by
using a linear-feedback shift register (LFSR) combined with
a reseeding technique. Stuck-at fault coverage of 90% for the
Xentium tile processor can be reached using the scan-based
test of the TPG. It is stressed that this fault coverage is
sufficient for the current dependability test in our prototype
MPSoC. Increased fault coverage in the final version can be
obtained at the cost of an increase in Silicon area for the TPG
and Xentium. A phase-shifter (PS) packs the test stimuli into
32-bit words to suit the 32-bit wide NoC. Each bit of such a
32-bit word fills one scan flip-flop in each of the 32 scan
chains. At this point, the silicon area of the IIP is below 1%
of the total area of the MPSoC.

Figure 5 The core test application environment

The Xentium Tile Wrapper (XTW) can switch between
functional mode and dependability test mode via commands
issued over the NoC. In functional mode, the XTW
transparently delivers the data from the NoC to the
functional inputs of the tile/core, and passes the data from
the functional outputs to the NoC. In dependability test
mode, it delivers the NoC data to the test inputs (scan-chain
inputs and primary inputs) of the tile. A similar operation is
performed at the output of the tile to capture the data from
the scan-chain outputs and primary outputs of the tile, and
deliver this data to the NoC.

The core dependability application on the GPD starts the
test activities. It requests sufficient resources to use the IIP
together with two or three Xentium cores. The resource
manager also allocates and configures the required
communication routes between them. The IIP has no
knowledge of which cores are being tested; this is
completely determined by the communication routes. A
possible test scenario is shown in Figure 6. Writing the
control register in the FSM of the DM starts the test
sequence.

Figure 6 A dependability test scenario with 3 Xentium cores

The IIP will subsequently switch the wrappers of the
chosen Xentium tiles to dependability test mode, preparing
the Xentium tiles for receiving the test stimuli generated by
the TPG of the IIP. The test stimuli are broadcasted via the
NoC to the target Xentium tiles and the test responses are
collected and compared in the TRE of the IIP-DM.

The test sequence is halted as soon as a difference is
detected in the test responses from the Xentium tiles under
test. The Xentium tile that generated a different test response
from the others is identified as the faulty tile. This
information is encoded into a fault status report. This status
report is read by the dependability software in the GPD. The
faulty Xentium tile can then be isolated or removed from the
usable resource table of the resource management software.

If no test-response differences are detected during the
dependability test, the tested tiles are considered fault-free.
They will stay in the usable resource table of the resource
management software. This dependability test process is
repeated until all Xentium tiles are tested. This way, the

faulty tiles, if any, are identified and isolated from the system
ensuring that the remaining processing tiles hardware are
fault-free. Depending on the dependability requirements (i.e.
acceptable mean system down time / unavailability) from the
end user, the dependability test activities can be performed at
a desired frequency.

VII. EXPERIMENTAL RESULTS

A. The NoC testing results
Performance of the NoC test SW was investigated in

conjunction with a C language network model for the
MPSoC platform introduced in Figure 1. A varying number
of randomly inserted path faults (link and switch types) were
configured into the model after which a diagnostic
simulation was performed. Figure 7 shows a representative
set of results in relation to two key performance metrics - the
number of equivalent link faults reported and number of test
packets injected. Each corresponding value for a given fault
level is to be interpreted as an independent iteration.

The utility of the method is manifest in the success with
which the system can diagnose arbitrary multi-fault
configurations. Note the fact that one-to-one correspondence
between inserted and reported faults is generally not
observed and is not of itself indicative of an incorrect
diagnosis but rather a consequence of fault equivalency. As
the number of faults increase from 0 to 10, the required
number of injected test packets grows from a baseline value
of about 1.6k, up to about 3.4k. This increase derives from
the greater effort required to successfully route packets
through an increasingly compromised network.

This “faulty until proven good” approach ensures 100%
fault detection assuming that there exists a network path to or
from every path component and the GPD. However, if
multiple cores are connected to a single router, as with the
Smart Registers and Dependability Manager of our prototype
platform, the switch path that directly connects the two is
found not to satisfy that criterion and is thus not testable.
This means that of the 333 uniquely modelled path
components for our platform, only 331 can in fact be
exercised reducing test coverage to 99.4%.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0

1

2

3

4

Faults Packets

Randomly inserted faults

Li
nk

 f
au

lts
 r

ep
or

te
d

Te
st

 p
ac

ke
ts

 In
je

ct
ed

 (
00

0'
s)

Figure 7 The results of NoC testing procedure

B. The core testing results
In order to verify the core testing application, the

complete MPSoC platform has been designed and
implemented in synthesizable VHDL. A complete simulation
of the test stimuli generation and test response collection is
shown in Figure 8.

After the dependability software in the GPD activates the
dependability test application, the test stimuli data are
generated, packed into multiple 32-bit data flits and multicast
to the three target Xentium tiles via the NoC. The NoC data
flits are disassembled at the network interface of the
Xentium tile and the test stimuli data are loaded into the 32
parallel scan-chains of each tile. When the test responses are
produced, they are collected again via the NoC and
compared by the TRE of the IIP as shown in Figure 8.

Figure 8 The results of core testing procedure

When the comparison is completed and no response
difference is identified, more test stimuli will be generated
from the IIP-TPG until a first difference is detected or the
dependability test finishes.

C. Resource management under hardware failures
Figure 9 again shows the MPSoC, together with an active

GNSS application. The radio used to receive GPS signals is
indicated with the rightmost gray block. The antenna data is
first transported to the GPD on the left, which forwards the
pre-processed satellite data to the Xentium cores. Figure 9
shows an example scenario where a part of the chip is
malfunctioning, indicated in red. The faults are isolated to a
single Xentium core and the NoC router nearby. The GNSS
application is still able to run with eight tracking processes
(shown in purple).

All scenarios of a single fault in either a Xentium
processor core or a network router were generated. For seven
out of the thirty-nine generated faults, the GNSS application
failed to run on the platform. These faults resulted in a
failure of the application, because the faults occurred on the
input or output chain of the chip. Both the GPD and the radio
are single points of failure, together with their connection to
the chip. The NoC within the chip has a high degree of
connectivity and therefore has sufficient redundant

communication resources if part of it fails. The GNSS
application can work with a variable number of Xentium
cores (albeit at least four); failure of one of them still allows
the application to run.

VIII. DISCUSSION AND CONCLUSIONS
In this paper a new approach towards dependable design

of homogeneous MPSoCs has been presented in an example
GNNS application. First, the NoC dependability is
functionally verified via embedded software. Then the
Xentium processor tiles and associated embedded SRAMs
are periodically verified via on-line self-testing techniques,
by using a new IIP Dependability Manager. Faulty tiles are
electronically bypassed and replaced by other Xentium
resources via embedded resource manager software based on
the DM results. This integrated approach enables fast
electronic fault detection/diagnosis and repair, and hence a
high MPSoC availability (unavailability: 10us). The
dependability application runs in parallel with the actual
GNNS application, resulting in a very dependable MPSoC
(reliability: 0.9783, after 15 years). All parts have been
verified by simulation. The MPSoC has been designed in
UMC 90nm technology and will be soon available for
dependability and functional evaluation.

Figure 9 The GNSS application running (8 trackers) with resource

failures in one of the Xentium cores and the attached NoC router

ACKNOWLEDGMENT
The research in this paper has been conducted within the

FP7 Cutting edge Reconfigurable ICs for Stream Processing
(CRISP) project (ICT-215881) supported by the European
commission. The authors want to acknowledge the many
contributions of all the other partners in the CRISP
consortium, being Thales Netherlands, Atmel Automotive
GmbH and Recore Systems.

REFERENCES
[1] Y. Cao, P. Bose, and J. Tschanz, “Reliability challenges in Nano-

CMOS Design”, IEEE Design & Test of Computers, pp. 6-7, 2009.

[2] S. Sakai, M. Goshima, and H. Irie, “Ultra Dependable Processor”,
IEICE Trans. Electronics, vol. E91-c, no. 9, pp. 1386-1393, 2008.

[3] G. Buttazzo, “Research trends in real-time computing for embedded
systems.” SIGBED Rev. 3, pp. 1-10, 2006. doi:
http://doi.acm.org/10.1145/1164050.1164052

[4] http://www.crisp-project.eu
[5] H.G. Kerkhoff and X. Zhang, “Design of an Infrastructural IP

Dependability Manager for a Dependable Reconfigurable Many-Core
Processor,” in Proc. DELTA 2010, HCM City Vietnam, pp. 270-275,
Jan. 2010.

[6] http://www.recoresystems.com
[7] A. Hansson, K. Goossens, M. Bekooij, J. Huisken, “CoMPSoC: A

template for composable and predictable multi-processor system on
chips.” ACM Trans. Design. Autom. Electron. Syst. vol. 14, pp. 1-24,
Jan. 2009.

[8] A. Avizienis, J-C. Laprie, B. Randell and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing”,
IEEE Transactions on Dependable and Secure Computing, vol. 1, no.
1, pp. 11-32, 2004.

[9] F. Gilabert, D. Ludovici, S. Medardoni, D. Bertozzi, L. Benini, G.N.
Gaydadjiev, "Designing Regular Network-on-Chip Topologies under
Technology, Architecture and Software Constraints," Complex,
Intelligent and Software Intensive Systems, 2009. (CISIS '09).
International Conference on , pp.681-687, March 2009.

[10] A.M. Amory, E. Briao, E. Cota, M. Lubaszewski, F.G. Moraes, "A
scalable test strategy for network-on-chip routers," Test Conference,
2005. Proceedings. (ITC 2005). IEEE International , sess. 9, pp.-599,
Nov. 2005.

[11] C. Grecu, P. Pande, A. Ivanov, R. Saleh, "BIST for network-on-chip
interconnect infrastructures," VLSI Test Symposium, (VTS06).
Proceedings. 24th IEEE , sess.6, pp. -35, May 2006.

[12] M. Herve, E. Cota, F.L. Kastensmidt, M. Lubaszewski, "Diagnosis of
interconnect shorts in mesh NoCs," Networks-on-Chip, 2009. (NoCS
2009). 3rd ACM/IEEE International Symposium on, pp. 256-265,
May 2009.

[13] J. Raik, V. Govind, R. Ubar, "Design-for-testability-based external
test and diagnosis of mesh-like network-on-a-chips," Computers &
Digital Techniques, IET , vol.3, no.5, pp. 476-486, September 2009.

[14] H.G. Kerkhoff, O. Kuiken, and X. Zhang, “Increasing SoC
Dependability via Known Good Tile NoC Testing,” IEEE Intern.
Conf. on Dependable Systems and Networks (DSN08), Anchorage
USA, 2008.

[15] X. Zhang and H.G. Kerkhoff, “Design of a Highly Dependable
Beamforming Chip,” in Proc. Euromicro on Digital System Design
(DSD09), pp. 729-735, Aug. 2009.

[16] X. Zhang, H.G. Kerkhoff and B. Vermeulen, “On-Chip Scan-Based
Test Strategy for a Dependable Many-Core Processor Using a NoC as
a Test Access Mechanism,” in Proc. Euromicro on Digital System
Design 2010 (DSD10), Lille, France, 2010 (to appear).

[17] A. D. Pimentel, C. Erbas, and S. Polstra, “A Systematic Approach to
Exploring Embedded System Architectures at Multiple Abstraction
Levels”. IEEE Trans. Comput. 55, 2 (Feb. 2006), pp. 99-112, 2006.
doi: http://dx.doi.org/10.1109/TC.2006.16

[18] C. Lee, S. Kim, and S. Ha, “A Systematic Design Space Exploration
of MPSoC Based on Synchronous Data Flow Specification”. J. Signal
Process. Syst. 58, 2 (Feb. 2010), pp.193-213, 2010.

 doi: http://dx.doi.org/10.1007/s11265-009-0351-6
[19] T.D. ter Braak, P.K.F. Hölzenspies, J. Kuper, J.L. Hurink, and

G.J.M. Smit, “Run-time Spatial Resource Management for Real-Time
Applications on Heterogeneous MPSoCs,” in Proc. Of the Conf. on
Design, Automation and Test in Europe (DATE 2010), Dresden.
pp. 357-362, Mar. 2010. EDAA. ISBN 978-3-9810801-6-2

[20] C. Chou, and R. Marculescu, “User-aware dynamic task allocation in
networks-on-chip”. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE '08), Munich, Germany,
ACM, New York, NY, pp.1232-1237, 2008.

 DOI= http://doi.acm.org/10.1145/1403375.1403675
[21] E. Carvalho, C. Marcon, N. Calazans, and F. Moraes, “Evaluation of

static and dynamic task mapping algorithms in NoC-based MPSoCs”,
Proceedings of the 11th international Conference on System-on-Chip,
Tampere, Finland, J. Nurmi, J. Takala, and O. Vainio, Eds. IEEE
Press, Piscataway, NJ, pp. 87-90, October 2009.

[22] S. Stuijk, T. Basten, M.C. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs”, Proceedings of the 44th Annual Design Automation
Conference (DAC '07) (San Diego, California, June 2007). ACM,
New York, NY, pp. 777-782, 2007.

 doi: http://doi.acm.org/10.1145/1278480.1278674
[23] A. H. Ghamarian , M. C. W. Geilen , S. Stuijk , T. Basten , B. D.

Theelen , M. R. Mousavi , A. J. M. Moonen , M. J. G. Bekooij,
“Throughput Analysis of Synchronous Data Flow Graphs”, Proc. of
the Sixth International Conf. on Application of Concurrency to
System Design, pp. 25-36, June 2006.

[24] O.E. Theel, and B.D. Fleisch, “A Dynamic Coherence Protocol for
Distributed Shared Memory Enforcing High Data Availability at Low
Costs”, IEEE Trans. Parallel Distrib. Syst. 7, 9, pp. 915-930, 1996.
doi:http://dx.doi.org/10.1109/71.536936

[25] M. Braasch and A. J. Van Dierendonck, “GPS Receiver Architectures
and Measurements”, Proceedings of the IEEE, vol. 87, no. 1, pp. 48-
64, Jan. 1999.

[26] H. Hurskainen, J. Raasakka, T. Ahonen, and J. Nurmi, “Multicore
Software-Defined Radio Architecture for GNSS Receiver Signal
Processing, ” EURASIP Journal on Embedded Systems, vol. 2009,
Article ID 543720, 10 pages, 2009. doi:10.1155/2009/543720

[27] J. Raasakka, H. Hurskainen, T. Paakki, and J. Nurmi. ''Modeling
Multi-Core Software GNSS Receiver with Real Time SW Receiver''
in Proceedings of ION GNSS 2009. Savannah, Georgia, 2009.

