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Abstract— 

This paper describes a new approach towards dependable 
design of homogeneous multi-processor SoCs in an example 
satellite-navigation application. First, the NoC dependability is 
functionally verified via embedded software. Then the Xentium 
processor tiles are periodically verified via on-line self-testing 
techniques, by using a new IIP Dependability Manager. Based 
on the Dependability Manager results, faulty tiles are 
electronically excluded and replaced by fault-free spare tiles 
via on-line resource management. This integrated approach 
enables fast electronic fault detection/diagnosis and repair, and 
hence a high system availability. The dependability application 
runs in parallel with the actual application, resulting in a very 
dependable system. All parts have been verified by simulation.  

I. INTRODUCTION  
The advances in digital processors are often related to 

many-cores processors1, using more (dual, quad etc.) than 
one processor intellectual property (IP) blocks in a processor 
system-on-chip (SoC). In order to cope with the huge data 
communication requirements between these cores, the cores 
are often interconnected by a Network-on-Chip (NoC). If the 
cores are identical, they are often referred to as ‘tiles’. In the 
case of many embedded processors, very aggressive 
nanometer CMOS technology is required, which in turn has 
proven to be less reliable than more matured technologies 
[1].  

On the other hand, these highly complex SoCs are 
increasingly used in safety-critical applications, like in the 
automotive and medical arena. This demands ultra 
dependable processor SoCs [2].  

A. A  dependable  processing platform 
Embedded systems tend to become more complex, and 

have to interact with an unpredictable environment in a 

                                                           
1 This research is conducted within the FP7 Cutting edge 
Reconfigurable ICs for Stream Processing (CRISP) project 
(ICT-215881) supported by the European commission. 

dynamic fashion [3]. Applications, like e.g. Global 
Navigation Satellite Systems (GNNS), thus require a high 
degree of flexibility from the underlying processing 
platform. Such a platform is developed within the CRISP 
project [4]. Figure 1 shows a Multi-Processor SoC (MPSoC), 
internally in our project referred to as Reconfigurable Fabric 
Device (RFD), consisting of nine reconfigurable processing 
tiles, each being a Xentium processor core [5] and its 
associated memories, interconnected by a high performance 
NoC. The Xentium is a highly reconfigurable, power 
efficient, pipelined streaming-data processor core running at 
200MHz [6]. Multiple of these MPSoCs can be connected to 
a General Purpose Device (GPD). In our case an ARM926-
based SoC has been used. The GPD controls and configures 
the individual tiles. 

 

Figure 1 The MPSoC hardware platform 

Efficient resource management is required to allow 
applications to benefit from the processing capabilities 
provided by the platform. The available resources should be 
allocated to the active applications based on their 



computational needs. The resources should be partitioned in 
a way that should shield applications from interference 
caused by shared resources [7], but should also protect the 
applications from hardware failures in the platform. One 
obtains a more dependable processing platform if some 
resources are allowed to fail.  

One approach to accomplish this goal is the incorporation 
of a dedicated Dependability Manager (DM) because of the 
many tasks to be performed. As the DM is not related to any 
functional task of the SoC, it is referred to as an 
Infrastructural IP (IIP). This type of integration allows for a 
higher degree of dependability compared to a software-only 
or manual approach. 

B. The attributes of dependability 
Dependability is the extent to which a system can be 

relied upon to perform its intended functions under defined 
operational and environmental conditions at a given instant 
of time or given interval [8].  Dependability is more than just 
reliability. Without treating dependability in depth, important 
attributes in our case are: 

1) Reliability 
Reliability of a system can be specified as a number after 

a certain life time, e.g. 0.9875 after 20 years; this indicates 
that 1.25 percent of the systems are expected to fail after 20 
years.  

2) Maintainability 
In the case of an embedded IP block in an SoC, 

maintainability (and potential) repair in the classical sense is 
still not feasible. However it is possible in the sense that 
faults in an IP block can be detected on-chip, potentially be 
internally compensated, or if not feasible, the IP block could 
be isolated / bypassed and its function taken over by similar 
internal resources via electronic rerouting.  

3) (Un)availability 
Unavailability can be indicated as an amount of time (s) 

in a year or after a fault event; it is the time over lifetime 
during which the system is being repaired (and hence 
unavailable). Because of the electronic nature of this process 
in our approach, the unavailability can be very low, i.e. 
within milliseconds. 

In the ideal case, the reliability of a fully dependable 
system is 1 (100%) during its specified lifetime (e.g. 20 
years), and is never unavailable (0 s). 

 

In Section II,  state-of-the-art material on the concepts 
used to build the platform is provided. We illustrate the use 
of the resource manager described in Section III with the 
GNSS application from Section IV. The dependability test 
applications from Section V and VI are used to detect faulty 
resources in the platform. These concepts are illustrated with 
some experiments in Section VII.  

Finally, conclusions are provided. 

II. STATE-OF-THE-ART 

A. Network-on-Chip 
NoC is proving to be an attractive approach to MPSoC 

implementation on account of its inherent high bandwidth 
performance, versatility, and scalability, to name just a few 
of its merits [3]. This communication-centric paradigm has 
consequently created an urgent demand for new 
methodologies that focus on the testing of the network itself.  
Accordingly, there has been an increasing amount of 
attention being given to developing methods for the detection 
of faults in the NoC infrastructure which includes both 
routers [9] and their interconnecting links [10].  

However, practical fault mitigating techniques that seek 
to exploit the use of spare NoC resources through run-time 
application mapping require a form of testing that not only 
can discover the presence but also the location of faults. The 
diagnosis of links has been investigated in the form of on-
line testing [11], [12].  In reference [13], a non-scan based 
method for locating faulty links inside NoC switches is 
presented.  However, the disadvantage of each of these, as 
well as most other proposals that we are aware of, is the fact 
that they either require design-for-test (DfT) structures or are 
only effective for limited fault cases, or assume a regular 
topology (e.g. 2D mesh).  This makes them not ideally suited 
to handle the realistic dependability scenarios and/or for 
implementation within an arbitrary NoC system. 

B. Dependability of  IPs 
Dependability of large scale MPSoCs is becoming a 

critical issue especially when they are used in mission-
critical applications. Previous research studied methods to 
enhance the dependability of such an MPSoC. Ideas such as 
the Know-Good-Tile concept [14] and majority-voting 
among processing tiles [15] have been proposed to 
investigate the correctness of an MPSoC given that only 
identical processing tiles are used. 

These methods rely on an infrastructural IP (IIP) [5] that 
is designed and integrated into the MPSoC to perform a 
periodic structural scan-based test on the processing tiles. 
Since all the tiles in the MPSoC are identical, the same test 
responses are expected from all tiles under test if they are 
fault-free. If at least three tiles are tested in parallel, one can 
identify a faulty tile by differences in its test responses from 
the other ones (assuming that only one tile becomes faulty at 
a time). Each tile is wrapped in a dependability wrapper that 
allows using a tile either in functional mode, or in test mode. 

The multiple wrapped, processing tiles in the MPSoC are 
interconnected by a packaged-switched NoC. This NoC is 
also reused as a Test Access Mechanism (TAM) [16] to 
transport test stimuli and test responses when the processing 
tiles are being tested at application run-time. Since the total 
bandwidth of the NoC is shared between the application data 
and the dependability test data, dynamically pausing and 
resuming of the scan-based test is used to ensure sufficient 
NoC bandwidth is available for the running applications.  



C. On-line resource management 
Resource management for real-time embedded 

applications is conventionally only performed at design-time, 
as in [17], [18]. Hansson et al. [7] build composable 
platforms using virtual platforms to reason about 
applications independently. The flexibility of the application 
at run-time then depends on what configurations have been 
prepared beforehand. In this approach, it is difficult to deal 
with scenarios where many applications co-exist, or when 
faulty resources must be considered. Although much effort 
may be spent to explore the many possible configurations 
and trade-offs, some inherent limitations can only be 
overcome by doing online resource management. 

When applications can be started and stopped by 
externally triggered events, the resource management 
problem is a non-clairvoyant scheduling problem, for which 
no optimal solutions can be guaranteed [19]. Therefore, most 
online resource management approaches use heuristics to 
solve this complex problem [20], [21]. In reference [19], the 
heuristics are explained used to build the resource manager 
described in this paper. 

Synchronous Data Flow (SDF) is used to model and 
reason about applications; this, in order to provide quality of 
service guarantees. Many performance analysis techniques 
exist for SDF  [22], [23]. 

III. ON-LINE RESOURCE MANAGEMENT 
If a system is capable of monitoring the dependability of 

its components, proactive measures can be taken to enhance 
the dependability of the entire system. Conventional 
embedded systems may have to be decommissioned when 
critical components become faulty. The main reason for this 
failure is not only the lack of redundancy in resources, but 
also the inflexibility in controlling the system; the mapping 
of applications to hardware is often still done at design-time 
and can not be changed while the system is operational. 
Therefore, online resource management is required to benefit 
from dependability features built into high demanding 
systems. In this section, it is described how dependability 
services may interact with an online resource manager to 
provide user applications with fault-free resources. The 
predictable architecture of the CRISP project allows the 
resource manager to provide QoS guarantees to the 
applications. 

A. Centralized resource management 
In demanding systems, single points of failure should be 

avoided as much as possible. In most systems however, a 
single access point is used to start and stop applications, 
either initiated by the system itself or by a physical user. The  
platform contains (at least) one GPD, which is running a 
Linux kernel controlling the entire platform. The resource 
manager maintains a consistent platform state in shared 
memory. A larger platform may introduce several of such 
control points, and a distributed coherence protocol [24] may 
remove this single point of failure. 

B. Everything is an application 
The resource manager developed in the CRISP project 

works on the granularity of applications, while being 
unaware of the functionality of the application. Applications 
may interact with the resource manager through a limited set 
of function calls. Besides the obvious capabilities of 
requesting and releasing sets of resources, applications may 
provide information about the status of a resource. Using the 
same approach, applications may thus perform calculations 
on their acquired resources, or test those resources for 
correctness. 

C. Application structure 
An application is described as a task graph. The amount 

and type of resources required for operation is specified per 
task. One of these tasks is the entry point for the application; 
this task is started on the GPD at start-up of the application. 
It interacts with the resource manager to request the required 
resources for the other tasks in the application. 

 Applications thus explicitly have to request a set of 
resources, possibly containing memory sizes, processor time, 
I/O ports and interconnect facilities. Analogue to the explicit 
memory management required in programming languages 
such as ‘C’, this request for resources may fail under certain 
conditions. If a resource request is rejected, then the 
application may revert to a lower QoS level or try again later 
in time. The logic to handle a rejection is implemented in the 
control task as well. Upon success, the application continues 
under normal conditions. 

 Once the other tasks are configured and started, the 
control task may sleep, monitor the application, or execute 
part of the functionality of the application. Afterwards this 
task is responsible for stopping the application and releasing 
its resources. 

 

Figure 2 The interaction interfaces and control flow in 
the resource manager 



D. Event-response based interaction 
An event-response based interaction between 

applications and the resource manager allows for arbitration 
over possible multiple, near-simultaneously occurring 
events. Events are handled first on their priority, and second 
in order of arrival. The type of an event determines its 
priority; for example, releasing resources has priority over 
allocating new resources. Special applications, such as the 
dependability test software, may have a special, configurable 
priority that distinguishes them from normal user 
applications. This distinction is not required, but it allows for 
prioritizing between the intended functionality of the system 
and provided services such as the dependability 
enhancement. 

The interaction flow in the software stack is illustrated in 
Figure 2 by three applications; a GNSS application, a NoC 
dependability application, and a core test application. For 
each application, the internal functionality and concepts are 
described first, after which the interaction with the resource 
manager is explained. 

IV. THE GNSS APPLICATION 
Satellite navigation applications of today range from 

cheap receivers embedded in mobile phones to expensive 
and highly accurate scientific ones. Indeed, there is an 
analogy between the scalability of our platform and GNSS 
receivers depending on the targeted application. 

In the CRISP project, the GNSS application is specified 
and designed to support existing GPS (U.S. based 
NAVSTAR Global Positioning System) and future Galileo 
(European system) signals transmitted in the L1 frequency 
band centred at 1.575 GHz. The three main blocks in any 
GNSS receiver are identified to be i) a radio front end for 
analogue signal processing, ii) a digital baseband processing 
part and iii) navigation calculus to determine PVT (position, 
velocity and time) from measured pseudo ranges [25]. The 
implementation steps towards the CRISP GNSS application 
are explained in more details in [26], [27]. Figure 3 shows 
the tasks and communication streams of the GNSS 
application. 

 
Figure 3 The structure of the GNSS application 

The GNSS application is able to solve the  PVT of the 
receiver if four or more satellites are tracked successfully 
[25]. Thus, the receiver application should always (after an 
initial acquisition stage) have four or more cores running a 
tracking process to enable navigation. If a satellite is lost, no 
satellite data is available until the re-acquisition procedure is 
again performed and concluded. 

A. Dynamic resource allocation 
After starting the GNSS application, the navigation task 

on the GPD raises an event of type ALLOCATE_RESOURCES 
together with a task graph that describes the communication 
structure and the required resources for operation. Based on 
the event type, the event handler forwards the request to the 
mapping and scheduling algorithms after an unpredictable, 
but finite delay. While consulting the platform state, a set of 
fault-free resources is allocated to the application, such that 
the application meets its QoS specification. Through the 
platform specific drivers, the configuration layer configures 
the newly allocated resources on the platform and starts the 
other tasks in the application on their assigned processors. 

In the next two paragraphs, the testing of the NoC and 
Xentium cores in the MPSoC as used in the GNSS 
application will be discussed in detail. 

V. THE NOC TESTING APPLICATION 
The NoC dependability application is a GPD-hosted 

utility for diagnosing faults within the communication fabric. 
By using a SW-only approach, the need for specialized DfT 
structures within the network has been eliminated. This saves 
Silicon area and increases the ease with which the system 
may be deployed onto arbitrary platforms. 

A. NoC Fault Representation 
The domain for NoC testing is understood to be all inter-

router connections (link components) as well as all of the 
internal intra-router routing paths (switch components); there 
are up to 20 such paths per 5 bi-directional port router used 
in our prototype MPSoC platform.  We refer to either link or 
switch components as path components with the combined 
number modelled for our platform being 333.  

An arbitrary path through the network can modelled as a 
series of interconnected path components, C1 to Cn. The 
overall fault status of a path, P(C), may then be expressed as 
the logical AND of each constituent path component as 
shown by Equation 1, where each C may take on the value of 
'1' for good or '0' for faulty. 

 P(C)  =  C1 • C2 • C3 • C4 • .... • Cn (1)  
A faulty path component is assumed to permanently 

malfunction by either corrupting the packet payload or 
causing the packet itself to be miss-routed and/or dropped. 

B. Test Concept 
Although there are 2(n-1) possible fault configurations 

(where n is the number of components along some arbitrary 
route) satisfying the P(C) = 0 condition,  the fact is exploited 
that there is only a single solution that satisfies P(C) = 1 
which occurs if all C = 1.  The practical application of this is 
that if a packet can be successfully routed over a defined 
path it will be known that the specific set of path components 
comprising that route are good.  The primary task then 
becomes one of attempting to successfully route test packets 



through each good path component resulting in a diagnosis 
rendered on of a faulty until proven good basis. 

In the case that the GPD and MPSoC are on separate 
dies, the first phase of testing begins by checking the 
connectivity between the two devices. This is accomplished 
by the GPD injecting one or more packets (as required) into 
the MPSoC along a looping path that terminates back at the 
GPD as illustrated by route wr0 in Figure 4. The exact route 
that these packets follow is based on the principle of a 
random self-avoiding walk, which has been constrained by: 

• Explicitly defined start and end points 
• The physical boundary of the network topology 
• A maximum specified number of router hops. 

 
A route so devised provides an effective means for the 

discovery of good paths through a network containing 
arbitrarily distributed faults. Successful reception by the 
GPD of a previously injected packet verifies the link and 
enables the testing of the MPSoC communication 
infrastructure to proceed.   
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Figure 4 Routing of test packets through the MPSoC 

This next testing phase follows a similar approach as 
previously employed except that here the test packets are 
sent through the network along paths to and from designated 
cores in the form of write/read operations.  Ports on the 
router connected to the core are systematically selected so as 
to exercise each core related switch path. Switch paths for all 
other input-output combinations (i.e. non-core related) are 
exercised indirectly as part of the write/read operations 
performed on neighbouring cores. Two example iterations 
from the many that are possible for this procedure are also 
illustrated in Figure 4.  In the first case, the GPD writes data 
to the core by way of route wr1 followed by an attempted 
read which fails because of a fault along route rd1.  During a 
subsequent operation data is written to the core by way of 
route wr2 which is then successfully read back over route 
rd2. This verifies all path components along wr2/rd2 which 
is also seen to include certain sections of the previously 
unverified rd1. 

Upon complete execution of this algorithm, the expected 
result is that all good network path components will have 
been identified leaving what is left to be deemed the faulty 
elements. 

A final post processing procedure is performed whereby 
the resulting link and switch path based diagnosis result is 
transformed into a link-only representation for compatibility 
with the real-time mapping resource manager. 

VI.  THE XENTIUM CORE TESTING APPLICATION 
The core testing application is an essential part of the 

dependability enhancement approach for the MPSoC. The 
application consists of dependability software running on the 
GPD and extra hardware, such as the infrastructural IP (DM) 
and the dependability wrappers around the Xentium tiles.  

The IIP shown in Figure 5 consists of a test pattern 
generator (TPG), a test responses evaluator (TRE) and a 
finite state machine (FSM). The FSM controls the IIP and 
communicates with the dependability software running on 
the GPD. Deterministic test patterns for the Xentium tile 
(with 32 parallel scan-chains) have been generated at design-
time using a commercially-available ATPG tool [5]. The 
TPG in the IIP reproduces these deterministic test patterns by 
using a linear-feedback shift register (LFSR) combined with 
a reseeding technique. Stuck-at fault coverage of 90% for the 
Xentium tile processor can be reached using the scan-based 
test of the TPG. It is stressed that this fault coverage is 
sufficient for the current dependability test in our prototype 
MPSoC. Increased fault coverage in the final version can be 
obtained at the cost of an increase in Silicon area for the TPG 
and Xentium. A phase-shifter (PS) packs the test stimuli into 
32-bit words to suit the 32-bit wide NoC. Each bit of such a 
32-bit word fills one scan flip-flop in each of the 32 scan 
chains. At this point, the silicon area of the IIP is below 1% 
of the total area of the MPSoC. 

 

 

Figure 5 The core test application environment 



The Xentium Tile Wrapper (XTW) can switch between 
functional mode and dependability test mode via commands 
issued over the NoC. In functional mode, the XTW 
transparently delivers the data from the NoC to the 
functional inputs of the tile/core, and passes the data from 
the functional outputs to the NoC. In dependability test 
mode, it delivers the NoC data to the test inputs (scan-chain 
inputs and primary inputs) of the tile. A similar operation is 
performed at the output of the tile to capture the data from 
the scan-chain outputs and primary outputs of the tile, and 
deliver this data to the NoC. 

The core dependability application on the GPD starts the 
test activities. It requests sufficient resources to use the IIP 
together with two or three Xentium cores. The resource 
manager also allocates and configures the required 
communication routes between them. The IIP has no 
knowledge of which cores are being tested; this is 
completely determined by the communication routes. A 
possible test scenario is shown in Figure 6. Writing the 
control register in the FSM of the DM starts the test 
sequence.   

 
 

Figure 6 A dependability test scenario with 3 Xentium cores 

The IIP will subsequently switch the wrappers of the 
chosen Xentium tiles to dependability test mode, preparing 
the Xentium tiles for receiving the test stimuli generated by 
the TPG of the IIP. The test stimuli are broadcasted via the 
NoC to the target Xentium tiles and the test responses are 
collected and compared in the TRE of the IIP-DM. 

The test sequence is halted as soon as a difference is 
detected in the test responses from the Xentium tiles under 
test. The Xentium tile that generated a different test response 
from the others is identified as the faulty tile. This 
information is encoded into a fault status report. This status 
report is read by the dependability software in the GPD. The 
faulty Xentium tile can then be isolated or removed from the 
usable resource table of the resource management software.  

If no test-response differences are detected during the 
dependability test, the tested tiles are considered fault-free. 
They will stay in the usable resource table of the resource 
management software. This dependability test process is 
repeated until all Xentium tiles are tested. This way, the 

faulty tiles, if any, are identified and isolated from the system 
ensuring that the remaining processing tiles hardware are 
fault-free. Depending on the dependability requirements (i.e. 
acceptable mean system down time / unavailability) from the 
end user, the dependability test activities can be performed at 
a desired frequency. 

VII. EXPERIMENTAL RESULTS 

A. The NoC testing results 
Performance of the NoC test SW was investigated in 

conjunction with a C language network model for the 
MPSoC platform introduced in Figure 1.  A varying number 
of randomly inserted path faults (link and switch types) were 
configured into the model after which a diagnostic 
simulation was performed.  Figure 7 shows a representative 
set of results in relation to two key performance metrics - the 
number of equivalent link faults reported and number of test 
packets injected.  Each corresponding value for a given fault 
level is to be interpreted as an independent iteration.  

The utility of the method is manifest in the success with 
which the system can diagnose arbitrary multi-fault 
configurations. Note the fact that one-to-one correspondence 
between inserted and reported faults is generally not 
observed and is not of itself indicative of an incorrect 
diagnosis but rather a consequence of fault equivalency.  As 
the number of faults increase from 0 to 10, the required 
number of injected test packets grows from a baseline value 
of about 1.6k, up to about 3.4k. This increase derives from 
the greater effort required to successfully route packets 
through an increasingly compromised network. 

This “faulty until proven good” approach ensures 100% 
fault detection assuming that there exists a network path to or 
from every path component and the GPD.  However, if 
multiple cores are connected to a single router, as with the 
Smart Registers and Dependability Manager of our prototype 
platform, the switch path that directly connects the two is 
found not to satisfy that criterion and is thus not testable.  
This means that of the 333 uniquely modelled path 
components for our platform, only 331 can in fact be 
exercised reducing test coverage to 99.4%. 
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Figure 7 The results of NoC testing procedure 



B. The core testing results 
In order to verify the core testing application, the 

complete MPSoC platform has been designed and 
implemented in synthesizable VHDL. A complete simulation 
of the test stimuli generation and test response collection is 
shown in Figure 8.  

After the dependability software in the GPD activates the 
dependability test application, the test stimuli data are 
generated, packed into multiple 32-bit data flits and multicast 
to the three target Xentium tiles via the NoC. The NoC data 
flits are disassembled at the network interface of the 
Xentium tile and the test stimuli data are loaded into the 32 
parallel scan-chains of each tile. When the test responses are 
produced, they are collected again via the NoC and 
compared by the TRE of the IIP as shown in Figure 8. 

 

Figure 8 The results of core testing procedure 

When the comparison is completed and no response 
difference is identified, more test stimuli will be generated 
from the IIP-TPG until a first difference is detected or the 
dependability test finishes. 

C. Resource management under hardware failures 
Figure 9 again shows the MPSoC, together with an active 

GNSS application. The radio used to receive GPS signals is 
indicated with the rightmost gray block. The antenna data is 
first transported to the GPD on the left, which forwards the 
pre-processed satellite data to the Xentium cores. Figure 9 
shows an example scenario where a part of the chip is 
malfunctioning, indicated in red. The faults are isolated to a 
single Xentium core and the NoC router nearby. The GNSS 
application is still able to run with eight tracking processes 
(shown in purple). 

All scenarios of a single fault in either a Xentium 
processor core or a network router were generated. For seven 
out of the thirty-nine generated faults, the GNSS application 
failed to run on the platform. These faults resulted in a 
failure of the application, because the faults occurred on the 
input or output chain of the chip. Both the GPD and the radio 
are single points of failure, together with their connection to 
the chip. The NoC within the chip has a high degree of 
connectivity and therefore has sufficient redundant 

communication resources if part of it fails. The GNSS 
application can work with a variable number of Xentium 
cores (albeit at least four); failure of one of them still allows 
the application to run.  

 

VIII. DISCUSSION AND CONCLUSIONS 
In this paper a new approach towards dependable design 

of homogeneous MPSoCs has been presented in an example 
GNNS application. First, the NoC dependability is 
functionally verified via embedded software. Then the 
Xentium processor tiles and associated embedded SRAMs 
are periodically verified via on-line self-testing techniques, 
by using a new IIP Dependability Manager. Faulty tiles are 
electronically bypassed and replaced by other Xentium 
resources via embedded resource manager software based on 
the DM results. This integrated approach enables fast 
electronic fault detection/diagnosis and repair, and hence a 
high MPSoC availability (unavailability: 10us). The 
dependability application runs in parallel with the actual 
GNNS application, resulting in a very dependable MPSoC 
(reliability: 0.9783, after 15 years). All parts have been 
verified by simulation. The MPSoC has been designed in 
UMC 90nm technology and will be soon available for 
dependability and functional evaluation. 

 
Figure 9 The GNSS application running (8 trackers) with resource 

failures in one of the Xentium cores and the attached NoC router 
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