
Efficient Conditional Proxy Re-encryption with

Chosen-Ciphertext Security

Jian Weng1,2, Yanjiang Yang3, Qiang Tang4, Robert H. Deng1, and Feng Bao3

1 School of Information Systems,
Singapore Management University, Singapore 178902

2 Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China
cryptjweng@gmail.com, robertdeng@smu.edu.sg

3 Institute for Infocomm Research (I2R), Singapore, 119613
yyang@i2r.a-star.edu.sg, baofeng@i2r.a-star.edu.sg

4 DIES, Faculty of EEMCS, University of Twente, The Netherlands
q.tang@utwente.nl

Abstract. Recently, a variant of proxy re-encryption, named condi-
tional proxy re-encryption (C-PRE), has been introduced. Compared
with traditional proxy re-encryption, C-PRE enables the delegator to
implement fine-grained delegation of decryption rights, and thus is more
useful in many applications. In this paper, based on a careful observa-
tion on the existing definitions and security notions for C-PRE, we re-
formalize more rigorous definition and security notions for C-PRE. We
further propose a more efficient C-PRE scheme, and prove its chosen-
ciphertext security under the decisional bilinear Diffie-Hellman (DBDH)
assumption in the random oracle model. In addition, we point out that
a recent C-PRE scheme fails to achieve the chosen-ciphertext security.

Keywords: Conditional proxy re-encryption, chosen-ciphertext security,
random oracle.

1 Introduction

In 1998, Blaze, Bleumer and Strauss [1] introduced the notion of proxy re-
encryption (PRE). In a PRE scheme, a proxy is given a re-encryption key, and
thus can translate ciphertexts under Alice’s public key into ciphertexts under
Bob’s public key1. The proxy, however, cannot learn anything about the mes-
sages encrypted under either key. PRE turns out to be a useful primitive, and
has found many applications requiring delegation of decryption right, such as
encrypted email forwarding, secure distributed file systems, and outsourced fil-
tering of encrypted spam.

Nevertheless, there exist some situations which are hard for traditional PRE
to tackle. For example, suppose some of Alice’s second level ciphertexts are highly
1 In [2,3,4], the original ciphertext is called second level ciphertext, and the transformed

ciphertext is named first level ciphertext. Through out this paper, we will follow these
notations.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 151–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

152 J. Weng et al.

secret, and she wants to decrypt these ciphertexts only by herself. Unfortunately,
traditional PRE enables the proxy to convert all of Alice’s second level cipher-
texts, without any discrimination. To address this issue, two variants of PRE
were independently introduced: one is named type-based proxy re-encryption
(TB-PRE) introduced by Tang [5], and the other is named conditional proxy re-
encryption (C-PRE) introduced by Weng et al. [6]. Although different in naming,
C-PRE and TB-PRE are the same in spirit (for consistency, in the rest of the
paper, we use C-PRE to denote the two variants.). In such systems, ciphertexts
are generated with respect to a certain condition, and the proxy can translate
a ciphertext only if the associated condition is satisfied. Compared with tradi-
tional PRE, C-PRE enables the delegator to implement fine-grained delegation
of decryption rights, thereby more useful in many applications.

1.1 Our Motivations and Results

We first investigate the definitions and security notions for C-PRE defined in
[6,5]. Both have their respective pros and cons: (i) In Weng et al.’s definition, the
proxy needs two key pairs (i.e., the partial re-encryption key and the condition
key) to perform the transformation, while the proxy in Tang et al.’s definition
has only one key pair; (ii) In Tang’s definition, the delegators and the delegatees
have to be in different systems, which means that the user in a given system can
only act as either (not both) a delegator or a delegatee. In contrast, in Weng et
al.’s definition, a user can be the delegator for any other users, and can also be
the delegatee for any other users. (iii) Both of the security notions in [5, 6] only
consider the second level ciphertext security, and do not address the first level
ciphertext security.

In this paper, we re-formalize the definition for C-PRE by incorporating the
advantages in [6, 5]. More specifically, in our formalization the proxy holds only
one key (re-encryption key) for performing transformations, and a user can act as
the delegator or the delegatee for any other users. We also define the first level
ciphertext security for C-PRE. We then propose a new C-PRE scheme, and
prove its CCA-security under the well-studied decisional bilinear Diffie-Hellman
(DBDH) assumption in the random oracle model. Our scheme has better overall
efficiency in terms of both computation and communication than Tang’s and
Weng et al.’s schemes. In addition, we show that Weng et al.’s C-PRE scheme
fails to achieve the CCA-security.

1.2 Related Work

Mambo and Okamoto [7] firstly introduced the concept of delegation of de-
cryption rights, as a better-performance alternative to the trivial approach of
decrypting-then-encrypting of ciphertexts. Blaze, Bleumer and Strauss [1] for-
malized the concept of proxy re-encryption, and proposed the first bidirectional
PRE scheme (in which the delegation from Alice to Bob also allows re-encryption
from Bob to Alice). In 2005, Ateniese et al. [2, 3] presented unidirectional PRE
schemes based on bilinear pairings.

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 153

The schemes in [1,2,3] are only secure against chosen-plaintext attacks (CPA).
However, applications often require the CCA-security. In ACM CCS’07, Canetti
and Hohenberger [8] presented a CCA-secure bidirectional PRE scheme from
bilinear pairings. Later, Libert and Vergnaud [4] gave a unidirectional PRE
scheme secure against replayable chosen-ciphertext attacks (RCCA) [9]. In their
extended version, Libert and Vergnaud [10] further consider the the problem of
conditional proxy re-encryption, and suggested a RCCA-secure C-PRE scheme
in the standard model without assuming registered public keys2.

Previous PRE schemes rely on the costly bilinear pairings. Thus Canetti and
Hohenberger [8] left an open question to construct CCA-secure PRE without
pairings. In CANS’08, Deng et al. [11] proposed a CCA-secure bidirectional PRE
scheme without pairings. In PKC’09, Shao and Cao [12] proposed a unidirectional
PRE scheme without pairings, and claimed that their scheme is CCA-secure.
However, Weng et al. [13] pointed out that Shao and Cao’s PRE scheme is not
CCA-secure by presenting a concrete attack. Weng et al. [13] further presented
an efficient CCA-secure unidirectional PRE scheme without pairings.

Traceable proxy re-encryption, introduced by Libert and Vergnaud [14], at-
tempts to solve the problem of disclosing re-encryption keys, by tracing the prox-
ies who have done so. Proxy re-encryption has also been studied in identity-based
scenarios, such as [15, 16, 17]. Recently, Chu et al. [18] introduced a generalized
version of C-PRE named conditional proxy broadcast re-encryption (CPBRE),
in which the proxy can re-encrypt the ciphertexts for a set of users at a time.

2 Model of Conditional Proxy Re-encryption

Before re-formalizing the definition and security notions for C-PRE, we first ex-
plain some notations used in the rest of this paper. For a finite set S, x ∈R S
means choosing an element x from S with a uniform distribution. For a string
x, |x| denotes its bit-length. We use A(x, y, · · ·) to indicate that A is an al-
gorithm with the input (x, y, · · ·). By z ← A(x, y, · · ·), we indicate the run-
ning of A(x, y, · · ·) and letting z be the output. We use AO1,O2,···(x, y, · · ·)
to denote that A is an algorithm with the input (x, y, · · ·) and can access
to oracles O1,O2, · · · . By z ← AO1,O2,···(x, y, · · ·), we denote the running of
AO1,O2,···(x, y, · · ·), and letting z be the output.

2.1 Definition of C-PRE Systems

Weng et al.’s definition differentiates between partial re-encryption key and con-
dition key. A more standard model should combine them into an integral entity.
Our definition is standard in this regard, having only re-encryption key; and we
allow the delegators and the delegatees to share the same systems, unlike Tang’s
model. Formally, a C-PRE scheme consists of the following algorithms:
2 We sincerely thank one of the anonymous reviewers for pointing out that, Libert

and Vergnaud [10] also suggested a C-PRE scheme in the standard model without
assuming registered public keys.

154 J. Weng et al.

Setup(1κ): On input a security parameter 1κ, this algorithm outputs a global
parameter param, which includes the message space M. For brevity, we
assume that param is implicitly included in the input of the rest algorithms.

KeyGen(1κ): all parties use this randomize key generation algorithm to generate
a public/private key pair (pki, ski).

ReKeyGen(ski, w, pkj): On input the delegator’s private key ski, a condition w
and the delegatee’s public key pkj , the re-encryption key generation algo-
rithm outputs a re-encryption key rk

i
w→j

.
Enc2(pk, m, w): On input a public key pk, a plaintext m ∈ M and a condition

w, the second encryption algorithm outputs a second level ciphertext CT,
which can be re-encrypted into a first level one (intended for a possibly
different receiver) using the suitable re-encryption key.

Enc1(pk, m): On input a public key pk and a plaintext m ∈ M, this first en-
cryption algorithm outputs a first level ciphertext CT that cannot be re-
encrypted for another party.

ReEnc(CTi, rki
w→j

): On input a second level ciphertext CTi associated with
w under public key pki, and a re-encryption key rk

i
w→j

, this re-encryption
algorithm, run by the proxy, outputs a first level ciphertext CTj under public
key pkj .

Dec2(CT, sk): On input a second level cipertext CT and a private key sk, this
second decryption algorithm outputs a message m or the error symbol ⊥.

Dec1(CT, sk): On input a first level cipertext CT and a private key sk, this
first decryption algorithm outputs a message m or the error symbol ⊥.

The correctness of C-PRE means that, for any condition w, any m ∈ M, and
any couple of private/public key pairs (pki, ski), (pkj , skj), it holds that

Dec2(Enc2(pki, m, w), ski) = m, Dec1(Enc1(pki, m), ski) = m,

Dec1 (ReEnc(Enc2(pki, m, w), ReKeyGen(ski, w, pkj)), skj) = m.

2.2 Security Notions

In this subsection, we will define the security notions for C-PRE systems. Be-
fore giving these security notions, we first consider the following oracles which
together model the ability of an adversary. These oracles are provided for the
adversary A by a challenger C who simulates an environment running C-PRE.

– Uncorrupted key generation oracle Ou(i): C runs algorithm KeyGen to gen-
erate a public/private key pair (pki, ski), and returns pki to A.

– Corrupted key generation oracle Oc(i): C runs algorithm KeyGen to generate
a public/private key pair (pkj , skj),, and returns (pkj , skj) to A.

– Re-encryption key oracle Ork(pki, w, pkj): Challenger C first runs rk
i

w→j
←

ReKeyGen(ski, w, pkj), and then returns rk
i

w→j
to A.

– Re-encryption oracle Ore(pki, pkj , (w, CTi)): Challenger C first runs CTj ←
ReEnc(CTi, rki

w→j
), where rk

i
w→j

= ReKeyGen(ski, w, pkj), and then returns
CTj to A.

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 155

– First level decryption oracle O1d(pk, CT): Here CT is a first level ciphertext.
C runs Dec1(CT, sk), and returns the corresponding result to A.

Note that for the last three oracles, it is required that pki, pkj and pk
were generated beforehand by either Oc or Ou.

We are now ready to define the semantic security for C-PRE under chose-
ciphertext attacks. Libert and Vergnaud [4]differentiated two kinds of semantic
security for traditional (single-hop) unidirectional PRE systems: first level ci-
phertext security and second level ciphertext security. We here follow Libert and
Vergnaud’s definitions, and define these two kinds security notions for C-PREs.

Second level ciphertext security. Intuitively speaking, second level cipher-
text security models the scenario that the adversary A is challenged with a
second level ciphertext CT∗ encrypted under a target public key pki∗ and a
target condition w∗. A can issue a series of queries to the above five ora-
cles. These queries are allowed as long as they would not allow A to decrypt
trivially. For examples, A should not query on Ork(pki∗ , w∗, pkj) to obtain an
re-encryption key rk

i∗w∗→j
where pkj came from oracle Oc. Otherwise, A can

trivially decrypt the challenge ciphertext by first re-encrypting it into a first
level ciphertext and then decrypting it with skj . Similarly, A cannot query on
Ore(pki∗ , pkj , (w∗, CT∗)) where pkj came from oracleOc. Also, for a first level ci-
phertext CT′ = ReEnc(CT∗, rk

i∗w∗→j
), A is disallowed to query on O1d(pkj , CT′).

One might wonder that why we do not provide the second level decryption or-
acle for A. In fact, explicitly providing adversary A with this oracle is useless,
since (i). for the challenge ciphertext CT∗, A is obviously not allowed to ask
the second level decryption oracle to decrypt it; (ii). while for any other second
level ciphertext CTt encrypted under public key pkt and condition w such that
(pkt, w, CTt) �= (pki∗ , w∗, CT∗), adversaryA can first issue a re-encryption query
Ore(pkt, pkj , (w, CTt)) to obtain a first level ciphertext CTj , and then issue a
first level decryption query O1d(pkj , CTj) to obtain the underlying plaintext.
Below gives the formal definition for second level ciphertext’s sematic security
under adaptive chosen ciphertext attack (IND-2CPRE-CCA).

Definition 1. For a C-PRE scheme E and a probabilistic polynomial time ad-
versary A running in two stages find and guess, we define A’s advantage
against the IND-2CPRE-CCA security of E as

AdvIND-2CPRE-CCA
E,A (1κ)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

δ′ = δ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

param← Setup(1κ)

(pki∗ , w
∗, (m0, m1), st)← AOu,Oc,Ork,Ore,O1d

find (param)
δ ∈R {0, 1}, CT∗ ← Enc2(pki∗ , mδ, w

∗)

δ′ ← AOu,Oc,Ork,Ore,O1d
guess (param, CT∗, st)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where st is some internal state information of adversary A. Here it is mandated
that |m0| = |m1|, and the following requirements are simultaneously satisfied: (i).
pki∗ is generated by oracle Ou; (ii). For a public key pkj generated by oracle Oc,
A cannot issue the query Ork(pki∗ , w

∗, pkj); (iii) For a public key pkj generated

156 J. Weng et al.

by oracle Oc, A cannot issue the query Ore(pki∗ , pkj , (w∗, CT∗)); (iv). For a
public key pkj and the first level ciphertext CT′ = ReEnc(CT∗, rk

i∗w∗→j
), A cannot

issue the query O1d(pkj , CT′).
We refer to adversary A as an IND-2CPRE-CCA adversary. A C-PRE scheme

E is said to be (t, qu, qc, qrk, qre, q1d, ε)-IND-2CPRE-CCA secure, if for any t-time
IND-2CPRE-CCA adversary A, who makes at most qu, qc, qrk, qre and qd queries
to Ou,Oc,Ork,Ore and O1d, respectively, we have AdvIND-2CPRE-CCA

E,A (1κ) ≤ ε.

First Level Ciphertext Security. The above definition provides the adver-
sary with a second level ciphertext in the challenge phase. Next, we define a
complementary definition of security (denote by IND-1CPRE-CCA) by providing
the adversary with a first level ciphertext in the challenge phase. Note that,
since the first level ciphertext cannot be re-encrypted in a single hop C-PRE
scheme, A is allowed to obtain any re-encryption keys. Furthermore, given these
re-encryption keys, A can re-encrypt ciphertexts by himself, and hence there is
no need to provide the re-encryption oracle Ore for him. As argued before, the
second level decryption oracle is also unnecessary.

Definition 2. For a C-PRE scheme E and a probabilistic polynomial time ad-
versary A running in two stages find and guess, we define A’s advantage
against the IND-1CPRE-CCA security of E as

AdvIND-1CPRE-CCA
E,A (1κ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

δ′ = δ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

param← Setup(1κ)

(pki∗ , (m0, m1), st)← AOu,Oc,Ork,O1d
find (param)

δ ∈R {0, 1}, CT∗ ← Enc1(pki∗ , mδ)

δ′ ← AOu,Oc,Ork,O1d
guess (param, CT∗, st)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where st is some internal state information of adversary A. Here it is man-
dated that, |m0| = |m1|, pki∗ is generated by Ou, and A cannot issue the query
O1d(pki∗ , CT∗).

We refer to the above adversary A as an IND-1CPRE-CCA adversary. We say
that a C-PRE scheme E is (t, qu, qc, qrk, q1d, ε)-IND-1CPRE-CCA secure, if for any
t-time IND-1CPRE-CCA adversary A that makes at most qu, qc, qrk and qd queries
to oracles Ou,Oc,Ork and O1d, respectively, we have AdvIND-1CPRE-CCA

E,A (1κ) ≤ ε.

Remark. In [2], Ateniese et al. defined the notion master secret security, for
unidirectional proxy re-encryption. This security notion catches the intuition
that, even if the dishonest proxy colludes with the delegatee, it is still impossible
for them to derive the delegator’s private key. Note that for C-PREs, there is no
need to define master secret security, since this security is implied by the first
level ciphertext security. This is due to the fact that, if the dishonest proxy and
the delegatee can collude to derive the delegator’s private key, they can certainly
use this private key to decrypt the challenge ciphertext, and thus break the first
level ciphertext security.

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 157

3 Proposed CCA-Secure C-PRE Scheme

In this section, we propose a new C-PRE scheme with CCA-security. Before pre-
senting our scheme, we list three important and necessary principles for design-
ing CCA-secure C-PRE schemes: (i) the validity of the second level ciphertexts
should be publicly verifiable; otherwise, it will suffer from a similar attack as
illustrated in [11, 19]; (ii) the second level ciphertexts should be able to resist
the adversary’s malicious manipulating; (iii) it should also be impossible for the
adversary to maliciously manipulate the first level ciphertext. We remark that it
is non-trivial to design a C-PRE scheme satisfying these three requirements, es-
pecially the last one. To help understand our scheme, we first present an insecure
attempt, and then improve it to obtain our final CCA-secure scheme.

3.1 A First Attempt

We denote this first attempt by S1, which is specified as below:

Setup(1κ): On input a security parameter 1κ, the setup algorithm first deter-
mines (q, G, GT , e), where q is a κ-bit prime, G and GT are two cyclic groups
with prime order q, and e is the bilinear pairing e : G × G → GT . Next, it
chooses g ∈R G, and five hash functions H1, H2, H3, H4 and H5 such that
H1 : {0, 1}∗ → Zq, H2 : {0, 1}∗ → G, H3 : G → {0, 1}n, H4 : {0, 1}∗ → G

and H5 : G→ Zq, where n is polynomial in κ and the message space isM =
{0, 1}n. The global parameter is param = ((q, G, GT , e), g, n, H1, · · · , H5).

KeyGen(1κ): To generate the public/private key pair for user Ui, it picks xi ∈R

Zq, and sets the public key and private key to be pki = gxi and ski = xi,
respectively.

ReKeyGen(ski, w, pkj): On input a private key ski, a condition w and a pub-
lic key pkj , this algorithm randomly picks s ∈R Zq, and outputs the re-
encryption key as

rk
i

w→j
= (rk1, rk2) =

((

H2(pki, w)pks
j

)−ski
, pks

i

)

. (1)

Enc2(pk, m, w): On input a public key pk, a condition w and a message m ∈M,
the sender first picks R ∈R GT . Then he computes r = H1(m, R), and
outputs the second level ciphertext CT = (C1, C2, C3, C4) as

(

gr, R · e(pk, H2(pk, w))r , m⊕H3(R), H4(C1, C2, C3)r
)

. (2)

Note that the last ciphertext component, C4, is used to ensure the public
verifiability of the ciphertext, while the first three components, (C1, C2, C3),
are in fact the ciphertext of the CCA-secure ElGamal encryption scheme [20]
applying the Fujisaki-Okamoto transformation [21].

Enc1(pk, m): On input a public key pk and a message m ∈ M, the sender first
picks R ∈R GT and s ∈R Z∗

q . Then he computes r = H1(m, R), and outputs
the first level ciphertext CT as

CT = (C1, C2, C3, C4) =
(

gr, R · e(g, pk)−r·s, m⊕H3(R), gs
)

. (3)

158 J. Weng et al.

ReEnc(CTi, rki
w→j

): On input a second level ciphertext CTi = (C1, C2, C3, C4)
associated with condition w under public key pki, and a re-encryption key
rk

i
w→j

= (rk1, rk2), it generates the first level ciphertext under public key
pkj as follows: Check whether the following equality holds:

e(C1, H4(C1, C2, C3)) = e(g, C4). (4)

If not, output ⊥; else output CTj = (C1, C2, C3, C4) as

C1 = C1, C2 = C2 · e(C1, rk1), C3 = C3, C4 = rk2. (5)

Observe that CTj = (C1, C2, C3, C4) is indeed of the following form:

C1 = gr, C3 = m⊕H3(R), C4 = pks
i = gs·ski ,

C2=R · e(pki, H2(pki, w))r · e
(

gr,
(

H2(pki, w)pks
j

)−ski
)

=R · e (g, pkj)
−r·s·ski .

Letting s = s · ski, it can be seen that the above first level ciphertext has the
same form as Eq. (3).

Dec2(CT, sk): On input a private key sk and a second level ciphertext CT =
(C1, C2, C3, C4), it first checks whether Eq. (4) holds. If not, it returns ⊥.

Otherwise, it computes R =
C2

e(C1, H2(pk, w))sk
, m = C3⊕H3(R), and check

whether gH1(m,R) = C1 holds. If yes, it returns m; else it returns ⊥.
Dec1(CT, sk): On input a private key sk and a first level ciphertext CT =

(C1, C2, C3, C4) under public key pk, it computes R = C2 · e(C1, C4)sk and
m = C3 ⊕H3(R). Return m if gH1(m,R) = C1 holds and ⊥ otherwise:

Analysis. At first glance, it seems that scheme S1 is CCA-secure. Unfortunately,
this is not true, since the adversary can maliciously manipulate the first level
ciphertext to get a new yet valid one. Concretely, given the first level ciphertext
as in Eq. (3), the adversary can pick � ∈R Zq and produces another first level
ciphertext CT′ = (C

′
1, C

′
2, C

′
3, C

′
4) such that:

C
′
1 = C1 = gr, C

′
2 = C2 · e(C1, pk)−� = R · e(g, pk)−r·(s+�).

C
′
3 = C3 = mδ ⊕H3(R), C

′
4 = C4 · g� = gs+�.

Letting s =′ s+�, we can easily see that CT′ is another new and valid ciphertext
as Eq. (3). Thus the CCA-security can be trivially broken.

3.2 CCA-Secure C-PRE Scheme

Indeed, the insecurity of S1 lies in the construction of the re-encryption key,
i.e., rk2 is loosely integrated with rk1. This enables the adversary to maliciously
manipulate the resulting first level ciphertext and obtain another valid first
level ciphertext. So, to design a CCA-secure C-PRE scheme, we should carefully
design the re-encryption key, so that the resulting first level ciphertext cannot be
maliciously manipulated by the adversary. Based on this observation, we present
our CCA-secure C-PRE scheme (denoted by S2) as below:

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 159

Setup(1κ) and KeyGen(1κ): The same as in S1.
ReKeyGen(ski, w, pkj): On input a private key ski, a condition w and a public

key pkj , this algorithm picks s ∈R Zq, and outputs rk
i

w→j
= (rk1, rk2) as

rk2 = pks
i , rk1 =

(

H2(pki, w)pk
s·H5(pk

s·ski
j)

j

)−ski

.

Observe that in the re-encryption key rk
i

w→j
, rk2 is now seamlessly integrated

with rk1. That is, we integrate rk2 with rk1 by embedding H5(pks.ski

j) =

H5(rk
skj

2) in rk1. This is an important trick for scheme S2 to achieve the
CCA-security.

Enc2(pk, m, w): The same as in S1.
Enc1(pk, w): On input a public key pk and a message m ∈ M, the sender first

picks R ∈R GT and s ∈R Z∗
q . Then he computes r = H1(m, R), and outputs

the first level ciphertext CT = (C1, C2, C3, C4) as
(

gr, R · e(g, pk)−r·s·H5(pks), m⊕H3(R), gs
)

. (6)

ReEnc(CTi, rki
w→j

): The same as in S1. Note that, since the re-encryption
key is different from that in S1, the resulting first level ciphertext CTj =
(C1, C2, C3, C4) is of the following forms:

(

gr, R · e (g, pkj)
−r·s·ski·H5(pk

s·ski
j)

, m⊕H3(R), gs·ski

)

,

where r = H1(m, R) and R ∈R GT . Letting s = s · ski, it can be seen that
the above first level ciphertext has the same form as Eq. (6).
Note also that, now C4 is tightly integrated with C2 by embedding C4 in
H5(C

skj

4) = H5(pks·ski

j), and hence it is unable for the adversary to modify
the first level ciphertext to obtain a new and valid one. Therefore, the attack
against scheme S1 does not apply to scheme S2.

Dec2(CT, sk): The same as in S1.
Dec1(CT, sk): On input a private key sk and a first level ciphertext CT =

(C1, C2, C3, C4) under public key pk, this algorithm first computes R = C2 ·
e(C1, C4)sk·H5(C

sk
4) and m = C3 ⊕H3(R). Next, it returns m if gH1(m,R) =

C1 holds and ⊥ otherwise.

3.3 Security Analysis

The CCA-security of our schemes S2 is based on a complexity assumption called
decisional Bilinear Diffie-Hellman (DBDH) assumption. The DBDH problem
in groups (G, GT) is, given a tuple (g, ga, gb, gc, Z) ∈ G4 × GT with unknown
a, b, c ∈R Zq, to decide whether Z = e(g, g)abc. A polynomial-time algorithm B
has advantage ε in solving the DBDH problem in groups (G, GT), if
∣
∣
∣Pr

[B (

g, ga, gb, gc, Z =e(g, g)abc
)

=1
]−Pr

[B (

g, ga, gb, gc, Z =e(g, g)d
)

=1
]
∣
∣
∣ ≥ ε,

where the probability is taken over the random choices of a, b, c, d in Zq, the
random choice of g in G, and the random bits consumed by B.

160 J. Weng et al.

Definition 3. We say that the (t, ε)-DBDH assumption holds in groups (G, GT),
if there exists no t-time algorithm B that has advantage ε in solving the DBDH
problem in (G, GT).

For our scheme’s CCA-security at the second level, we have the following theo-
rem, whose detailed proof can be found in Appendix B.

Theorem 1. Our scheme S2 is IND-2CPRE-CCA secure in the random or-
acle model, assuming the DBDH assumption holds in groups (G, GT). More
specifically, if there exists an IND-2CPRE-CCA adversary A, who asks at
most qHi random oracle queries to Hi with i ∈ {1, · · · , 5} and breaks the
(t, qu, qc, qrk, qre, qd, ε)-IND-2CPRE-CCA security of scheme S2, then there exists
an algorithm B that can break the (t′, ε′)-DBDH assumption in groups (G, GT)
with

ε′ ≥ ε

ė(1 + qrk)
− qH1 + qH5 + qre + qd

q
,

t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + qH1qre + (qH1 + qH5)qd)),

where τ is the maximum over the time to compute an exponentiation in G,GT ,
and the time to compute a pairing; ė denotes the base of the natural logarithm.

The first level ciphertext security of S2 is ensured by the following theorem.

Theorem 2. Our scheme S2 is IND-1CPRE-CCA secure in the random or-
acle model, assuming the DBDH assumption holds in groups (G, GT). More
specifically, if there exists an IND-1CPRE-CCA adversary A, who asks at most
qHi random oracle queries to Hi with i ∈ {1, · · · , 5} and can break the
(t, qu, qc, qrk, qd, ε)-IND-1CPRE-CCA security of scheme S2, then there exists an
algorithm B that can break the (t′, ε′)-DBDH assumption in groups (G, GT) with

ε′ ≥ ε− qH1 + qH5 + qd

q
,

t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + (qH1 + qH5)qd)),

where τ and ė have the same meaning as in Theorem 1.

The proof for Theorem 2 is similar to that of Theorem 1 with some modifications.
For example, the simulation for the random oracle H2 no longer need to flip a
biased coin, and the simulation for oracle Ork has to successfully answer all the
re-encryption key queries without aborting. Due to the space limit, we give the
detailed proof in the full paper.

3.4 Comparisons

In Table 1, we compare our scheme with Tang’s scheme [5] 3, Weng et al.’s scheme
[6] and Livert-Vergnaud’s scheme [10]. We first explain some notations used in
3 Tang presented two schemes: one is CPA-secure, and the other is CCA-secure. To

be fair, we here choose Tang’s CCA-secure scheme for comparison.

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 161

Table 1. Comparisons among Ours Scheme and the C-PRE Schemes in [5,6,4]

Schemes Our Scheme S2 Tang’s Scheme [5] Weng’s Scheme [6] Livert-Vergnaud’s Scheme [10]
2nd-level ciphtxt 2|G|+1|GT |+1|M| 2|G|+1|GT |+1|M| 3|G|+1|M|+l1 |svk|+3|G|+1|GT |+|σ|
1st-level ciphtxt 2|G|+1|GT |+1|M| 2|CPKE|+1|G|+1|GT |+1|M| 1|GT |+1|M|+l1 |svk|+7|G|+1|GT |+1|σ|

Length public key 1|G| 1|G| 2|G| (n+2)|G|
private key 1|Zq| 1|Zq| 1|Zq| 1|Zq|

re-encryption key 2|G| 1|CPKE|+ 1|G| 2|G| 2|G|
Enc2 1tp + 3te 1tp + 3te 1tp + 5te 1ts + 4te
Enc1 1tp + 4te 1tp + 2te + 2tEncPKE 1tp + 2te 1ts + 8te

Cost ReEnc 3tp 3tp + 1tEncPKE 3tp + 2te 4tp + 6te
Dec2 3tp + 2te 3tp + 2te 4tp + 5te 1tp + 1te + 1tv
Dec1 1tp + 3te 2tDecPKE + 1tp + 1te 2te 9tp + 1te + 1tv

Security CCA CCA Not CCA RCCA
Without RO? No No No Yes

Table 1. Here |M|, |G|, |GT |, |svk| and |σ| denote the bit-length of a plaintext,
an element in groups G and GT , the verification key and signature of one-time
signature, respectively. We use tp, te, ts, tv to represent the computational cost of
a bilinear pairing, an exponentiation, signing and verifying a one-time signature,
respectively. l1 denotes the security parameter used in Weng et al.’s scheme.
Tang’s scheme needs an additional public key encryption scheme PKE, which
is assumed to be deterministic and one-way4. We here use tEncPKE and tDecPKE

to represent the computational cost of an encryption and a decryption in the
public key encryption(PKE) scheme used in Tang’s scheme. For |CPKE|, it denotes
the ciphertext length of scheme PKE used in Tang’s scheme.

The comparison results indicate that our scheme S2 outperforms Tang’s
scheme in terms of both computational and communicational costs. Our scheme
has a better overall performance than Weng et al.’s scheme: The ciphertext
length and computation cost for first level encryption and decryption in Weng
et al.’s scheme lead ours, while ours beats theirs in the other metrics; most impor-
tantly, our scheme is CCA-secure, while theirs fails. Our scheme also has a better
overall performance than Libert-Vergnaud’s scheme. Besides, ours is CCA-secure
under the well-studied DBDH assumption, while Libert-Vergnaud’s scheme only
satisfies the RCCA-security (which is a weaker variant of CCA-security assum-
ing a harmless mauling of the challenge ciphertext is tolerated) under a less
studied assumption, named 3-weak decisional bilinear Diffie-Hellman inversion
(3-wDBDH) assumption. However, like Tang and Weng et al.’s schemes, our
scheme suffers from a limitation that its security relies on the random oracle
in the know secret key model, while Libert-Vergnaud’s scheme can be proved
without random oracles in the chosen-key model.

4 Conclusions

We re-formalized the definition and security notions for conditional proxy re-
encryption (C-PRE), and proposed an efficient CCA-secure C-PRE scheme un-
4 To the best of our knowledge, the ciphertext in such a PKE scheme needs at least two

group elements, and its computational cost for encryption and decryption involves
at least two exponentiations and one exponentiation respectively. Hence, we have
|CPKE| ≥ 2|G|, tEncPKE ≥ 2te, tDecPKE ≥ 1te.

162 J. Weng et al.

der our model. In addition, we gave an attack to Weng et al.’s C-PRE scheme,
showing that it fails to achieve the CCA-security.

This work motivates some interesting open questions. One is how to construct
a CCA-secure (instead of RCCA-secure) C-PRE scheme without random oracles.
Another is how to construct CCA-secure C-PRE schemes supporting “OR” and
“AND” gates over conditions.

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments. This
work is partially supported by the Office of Research, Singapore Management
University.

References

1. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In: NDSS, The Internet
Society (2005)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

4. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

5. Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–
144. Springer, Heidelberg (2008)

6. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: ASIACCS, pp. 322–332 (2009)

7. Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E80-A(1), 54–63 (1997)

8. Canetti, R., Hohenberger, S.: Chosen-Siphertext Cecure Proxy Re-Encryption. In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer
and Communications Security, pp. 185–194. ACM, New York (2007)

9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

10. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption, http://hal.inria.fr/inria-00339530/en/, This is the extended ver-
sion of [4]

11. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-Ciphertext Secure Proxy Re-
encryption without Pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

http://hal.inria.fr/inria-00339530/en/

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 163

12. Shao, J., Cao, Z.: CCA-Secure Proxy Re-encryption without Pairings. In: Jarecki,
S., Tsudik, G. (eds.) Public Key Cryptography. LNCS, vol. 5443, pp. 357–376.
Springer, Heidelberg (2009)

13. Weng, J., Chow, S.S., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. Cryptology ePrint Archive, Report 2009/189 (2009),
http://eprint.iacr.org/

14. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (2008)

15. Matsuo, T.: Proxy Re-encryption Systems for Identity-Based Encryption. In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247–267. Springer, Heidelberg (2007)

16. Green, M., Ateniese, G.: Identity-Based Proxy Re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

17. Chu, C.K., Tzeng, W.G.: Identity-Based Proxy Re-encryption Without Random
Oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

18. Chu, C.K., Weng, J., Chow, S.S.M., Zhou, J., Deng, R.H.: Conditional proxy broad-
cast re-encryption. In: ACISP, pp. 327–342 (2009)

19. Weng, J., Deng, R.H., Liu, S., Chen, K., Lai, J., Wang, X.: Chosen-ciphertext
secure proxy re-encryption without pairings. Cryptology ePrint Archive, Report
2008/509 (2008), http://eprint.iacr.org/, This is the full paper of [11]

20. Gamal, T.E.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

21. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
537–554. Springer, Heidelberg (1999)

22. Coron, J.S.: On the Exact Security of Full Domain Hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

Appendix

A Cryptanalysis of Weng et al.’s C-PRE Scheme

In this section, we will explain why Weng et al.’s C-PRE scheme [6] fails to
achieve the CCA-security. Due to the space limit, here we only give a brief review
of the scheme (please refer to [6] for the detailed scheme and the corresponding
security notions). In Weng et al.’s scheme, a user’s private key for the user is sk =
x ∈ Z∗

q , and his public key is pk = (gx, g
1/x
1). The re-encryption key, from one

public key pki = (gxi , g
1/xi

1) to another public key pkj = (gxj , g
1/xj

1) associated
with condition w, consists of two parts: a partial re-encryption key rki,j = gxj/xi

and a condition key cki,w = H3(w, pki)1/xi . A second level ciphertext CTi =
(A, B, C, D) under pki is
(

gr
1, (gxi)r , H2 (e(g, g)r)⊕ (m‖r′)⊕H4 (e(Qi, H3(w, pki))r) , H5(A, B, C)r

)

,

while a first level ciphertext CTj = (B′, C) re-encrypted from pki to pkj is
(

e(g, gskj)r, H2(e(g, g)r)⊕ (m‖r′)) .

http://eprint.iacr.org/
http://eprint.iacr.org/

164 J. Weng et al.

According to the security model defined in [6], for a target public key pki∗ and
a target condition w∗, even if the adversary has corrupted another user’s secret
key skj , he is still allowed to obtain one (not both) of the partial re-encryption
key rki∗ ,j and the condition key cki∗,w∗ . Now, we explain how an adversary can
break the CCA-security of Weng et al.’s scheme: she first obtains skj = xj and

rki∗,j = gxj/xi∗ , and then computes g1/xi∗ =
(

gxj/xi∗
)1/xj . Next, she calculates

e(g, g)r as e
(

(gxi∗)r , g1/xi∗
)

, where (gxi∗)r is exactly the second component of
the second level ciphertext. Using e(g, g)r, she can certainly decrypt the first
level ciphertext to obtain the underlying plaintext.

B Security Proof for Theorem 1

Proof. Suppose algorithm B is given a DBDH instance (g, ga, gb, gc, Z) ∈ G4×GT

with unknown a, b, c ∈R Zq. B’s goal is to decide whether Z = e(g, g)abc. B works
by interacting with adversary A in the IND-2CPRE-CCA game as follows:

Initialize Stage. B gives param = ((q, G, GT , e), g, n, H1, · · · , H5) to A.
Here H1, · · · , H5 are the random oracles controlled by B and can be adaptively
asked by A at any time. B maintains five hash lists H list

i with i ∈ {1, · · · , 5},
which are initially empty, and responds the random oracle queries for A as shown
in Figure 1.

– H1(m, R): If this query already appears on H list
1 in a tuple (m, R, r), return r. Otherwise,

choose r ∈R Zq, add the tuple (m, R, r) to the H list
1 and respond with H1(m, R) = r.

– H2(pki, w): If this query already appears on the H list
2 , then return the predefined value.

Otherwise, choose μ, μ′ ∈R Zq, and use the Coron’s proof technique [22] to flip a biased coin
coini ∈ {0, 1} that yields 1 with probability θ and 0 with probability 1 − θ. If coini = 0,
define H2(pki, w) = gμ · (gb)−μ′

; otherwise, define H2(pki, w) = gμ+μ′
. Finally, add the tuple

(pki, w, coini, μ, μ′) to the list H list
2 and respond with H2(pki, w).

– H3(R): If this query already appears on the H list
3 , then return the predefined value. Otherwise,

choose ω ∈R {0, 1}n, add the tuple (R, ω) to the H list
3 and respond with H3(R) = ω.

– H4(C1, C2, C3): If this query already appears on the H list
4 , then return the predefined value.

Otherwise, choose γ ∈R Zq, add the tuple (C1, C2, C3, γ) to the H list
4 and respond with

H4(C1, C2, C3) = gγ .
– H5(V): If this query already appears on the H list

5 , then return the predefined value. Otherwise,
choose λ ∈R Zq, add the tuple (V, λ) to the H list

5 and respond with H5(V) = λ.

Fig. 1. The Simulations for Hi for i = 1, · · · , 5

Find Stage. In this stage, adversary A issues a series of queries subject to
the restrictions of the IND-2CPRE-CCA game. B maintains a list K list which is
initially empty, and answers these queries for A as follows:

– Uncorrupted key generation oracle Ou(i): Algorithm B first picks xi ∈R Zq,
and defines pki = (ga)xi . Next, it sets ci = 0 and adds the tuple (pki, xi, ci)
to the K list. Finally, it returns pki to adversary A.

– Corrupted key generation oracle Oc(j): B first picks xj ∈R Zq and defines
pkj = gxj and cj = 1. Next, it adds the tuple (pkj , xj , cj) to the K list and
returns (pkj , xj) to adversary A.

Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security 165

– Re-encryption key oracleOrk(pki, w, pkj): B first recovers (pki, w, coini, μ, μ′)
from the H list

2 and tuples (pki, xi, ci) and (pkj , xj , cj) from the K list. Next,
it constructs the re-encryption key rk

i
w→j

for adversary A according to the
following situations:
• Case 1: ci = 1, it means that ski = xi. Using ski, B can certainly generate

the re-encryption key rk
i

w→j
for A as in algorithm ReKeyGen.

• Case 2: (ci = 0 ∧ cj = 1 ∧ coini = 1), it means that ski = axi, skj = xj

and H2(pki, w) = gμ+μ′
. B picks s ∈R Zq, computes rk2 = pks

i , rk1 =
(ga)−(μ+μ′+xj ·s·H5((ga)xi·s·xj))xi and returns (rk1, rk2) to A. Observe that
this is indeed a valid re-encryption key, since

rk1 = (ga)−(μ+μ′+xj·s·H5((ga)xi·s·xj))xi =
(

gμ+μ′+skj ·s·H5(pk
s·ski
j)

)−a·xi

=
(

gμ+μ′
gskj ·s·H5(pk

s·ski
j)

)−ski

=
(

H2(pki, w)pk
s·H5(pk

s·ski
j)

j

)−ski

.

• Case 3: (ci = 0∧ cj = 0∧ coini = 1), it means that ski = axi, skj = axj

and H2(pki, w) = gμ+μ′
. B picks s′ ∈R Zq, computes rk2 = gxis

′
, rk1 =

(ga)−(μ+μ′+xjs′·H5(pk
s′ ·xi
j))xi , and returns (rk1, rk2) to A. Observe that,

letting s = s′
a , one can see that it is indeed a valid re-encryption key.

• Case 4: (ci = 0∧ cj = 0∧ coini = 0), it means that ski = axi, skj = axj

and H2(pki, w) = gμ · (gb)−μ′
. B picks s ∈R Zq, computes rk2 = pks

i ,
rk1 = pk−u

i , and returns returns rk
i

w→j
= (rk1, rk2) to A. Observe that,

if implicitly let H5(pks·ski

j) = b·μ′

s·a·xj
(note that pks·ski

j is unknown to A,
since ski, skj and s are all unknown to him), we can easily see that this
is indeed a valid re-encryption key as required.
• Case 5: (ci = 0∧ cj = 1∧ coini = 0), B outputs β′ ∈R {0, 1} and aborts.

– Re-encryption oracle Ore(pki, pkj, (w, CTi)): B parses CTi =
(C1, C2, C3, C4). If Eq. (4) does not hold, it outputs ⊥; otherwise, it
works as follows:
1. Recover (pki, xi, ci) and (pkj , xj , cj) from the K list and

(pki, w, coini, μ, μ′) from the H list
2 .

2. If (ci = 0 ∧ cj = 1 ∧ coini = 0) does not hold, then B can construct the
re-encryption key rk

i
w→j

as in the re-encryption key query, and then can
certainly generate the first level ciphertext CTj for A.

3. Otherwise, it implies that cj = 1, i.e., skj = xj . In this case, B
picks s ∈R Zq and generates the first level ciphertext as follows:
search whether there exists a tuple (m, R, r) ∈ H list

1 such that gr
1 =

C1, R ·e(pki, H2(pki, w))r = C2, m⊕H3(R) = C3 and H4(C1, C2, C3)r =
C4 hold. If yes, pick s ∈R Zq, compute C4 = pks

i , C2 = R ·
e
(

C1, pk
s·H5(C

xj
4)

i

)−xj , and return CTj = (C1, C2, C3, C4) as the first
level ciphertext to A; otherwise return ⊥. Note that we can store s in
a table to keep the consistency of s for the same re-encryption queries
Ore(pki, pkj , (w, ∗)).

166 J. Weng et al.

– First level decryption oracle O1d(pkj , CT): B first recovers (pkj , xj , cj) from
the K list. If cj = 1 (meaning skj = xj), B decrypts the ciphertext using
skj and returns the plaintext to A. Otherwise, it searches H list

1 and H list
5 to

see whether there exist a tuple (m, R, r) ∈ H list
1 and a tuple (V, λ) ∈ H list

5

such that gr = C1, R · e
(

C4, pkj

)−r·λ
= C2, m⊕H3(R) = C3 and e(V, g) =

e(C4, pkj). If yes, return m to A; else return ⊥.

Challenge Stage. When A decides that Find stage is over, it outputs a target
public key pki∗ , a condition w∗ and two equal-length messages m0, m1 ∈ {0, 1}n.
B responds as follows:

1. Recover (pki∗ , xi∗ , ci∗) from the K list and (pki∗ , w
∗, coini∗ , μ, μ′) from the

H list
2 . If coini∗ = 1, output a random bit β′ ∈R {0, 1} and aborts. Otherwise,

it means that H2(pki∗ , w∗) = gμ · (gb)−μ′
.

2. Flip a random coin δ ∈R {0, 1} and pick R∗ ∈R GT . Compute C∗
1 = gc,

C∗
2 = R∗ · Z−μ′·xi∗ · e(ga, gc)xi∗μ and C∗

3 = mδ ⊕H3(R∗).
3. Issue an H4 query on (C∗

1 , C∗
2 , C∗

3) to obtain the tuple (C∗
1 , C∗

2 , C∗
3 , γ∗), and

define C∗
4 = (gc)γ∗

.
4. Finally, give CT∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4) to A.

Note that by the above construction, if Z = e(g, g)abc, CT∗ is indeed a valid
ciphertext for mδ under pki∗ and w∗. To see this, implicit letting H1(mδ, R

∗) = c,
we have

C∗
2 = R∗ · Z−μ′·xi∗ · e(ga, gc)xi∗μ = R∗ · e(g, g)−μ′·abc·xi∗ · e(ga, gc)xi∗μ

= R∗ · e(ga·xi∗ , gμg−μ′·b)c = R∗ · e(pki∗ , H2(pki∗ , w
∗))c,

C∗
1 = gc, C∗

3 = mδ ⊕H3(R∗), C∗
4 = (gc)γ∗

=
(

gγ∗)b = H4(C∗
1 , C∗

2 , C∗
3)c.

On the other hand, when Z is uniform and independent in GT , the challenge
ciphertext CT∗ is independent of δ in the adversary’s view.

Guess Stage. A continues to issue the rest of queries as in Find stage, with the
restrictions described in the IND-2CPRE-CCA game. B responds to these queries
as in Find stage.

Output Stage. Eventually, adversaryA returns a guess δ′ ∈ {0, 1} to B. If δ′ = δ,
B outputs β′ = 1; otherwise, B outputs β′ = 0.

This completes the description of the simulation. Due to space limit, in the
full paper, we will show that B’s advantage against the DBDH assumption is
at least ε′ ≥ ε

ė(1+qrk) −
qH1+qH5+qre+qd

q , and B’s running time is bounded by
t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + qH1qre + (qH1 + qH5)qd)).
�

	Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security
	Introduction
	Our Motivations and Results
	Related Work

	Model of Conditional Proxy Re-encryption
	Definition of C-PRE Systems
	Security Notions

	Proposed CCA-Secure C-PRE Scheme
	A First Attempt
	CCA-Secure C-PRE Scheme
	Security Analysis
	Comparisons

	Conclusions
	Cryptanalysis of Weng $et al.$'s C-PRE Scheme
	Security Proof for Theorem 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

