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ABSTRACT
This paper reviews several evaluation measures developed
for evaluating XML information retrieval (IR) systems. We
argue that these measures, some of which are currently in
use by the INitiative for the Evaluation of XML Retrieval
(INEX), are complicated, hard to understand, and hard to
explain to users of XML IR systems. To show the value
of keeping things simple, we report alternative evaluation
results of official evaluation runs submitted to INEX 2004
using simple metrics, and show its value for INEX.

1. INTRODUCTION
The INitiative for the Evaluation of XML Retrieval (INEX)
is a yearly evaluation effort aimed at providing an infras-
tructure and a framework for evaluating the performance of
retrieval systems that offer effective access to content that
is structured using extensible markup language (XML). As
such, INEX provides a large XML test collection and appro-
priate scoring methods for the evaluation of content-oriented
XML retrieval systems [6]. INEX was inspired largely by
ground-breaking work on laboratory-style evaluation of in-
formation retrieval (IR) systems developed in the Cranfield
experiments [17] and later in the Text REtrieval Conferences
(TREC) [18].

1.1 Measuring IR performance
Following the TREC paradigm, the effectiveness of infor-

mation retrieval systems is usually measured by the combi-
nation of precision and recall. Precision is defined by the
fraction of the retrieved items that is actually relevant. Re-
call is defined by the fraction of the relevant items that is
actually retrieved.

precision =
r

n
r: number of relevant items retrieved

n: number of items retrieved

recall =
r

R
R: total number of relevant items

Although precision and recall are defined for sets of items,
they are in practice used on ranked lists of documents. One
approach that is used in TREC is to report the precision of
documents at several document cut-off points, that is, the
precision at 10 documents retrieved, at 20 documents, etc.
These measures are easy to understand by the user of an IR
system. Furthermore, it makes good sense to average the
precision at 10 documents retrieved of a number of queries,
to arrive at an average precision at 10 documents over, say,

50 queries. Averaging over queries is essential, since we can-
not possibly draw conclusions on the performance of the
system on one query only. A second approach that is of-
ten used is to report precision at several recall points, so
the precision when the system retrieved 10% of the relevant
documents, precision when the system retrieved 20%, etc.
Usually a fixed number of recall points is used: 10%, 20%,
· · · , 100%. Often, there is also a need to arrive at a single
effectiveness measure averaged over both the ranked list and
the queries. One might for instance calculate the precision at
R (total number of known relevant documents for a query)
and average those measures over the queries (for different
values of R). This is called R-precision. One might also
calculate precision at each natural recall level for a query,
average those measures, and average the resulting measure
over all queries, so-called mean average precision [8]. These
approaches are implemented in an evaluation programme for
TREC [1].

1.2 Robertson’s compatibility argument
There has been a lot of debate in the past on evaluation

metrics, and there are various problems with precision and
recall [9, 2]: For instance, if there are only 10 known relevant
document for a topic, is it useful then to report the precision
at 20 documents retrieved which never exceeds 0.5? Or,
if there are 7 known relevant documents for a topic, what
would be the precision at 10% recall level? – the natural
levels of recall are in this case: 1/7, 2/7, · · · , 7/7, so we need
some form of interpolation. Or, does it make sense, once we
use interpolation, to average precision at 10% recall level
over, say, 50 queries if those queries have a widely varying
number of known relevant documents? etc.

When choosing an evaluation measure for a task, one
might take these problems and arguments into considera-
tion and make a personal decision. However, Robertson [15]
raises a convincing reason for researchers to not make these
personal decision unless there is a very good reason for them
to do so:

(. . . ) there is a strong compatibility argument
for researchers to use the same methods as each
other unless there is very good reason to depart
from the norm.

This raises the following question: Are there reasons for
INEX to depart from the norm? If so, what are those rea-
sons, and, are they good enough to make different decisions



than the researchers that paved the way of laboratory-style
IR system evaluation?

1.3 Is XML IR more complex for evaluation?
When using precision and recall, one at least has to make

the following two assumptions.

• relevance is a binary property (items are relevant or
not)

• the relevance of one item is independent of other items
in the collection.

Additionally, when using the methods described above for
measuring precision (and recall) for ranked lists, the follow-
ing assumptions are made.

• a user spends approximately the same constant time
on each retrieved element

• a user looks at one retrieved element after another from
the ranked list and stops at some (arbitrary) point.

These assumptions might not be true for XML IR: We
might be interested in more than just binary relevance (i.e.,
we are interested in specificity and exhaustiveness). The rel-
evance of an element cannot possibly be independent of, for
instance, its parent: XML elements overlap and are not sep-
arate units. Furthermore, the size of the retrieved elements
vary, so the time spent on each document is not a constant
value. A linear ordering of results might not be realistic as
the user would like to see all parts of the context document
and not jump from one document to the other.

Recent papers have proposed several new evaluation met-
rics that address the issues listed above. These metrics in-
corporate the size of XML elements [7], the time for reading
an XML element [4], user browsing behavior when searching
XML [13], take overlap or elements and the so-called over-
populated recall base into account [11, 12]. In this paper
we like to contribute to the evaluation metrics discussion of
the INEX methodology workshop by supporting the follow-
ing statement: “There already exists a plethora of metrics
so new metrics are not of interest, what is of interest is the
identification of what should be measured.”1 More specif-
ically, we emphasise the value of Robertson’s compatibility
argument in the discussion.

2. EVALUATION METRICS IN INEX
In this section we give an overview of the metrics used

for INEX 2002 – 2005, and depict some of the metrics pro-
posed for future usage. We start with relevance dimensions
used for the relevance assessments and in the specification
of quantisation functions used in these metrics.

2.1 Relevance dimensions
In INEX relevance assessments, two relevance dimensions

are used for evaluating XML elements: exhaustivity and
specificity. For most of the metrics, to produce the final
evaluation result, e.g., recall-precision graph, the two di-
mensional relevance assessments are mapped to one dimen-
sional relevance scale by employing a quantisation function,
fquant(e, s) : ES → [0, 1], where ES denotes the set of possi-
ble assessment pairs (e, s) : ES = {(0, 0), (1, 1), (1, 2), (1, 3),

1From the INEX Methodology Workshop call for papers.

(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}2. Each XML element
can be marginally (1), fairly (2), or highly (3) exhaustive or
specific, or not relevant (denoted with pair (0,0)).

2.2 INEX 2002 metric: inex eval
The INEX 2002 metric (also called inex eval) computes

the so-called precall measure, proposed by Raghavan et al.
[14], on returned XML elements using the probability that
the element viewed by the user is relevant (P (rel|retr)):

P (rel|retr)(x) =
x · n

x · n + eslx·n
(1)

where eslx·n denote the expected search length [3], i.e. the
expected number of non-relevant elements retrieved until
an arbitrary recall point x is reached, and n is the total
number of relevant elements with respect to a given topic.
The expected search length is specified using the following
formula:

eslx·n = j +
s · i

r + 1
(2)

where j is the total number of non-relevant elements in all
levels preceding the final level, s is the number of relevant
elements required from the final level to satisfy the recall
point, i is the number of non-relevant elements in the final
level, and r is the number of relevant elements in the final
level. The term level is used here to denote the set of ele-
ments that have the same rank in the retrieval process (see
weak ordering in [3]).

Two quantisation functions are used for mapping rele-
vance dimensions: fstrict (Equation 3) and fgeneralized (Equa-
tion 4). Strict quantisation function is used to evaluate re-
trieval methods with respect to their capability of retrieving
highly exhaustive and highly specific XML elements, while
general quantisation rewards methods that retrieve XML el-
ements according to their degree of relevance.

fstrict(s, e) =

 1 if e = 3 and s = 3,

0 otherwise
(3)

fgeneralized(s, e) =



1 if (e, s) = (3, 3),

0.75 if (e, s) ∈ {(2, 3), (3, {2, 1})},

0.5 if (e, s) ∈ {(1, 3), (2, {2, 1})},

0.25 if (e, s) ∈ {(1, 2), (1, 1)},

0 if (e, s) = (0, 0)
(4)

As can be seen in the definition of generalized quantisa-
tion function, this function favors exhaustivity over speci-
ficity. The question is does this follows the user request as
well as the assessment process on hierarchically structured
XML documents? We can ask ourselves among fairly and
marginally exhaustive and specific elements, which dimen-
sion is more important for the system’s effectiveness?

2Note that in INEX 2002 exhaustivity was termed relevance,
and instead of specificity a slightly different relevance dimen-
sion was used, termed coverage.



The features of INEX 2002 metric is that it calculates re-
call based on the full recall-base that contains large amounts
of overlapping elements. Additionally, INEX 2002 metrics
ignore possible overlap between result elements and rewards
the retrieval of a relevant component regardless if its part
or if it has been seen entirely. To resolve these problems
numerous metrics are proposed as we can see below.

2.3 INEX 2003 metric: inex eval ng
The INEX 2003 metrics (also called inex eval ng) tries to

overcome the overlapping problem of 2002 metrics by in-
corporating component size and overlap within the defini-
tion of recall and precision [7]. However it does not address
the problem overlapping XML elements in the assessments
results, i.e., overpopulated recall-base [12]. Overlap is sur-
passed by considering only the increment in text size of the
elements that are already seen. The metric assumes that
the relevant information is distributed uniformly through a
component which is a strong assumption that is not proven
correct in practice.

Recall and precision for inex eval ng measure are com-
puted as follows:

recallo =

∑k
i=1 e(ci) · |c′

i|
|ci|∑N

i=1 e(ci)
(5)

precisiono =

∑k
i=1 s(ci) · |c′i|∑k

i=1 |c′i|
(6)

where elements c1, c2, ..., cn represent a ranked result list,
N is the total number of elements in the collection, e(ci)
and s(ci) denote the quantised assessment values of element
ci according to the exhaustivity and specificity dimensions
respectively, |ci| denotes the size of the element, and |c′i| is
the size of the element that has not been seen by the user
previously. |c′i| can be computed as:

|c′i| = |ci −
⋃

c∈C[1,n−1]

(c)| (7)

where n is the rank position of |ci| and C[1, n− 1] is the set
of elements retrieved between the ranks [1, n− 1].

Quantisation functions are defined in such a way that they
provide separate mapping for exhaustivity and specificity:
f ′

quant(e) : E → [0, 1] and f ′
quant(s) : S → [0, 1]. For the

strict case the result of the quantisation functions is one
if e = 3 or s = 3, respectively. For the generalized case
quantisation functions are defined as: f ′

generalized(e) = e/3
and f ′

generalized(s) = s/3.
The problem of INEX 2003 metric is because relevance

dimensions are treated in isolation while they both are re-
quired in order to identify the most appropriate unit of re-
trieval according to the retrieval task definition [11].

2.4 INEX 2004 metric: specificity-oriented and
exhaustivity-oriented quantisation

Based on the discussion during INEX 2003 [11] on quan-
tisation functions and drawbacks of INEX 2003 metrics, for
strict quantisation two additional classes of exhaustivity-
oriented and specificity-oriented quantisation functions are
defined. Exhaustivity-oriented functions apply strict quan-
tisation with respect to the exhaustivity dimension, allowing

different degrees of specificity (Equation 8) or only fairly and
highly specific elements (Equation 9).

fe3 s321(s, e) =

 1 if s ∈ {3, 2, 1} and e = 3,

0 otherwise
(8)

fe3 s32(s, e) =

 1 if s ∈ {3, 2} and e = 3,

0 otherwise
(9)

Similarly, specificity-oriented functions apply strict quan-
tisation with respect to the specificity dimension, allowing
different degrees of exhaustivity (Equation 10) or only fairly
and highly exhaustive elements (Equation 11). However,
both quantisation function classes suffer from overlap prob-
lem.

fs3 e321(s, e) =

 1 if e ∈ {3, 2, 1} and s = 3,

0 otherwise
(10)

fs3 e32(s, e) =

 1 if e ∈ {3, 2} and s = 3,

0 otherwise
(11)

2.5 XCG: Extended Cumulative Gain
Criticizing INEX 2002 generalized quantisation function,

which is exhaustivity oriented, Kazai et al. [12] defined a
specificity-oriented quantisation function to address the fo-
cused retrieval. This quantisation function should better
reflect the user behavior and evaluation criterion for XML
retrieval as defined in INEX [5]. It assumes that the speci-
ficity plays more dominant role than exhaustivity:

f ′
generalized(s, e) =



1 if (e, s) = (3, 3),

0.9 if (e, s) = (2, 3),

0.75 if (e, s) = {(1, 3), (3, 2)},

0.5 if (e, s) = (2, 2),

0.25 if (e, s) = {(1, 2), (3, 1)},

0.1 if (e, s) = {(2, 1), (1, 1)},

0 if (e, s) = (0, 0)
(12)

The extended cumulative gain (XCG) measure is based on
cumulative gain (CG) measure [10]. The cumulative gain at
the rank i, CG[i], is computed as the sum of the relevance
scores, G[j], up to that rank:

CG[i] =

i∑
j=1

G[j] (13)

An ideal gain vector, I, is than computed by summing
rank values of all elements in the recall-base in decreasing-
order of their degree of relevance. By dividing the CG vec-
tors with the ideal vector I we obtain the normalized, nCG,



relevance measure. The area between the normalized ac-
tual and ideal curves represents the quality of a retrieval
approach.

Ideal recall base in extended cumulative gain metrics (XCG)
is formed by selecting result elements from the full recall-
base based on a given quantisation function and assuming
that the component that has the highest score on the rele-
vant XML path is chosen. In case two components on the
same path have the same score, the one deeper in the XML
tree is chosen (following the focused retrieval approach).
XCG then uses uses full recall-base to enable scoring of near
misses.

To define the relevance score of an element using XCG a
result-list dependent relevance-value function is used:

rv(ci) = f(quant(assess(ci))) (14)

where assess(ci) is a function that returns the assessment
value pair for the element ci, and quant(assess(ci)) is a
chosen quantisation function. Function f has three different
variants. In case current element has not been evaluated
before f(x) = x, where x = quant(assess(ci)). In case an
element has been seen before f(x) = (1 − α) · x. Here α
is a factor that simulates user behavior with respect to the
already seen elements. Finally, in case ci has been seen in

part then f(x) = α ·
∑m

j=1(rv(cj)·|cj |)
|cj |

+ (1 − α) · x, where

m is the number of ci’s relevant child nodes. Additional
normalization function is needed to disable that the total
score of any group of descendant nodes of an ideal result
element exceed the score achieved by retrieving the ideal
element.

Therefore, in the extended cumulative gain (XCG) [12] the
authors separated the model of user behavior from the actual
metric employed via the definition of a set of relevance value
(RV) functions, implementing scoring mechanisms based on
parameters including e.g., the relevance degree of a retrieved
element, the ratio of already viewed parts. Each RV func-
tion should model different user behaviors when searching
for information. However, the weakness of the XCG metric
is that the proper relevance-value function is still an open
issue, and in handling the situation when the actual and
ideal CG curves meet, as the interpretation of the curves
after this point requires further studies [12].

2.6 Discussion and some more metrics
The INEX metrics briefly explained in this section raise

some interesting issues. There might be some “very good
reasons” to use these measures if traditional measures do
not apply. Clearly, the section demonstrates that there is
a lot of debate on evaluation metrics for XML IR. In fact,
there are alternative proposals that are worth mentioning as
well.

Tolerance to Irrelevance
The main idea is that the retrieval system needs to provide
the user with an entry-point into the document that is close
to the relevant information [4]. Thus, the system should
produce the ranked list of entry points. The user reads the
(part of a) document starting from the entry-point until his
tolerance to irrelevance has been reached (specified using
tolerance to irrelevance parameter), and then continue with
the next ranked result. This measure aims at focused re-
trieval as it favors the systems that bring the user closer to

the relevant information and avoid returning too large frag-
ments. The drawback of this measure is that tolerance to
irrelevance parameter has to be calibrated based on experi-
mental studies.

Expected Ratio of Relevant Documents
The expected ratio of relevant documents (ERR) measure
provides an estimate of the expectation of the number of
relevant elements a user sees when looking at the list of the
first k returned elements, divided by the expectation of the
number of relevant elements a user would see when looking
at all elements in the collection [13]. The value of ERR for
each k between 1 and the total number of retrieved elements
is given by:

ERR =
E[NR|N = k]

E[NR|N = E]
(15)

where NR|N = k represents the total number of relevant ele-
ments the user has access to within the first k elements in the
result list, and NR|N = E represents the total number of rel-
evant elements within the whole collection. This computa-
tion is based on hypothetical user behavior assumption used
in traditional IR: (1) the user browse through the retrieved
document’s structure, jumping with a specific probability
to other elements in the structure, and (2) this browsing is
influenced by the specificity of the returned elements. The
drawback of this metric is the number of parameters that
need to be estimated, simulating user’s browsing behavior,
for relevance computation.

In the next section, we explore the usefulness of simple
evaluation metrics based on cut-offs in the ranked list.

3. ANALYSING INEX RUNS WITH SIMPLE
METRICS

In this section we will report simple evaluation results of
the official INEX 2004 runs using simple evaluation mea-
sures. We will take the following decisions.

• Our quantisation functions will map exhaustivity and
specificity to a binary measure: relevant or not rel-
evant. We do not use generalised quantisation mea-
sures.

• We will only report average precision at fixed cut-off
values. This way, at least for small cut-off values, our
measures do not depend on the total number of rele-
vant items, thereby partly avoiding the “overpopulated
recall base” problem.

• We will report set-based overlap for (the same) fixed
cut-off values, not only for the total retrieved list (usu-
ally 1500 elements) as was done for INEX 2004. This
way, we are able to distinguish a system that tries to
identify elements from different articles from one that
retrieves many from a single article.

The following quantisation functions were used: strict (Equa-
tion 3), exhaustive (Equation 8), specific (Equation 10), and
finally liberal (Equation 16).

fliberal(s, e) =

 1 if s ∈ {3, 2} or e ∈ {3, 2}

0 otherwise
(16)



Set-based overlap is defined as in INEX 2004 [5]:

|{e1 ∈ R|∃e2 ∈ R ∧ e1 6= e2 ∧ overlap(e1, e2)}|
|R| (17)

where R is a result list, overlap(e1, e2) is true if these two
elements, e1 and e2, are overlapping one another, i.e., if they
are nested.

The measures reported are easy to explain. For instance,
if for strict quantisation and cut-off value 10 we report pre-
cision 0.25 and overlap 0.6; then this would be communi-
cated to a user or potential customer as: “Of the first ten
retrieved elements, our system produces on average two-and-
a-half relevant element. On average, six out of ten elements
overlap with another element in the first ten.”

3.1 Content-only (CO) runs
The INEX content-only task provides queries without any

structural constraints. In this task, the system needs to
identify the most appropriate XML element for retrieval.
The task resembles that of users that want to search XML
data without knowing the schema or DTD. In this section,
we select the evaluation of some runs which we believe show
quite different behaviour when compared to each other.

Table 1 shows average precision values per cut-off value
for each quantisation function, as well as the overlap per
cut-off value of the best (best according to the official INEX
measures, but also the best according to the measures re-
ported in this section) INEX 2004 content-only (CO) run
(ibmhaifa3, CO-0.5-LAREFIENMENT). The evaluation shows that
among the first 5 elements retrieved there is at least 1 rel-
evant element (strict quantisation) up to almost 3 relevant
elements (liberal quantisation). Interestingly, the overlap is
quite high for all cut-off values. Overlap goes up steadily
for this run from 68% for cut-off 5 to more than 90% for the
whole list of 1500 documents. All runs with high precision
values have quite some overlap.3 Also interestingly, when
focussing on specificity (Equation 10), the precision values
do not change a lot for cut-offs 5, 10, 20 and 30 elements
retrieved; however, precision goes down for exhaustiveness-
oriented quantisation.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.200 0.577 0.359 0.329 0.682
10 0.162 0.547 0.297 0.329 0.768
20 0.146 0.506 0.266 0.306 0.799
30 0.134 0.477 0.226 0.313 0.847

100 0.087 0.337 0.142 0.239 0.894
200 0.062 0.244 0.099 0.175 0.908

1500 0.016 0.073 0.027 0.051 0.906

Table 1: Precision and overlap of CO run ibmhaifa3

Table 2 reports a run with different behaviour. This run,
lip63, bn-m1-eqt-porder-eul-o.df.t-parameters-00700), per-
forms worse than the previous run. INEX reported a similar
amount of overlap in the retrieved list (1500 elements) of this
run, however, the run does not show a lot of overlap for the
initial cut-off values.

3Our overlap for cut-off 1500 differ considerably from the
ones reported by INEX, maybe because we ignored results
for which no assessments were done, i.e., precision values
and overlap are calculated on the same set of 34 CO topics.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.112 0.341 0.194 0.200 0.059
10 0.085 0.306 0.159 0.168 0.094
20 0.063 0.246 0.115 0.138 0.125
30 0.055 0.230 0.102 0.131 0.170

100 0.041 0.164 0.073 0.102 0.364
200 0.028 0.127 0.055 0.077 0.509

1500 0.011 0.045 0.023 0.027 0.868

Table 2: Precision and overlap of CO run lip63

For all CO runs we investigated, overlap was either rela-
tively constant, or going up quickly when approaching the
1500 elements that could be submitted. Some runs (e.g.
ucalif0, (CO-3) did not submit 1500 elements for each topic.
For those runs, precision and overlap at 1500 were calcu-
lated by assuming that the elements that could have been
submitted, but were not submitted are not relevant and
do not overlap with another element in the retrieved list.
This leads to low overlap values at cut-off 1500 as shown in
Table 3. One might argue that if the precision at 1500 is
identical for two systems, the one that has stopped retriev-
ing when it expects no more relevant elements (and there-
fore has low overlap at 1500) should be preferred over one
that filled all slots with overlapping elements (resulting in
high overlap at 1500). Interestingly, this run initially per-
forms better on exhaustivity-oriented quantisation than on
specificity-oriented quantisation.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.172 0.382 0.300 0.218 0.700
10 0.135 0.318 0.235 0.185 0.656
20 0.094 0.262 0.175 0.150 0.707
30 0.072 0.222 0.138 0.130 0.714

100 0.034 0.134 0.068 0.083 0.711
200 0.019 0.085 0.040 0.053 0.592

1500 0.004 0.016 0.008 0.010 0.199

Table 3: Precision and overlap of run ucalif0

Finally, Table 4 shows run utampere0 (UTampere CO average),
the best run according to the XCG evaluation measure. This
run does not show any overlap at all. Interestingly, this run
performs better on specificity-oriented quantisation than on
exhaustivity-oriented quantisation.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.082 0.329 0.153 0.194 0.000
10 0.085 0.285 0.144 0.179 0.000
20 0.062 0.224 0.110 0.141 0.000
30 0.053 0.202 0.096 0.131 0.000

100 0.029 0.114 0.048 0.078 0.000
200 0.017 0.074 0.028 0.052 0.000

1500 0.004 0.019 0.007 0.013 0.000

Table 4: Precision and overlap of run utampere0

Table 5 shows the best-performing runs according to pre-
cision at 10 and precision at 100 averaged over all four quan-
tisations. The top 4 runs correspond with the top 4 as



cut-off at 10 cut-off at 100
run id precision overlap rank precision overlap rank

ibmhaifa3 0.334 0.768 1 0.201 0.894 1
ibmhaifa0 0.323 0.718 2 0.195 0.881 2
uwaterloo0 0.300 0.806 3 0.133 0.899 9
uamsterdam1 0.288 0.935 4 0.158 0.956 3
ibmhaifa4 0.285 0.665 5 0.153 0.853 4
cmu0 0.214 0.618 17 0.149 0.814 5
uwaterloo1 0.273 0.785 6 0.107 0.904 16
uamsterdam0 0.266 0.882 7 0.139 0.929 6
qutau0 0.263 0.888 8 0.126 0.942 11
cmu2 0.217 0.621 23 0.152 0.851 7

Table 5: Well-performing INEX 2004 CO runs: av-
erage precision at cut-off 10 and 100 averaged over
4 quantisations

presented by the official INEX measures. All runs have a
relatively high number of overlap at cut-off 10 and 100. It
seems to be impossible to achieve high precision without a
considerable amount of overlap in the retrieved elements. It
is therefore questionable if these top runs are also the most
useful from a user-perspective. A measure that somehow
combines precision and overlap in a single measure, for in-
stance the XCG measure, might be desirable.

3.2 Vague content-and-structure (VCAS) runs
The vague content-and-structure task (VCAS) provides

queries that besides query terms also contain structural con-
straints. This task resembles that of users or applications
that do know the schema or DTD, and want to search some
particular XML elements while formulating restrictions on
some (other) elements.

Table 6 shows average precision values per quantisation
function and cut-off value, and the overlap per cut-off value
of the best (best according to the official INEX measures)
INEX 2004 vague content-and-structure (VCAS) run (qutau4,
VCAS PS stop50K 049025). On all cuf-off points, the measured
overlap is quite high, going from initially 55% to 90 % over-
lap. The run shows almost equal performance of the specificity-
oriented quantisation and the exhaustiveness-oriented quan-
tisation methods.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.239 0.500 0.354 0.346 0.554
10 0.204 0.458 0.304 0.319 0.677
20 0.165 0.431 0.290 0.273 0.769
30 0.142 0.409 0.271 0.254 0.767

100 0.100 0.309 0.180 0.201 0.836
200 0.079 0.237 0.134 0.159 0.900

1500 0.030 0.087 0.047 0.060 0.830

Table 6: Precision and overlap of run qutau4

The run in Table 7 (utwente2, LMM-VCAS-Relax-0.35) shows
different behaviour. First, the overlap in this run never ex-
ceeds 30%. Second, the run seems to do somewhat better
on the specificity-oriented quantisation method than on the
exhaustiveness-oriented quantisation method. The run has
higher precision at the early cut-offs than the run from the
previous example, but lower precision at later cut-offs.

Interestingly, the best VCAS runs show similar absolute

average precision
cut-off strict liberal exhaust. specific overlap

5 0.246 0.515 0.339 0.377 0.177
10 0.223 0.496 0.300 0.365 0.215
20 0.190 0.444 0.250 0.325 0.240
30 0.146 0.383 0.201 0.269 0.242

100 0.080 0.240 0.107 0.162 0.280
200 0.059 0.162 0.074 0.117 0.297

1500 0.021 0.048 0.026 0.038 0.316

Table 7: Precision and overlap of run utwente2

performance figures as the best CO runs. Appearently, the
CO task is not inherently more difficult than the VCAS task.
However, whereas all good CO runs have high overlap, some
good VCAS runs actually have low overlap. This leads us
to the following hypothesis: Structured queries can be used
as a means to remove overlap (redundancy) from the result
list without loosing much precision.

Like the University of Tampere in the previous section,
the University of Amsterdam explicitly experimented with
systems that do not produce any overlap at all. The run in
Table 8 (uamsterdam4, UAms-CAS-T-FBack-NoOverl) has zero
overlap at all cut-off points. Interestingly, the same group
also produced a run with some small overlap and a run with
relatively high overlap that obtain higher precision than this
run. Removing all overlap seems to result in lower precision,
even at small element cut-off values.

average precision
cut-off strict liberal exhaust. specific overlap

5 0.115 0.400 0.239 0.262 0.000
10 0.096 0.335 0.192 0.204 0.000
20 0.106 0.281 0.169 0.196 0.000
30 0.100 0.263 0.155 0.186 0.000

100 0.066 0.171 0.095 0.126 0.000
200 0.047 0.124 0.067 0.093 0.000

1500 0.017 0.036 0.021 0.030 0.000

Table 8: Precision and overlap of run uamsterdam4

cut-off at 10 cut-off at 100
run id precision overlap rank precision overlap rank

utwente2 0.346 0.215 1 0.147 0.280 7
qutau3 0.338 0.915 2 0.180 0.924 3
uamsterdam5 0.332 0.239 3 0.146 0.283 9
qutau5 0.332 0.877 4 0.190 0.949 2
qutau4 0.321 0.677 5 0.196 0.836 1
utwente1 0.318 0.150 6 0.127 0.254 12
ibmhaifa1 0.316 0.465 7 0.150 0.539 6
uamsterdam3 0.296 0.877 9 0.172 0.918 4
cmu5 0.205 0.581 21 0.150 0.770 5

Table 9: Well-performing INEX 2004 VCAS runs:
average precision at cut-off 10 and 100 averaged over
4 quantisations

Table 9 shows the best-performing runs according to pre-
cision at 10 and precision at 100 averaged over all four quan-
tisations. For VCAS runs, there is quite some difference be-
tween the top precision at 10 runs and the top precision at
100 runs. The top 4 runs for precision at 100 correspond



with the top 4 as presented by the official INEX measures.
Interestingly, the runs show quite some variation in over-
lap. Some runs have an overlap of about 90 % (e.g. qutau4,
VCAS PS stop50K 049025), whereas others have an overlap of
no more than 30 % (e.g. utwente1, LMM-VCAS-Strict-0.35).

4. PROPOSALS FOR DISCUSSION
In this paper we showed some examples of how simple

evaluations measures can give insight in XML IR. We be-
lieve that precision at document cut-offs – which has been
part of the standard TREC evaluation metrics repertoire
since the very start of TREC in 1992 – is an elegant sim-
ple measure, that is easily explained. Following Robertson’s
compatibility argument [15], there is no good reason to not
report this measure in the official INEX evaluation reports.
Since it is part of standard practice in IR system evaluation,
this measure should be reported by INEX as well. Note that
precision at cut-offs suffers less from the “overpopulated re-
call base” problem since it does not use the total number of
relevant elements in its calculation.

In analogy to reporting the precision at cut-offs, we also
reported the overlap at cut-offs. Here, Robertson’s argu-
ment does not fully apply: overlap is a problem that is rel-
atively new to IR. Simply reporting overlap for the same
cut-offs as precision seems to be “closest” to the norm. In
future studies, we plan to investigate overlap further. For
instance, the current overlap definition seems, at least in
theory, somewhat unstable. Suppose a run retrieves 1499
non-overlapping elements and as its first element the collec-
tion root (let’s assume that would be possible) than the mea-
sured overlap would be 100 % at each cut-off point. Maybe
a probabilistic overlap version can be adopted such as the
probability that two elements in the list overlap.

Precision and overlap at cut-off points give some inter-
esting insights. Overlap varies a lot over different cut-off
points for some runs. It seems that overlap plays a differ-
ent role in the CO task than in the VCAS task. However,
overlap is not exclusively a problem in the CO task. In fact,
some interesting observations can be made on the relation
between overlap and precision in the VCAS task. All of this
is, fortunately, in line with the official results as reported by
INEX.

So, what about the existing INEX measures? We feel
that XML IR does not give a “very good reason” to prefer
Raghavan et al.’s [14] precall measure over the more stan-
dard precision at fixed recall points measures. Following
Robertson’s compatibility argument, choosing this measure
as the basis of inex eval seems an odd decision at the time
first INEX workshop, one might argue now that the measure
is retrospectively the norm for XML IR because of INEX.
Furthermore, Raghavan’s version of mean average precision
(using strict quantisation) is only a slight deviation of the
TREC version of mean average precision. We feel that the
alternatives briefly explained in Sections 2.3 and 2.5, that
is, the inex eval ng and XCG measures, are interesting for
XML IR. There might be some “very good reasons” to use
these new measures. However, in our (non-scientific) opinion
these measures are also hard to grasp for IR system users,
and even so for IR system researchers. In fact, computer
science researchers do not have much more skills than ordi-
nary users as nicely pointed out by Trotman and O’Keefe
[16] who showed that many researchers that participate in
INEX make errors in specifying their queries in XPath. Sim-

ilar to Trotman and O’Keefe’s query language problem, we
should ask ourselves: “What would be the simplest approach
that could possibly work?”
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