
An approach to relate business and application services using ISDL1

Dick Quartel, Remco Dijkman and Marten van Sinderen
Centre for Telematics and Information Technology

{D.A.C.Quartel, R.M.Dijkman, M.J.vanSinderen}@utwente.nl

1 This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which is sponsored by the Dutch
government under contract BSIK 03025.

Abstract

This paper presents a service-oriented design
approach that allows one to relate services modelled at
different levels of granularity during a design process,
such as business and application services. To relate these
service models we claim that a ‘concept gap’ and an
‘abstraction gap’ need to be bridged. The concept gap
represents the difference between the conceptual models
used to construct service models by different stakeholders
involved in the design process. The abstraction gap
represents the difference in abstraction level at which
service models are defined. Two techniques are presented
that bridge these gaps. Both techniques are based on the
Interaction System Design Language (ISDL). The paper
illustrates the use of both techniques through an example.

1. Introduction

Following object-orientation and component-
orientation, service-orientation is the current paradigm in
developing enterprise applications. Informally, the
service-oriented paradigm is characterized by the explicit
identification and description of the externally observable
behaviour, or service, of a software application.
Applications can then be integrated, based on the
description of their externally observable behaviour,
without the need for knowledge of their internal
functioning.

Interestingly, the same paradigm could also be applied
to objects and components, which are however at a finer
level of granularity than software applications, and to
businesses and business units, which are at a coarser level
of granularity. Therefore, the service-oriented paradigm
could be ideal to bridge the gap between services at
different levels of granularity, such as business and
application services. However, we claim that before this
can be done, two important issues must be addressed.

Firstly, stakeholders that focus on business services
may use another conceptual model than stakeholders that
focus on application services. We consider a conceptual
model as the set of concepts that are applied to represent,
or model, some system. For example, stakeholders in
application services may use ‘message-passing’ concepts
to represent interactions between service providers, while
stakeholders in business services may use concepts such
as ‘negotiation’ or ‘customer contact’. To relate business
services to application services this ‘concept gap’ must be
bridged.

Secondly, business services are generally considered at
higher abstraction levels than application services, both
with respect to the level of granularity and with respect to
the level of detail at which their interactions are described.
For example, a business service may describe the
interaction ‘register client’, while several application
services may be involved in this business service,
describing interactions like ‘enter client’s name’, ‘store
client’s address in database’, etc. To relate business
services to application services this ‘abstraction gap’ must
also be bridged.

This paper aims to relate business services to
application services. To achieve this aim, it describes an
approach to service-oriented design that explicitly
addresses the two ‘gaps’ outlined above. It presents a
technique, called conformance assessment, to assess that
some composition of services at a lower abstraction level
correctly implements a service at a higher abstraction
level. Also, it presents a technique to relate the different
conceptual models used by different stakeholders in a
service-oriented design process. We use the concepts and
conformance assessment technique from the Interaction
Systems Design Language (ISDL) [18, 19] as a basis for
bridging the gaps. We focus on behaviour concepts and
conformance assessment of behaviour.

The paper is further structured as follows. Section 2
describes the principles of our service-oriented design
approach. Section 3 presents three representative

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

conceptual models used by different stakeholders. Section
4 introduces ISDL, including a technique for conformance
assessment. Section 5 describes a technique to relate
different conceptual models via ISDL. Section 6 illustrates
the use of both techniques. And section 7 presents our
conclusions and future research.

2. Service-oriented design

The purpose of our service-oriented design approach is
to systematically design application support for business
processes. Several design milestones are distinguished,
each associated with its own conceptual model.

2.1 Design approach and milestones

A design process consists of a number of design steps
that can be ordered in various ways, such as top-down,
bottom-up, and iterative. Figure 1 illustrates the basic
characteristics of a service-oriented design step.

Service S

Service S1

Service S3

Service S2

conformance
relation

(de)composition

external perspective

internal perspective

Figure 1. External and internal perspectives

The basic design step distinguishes between an
external and internal system perspective. Here, a system
represents some entity that provides a service, e.g., a
business, application or software component. The external
system perspective corresponds to the perspective of the
system users. These users are only interested in the
functionality, or behaviour, provided by the system as a
whole. The system is considered as a black box, and the
externally observable behaviour of the system is called the
system's service. This service is defined by the
interactions between the system and its environment (the
service users) that the system is capable of supporting,
including the relationships between these interactions. The
internal system perspective corresponds to the perspective
of the system designers. This perspective shows how the
system is internally structured as a composition of parts.
These parts have to interact to fulfil the purpose of the
system as a whole. By considering each part as a system,
the external and internal perspectives can be applied again
to the system parts. This results in a process of repeated or
recursive decomposition, yielding several levels of
decomposition, also called levels of abstraction.

We assume that for each design step both the behaviour
of the service and the behaviour of its design are defined
completely. This allows one to assess the conformance
between the service specification and its design, since the
external behaviour of the design should correspond to the
service behaviour of the external perspective (as
illustrated by the dashed lines in Figure 1).

To structure the design process, we distinguish the
following design milestones, which are the result of one or
more design steps, representing a design or specification
that satisfies certain design objectives:
• business process model, which defines the activities

to be performed by one or more enterprises, and their
relationships;

• application service, which decomposes the business
process into the application and its environment, and
defines how the application supports the business
process through interactions with the environment;

• application design, which designs the application
service in terms of a composition of sub-services to
be provided by application building blocks; and

• application implementation, which implements the
design using a specific service computing technology
or platform.

A more elaborate discussion of our service-oriented
design approach can be found in [17].

2.2 Conceptual models and their relations

Since different stakeholders are involved in different
milestones, different conceptual models may be used for
these milestones. We distinguish three conceptual models
for the milestones from the previous subsection, as
illustrated in Figure 2. The application design concepts
address both the application service and the application
design milestone.

Business
Concepts

ISDL Basic
Concepts

Application
Implementation

Concepts

Application
Design

Concepts

concept
mapping

conformance
assessment
technique

Figure 2. Concept mapping via ISDL

To assess conformance between designs that are
constructed from different conceptual models, we need
conformance assessment techniques that can be applied to
different conceptual models. Depending on the number of
conceptual models and the complexity of their relations,
assessing conformance between conceptual models in
pairs may be inefficient. Therefore, we propose the

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

approach illustrated in Figure 2 [10]. In this approach
different conceptual models are related indirectly via
mappings onto a single, basic conceptual model; in this
way requiring the use of only a single conformance
assessment technique and associated tools. We propose
the concepts from ISDL as a basic conceptual model for
behaviour modelling. ISDL and its conformance
assessment technique are explained in section 4.
Mappings from the conceptual models to ISDL are
described in section 5.

Designers need modelling languages to express the
concepts from which they construct their models.
Languages are related to conceptual models via a concept
mapping. Figure 3 illustrates the relation between
conceptual models and languages. A language consists of
two parts: language concepts and a notation. Language
concepts define the abstract syntax and the semantics of a
language. A notation defines the textual or graphical
concrete syntax of a language. A notation is related to
language concepts via an interpretation mapping.
Language concepts are related to a notation via a
representation mapping.

Business
Concepts

ISDL Basic
Concepts

Application
Implementation

Concepts

Application
Design

Concepts

notation

concepts

Language

notation

concepts

Language

ISDL notationISDL dialect

interpretation representation

concept
mapping

concept mapping

notation

concepts

Language

Figure 3. Concepts and Languages

Two different approaches can be followed in choosing
a modelling language to express some conceptual model.

The first approach is to use an existing modelling
language, e.g., because one is familiar with it or tool
support is available. In this case one has to define a
mapping between that language and the concepts that it
represents.

The second approach is to use the modelling language
associated with the basic conceptual model, in our case
ISDL. Using this approach we may want to introduce
additional notational elements to represent the concepts

from the conceptual model in an intuitive and convenient
way. In this way we introduce a dialect of ISDL. An
example of an ISDL dialect for business process
modelling is Amber [12]. Added notational elements are
specializations of existing elements (similar to UML
stereotypes) or shorthands for compositions of notational
elements. In contrast to the first approach, a profile needs
to extend the representation and interpretation mappings,
but no concept mapping is needed.

Consequently, a choice between both approaches may
depend on the possibility and effort needed to relate a
language to concepts on one hand, and to extend the
representation and interpretation mappings on the other
hand.

3. Conceptual modelling

This section presents the conceptual models for
modelling business processes and applications. These
conceptual models are based on work described in [14]. In
addition, a conceptual model of BPEL is presented as an
example of a conceptual model at the application
implementation level.

3.1 Business concepts

Figure 4 depicts a conceptual model supporting
business process modelling. Concepts and their
relationships are represented using a class diagram.

Business
actor

Business
role

* +performs

1

Business
collaboration

Business
service

Business
interface

Business
task Business

function

Business
interaction

Business
contribution Business object Relation

+grouping

1..*

* *

1..*

+accesses2

+between
2

*

*

*

*

Business
behaviour

+identifies

Business
process

Business
event

Figure 4. Business concepts

A business actor represents some entity, such as a
person or organization, that can perform some business
role. A business role identifies some business behaviour.
A business behaviour consists of business functions,
which represent units of behaviour, i.e., pieces of
functionality or activities. Three types of business
functions are distinguished. A business task is performed

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

by a single business role. A business interaction is
performed by two or more business roles in cooperation.
And a business contribution represents the participation of
a single business role in this cooperation. A specific type
of contribution is a business event, representing that the
environment can trigger the business behaviour.

A business object represents some entity that is
manipulated by a business function, e.g., some
information or product. Relations between business
functions determine the possible orders in which they can
be performed. Due to space limitations we do not
elaborate on the relation concept, and therefore declare it
as abstract. [1] defines relations commonly used to specify
the possible orders in which activities can be performed.

To support the service-oriented paradigm, the concept
of business service is identified explicitly as a type of
business role. A business service provides one or more
business interfaces, each consisting of one or more
business contributions, allowing interaction with the
business environment. Business functionality is provided
to the environment through these interactions. A business
collaboration represents a composition of interacting
business services (roles).

3.2 Application design concepts

Figure 5 depicts a conceptual model supporting
application modelling. Where possible, its structure is
aligned with the business conceptual model.

Application
component

Application
behaviour

* +performs

1

Application
composition

Application
service

Application
interface

Application
function

Application
activity

Application
interaction

Application
contribution

Operation
contribution

Operation
invocation

Operation
return Data object

Relation

+grouping

1..*

* *

1..*

+accesses

2

0..1

+between

1

2

*

*

*

*

Operation
call

Operation
1

Operation
execution

1

1

1

Figure 5. Application concepts

An application component represents some entity that
performs application behaviour, e.g., a software
component, application or information system. An
application behaviour consists of application activities

that represent units of application behaviour. Three types
of application activities are distinguished. An application
function is performed by a single application behaviour.
An application interaction is performed by two or more
application behaviours in cooperation. And an application
contribution represents the participation of a single
behaviour in this cooperation. A type of interaction
commonly used is an operation, which consists of two
parts: an operation call (at the client side) and an
operation execution (at the server side). Both parts consist
of an invocation, and possibly a return.

An application service provides one or more
application interfaces, each consisting of one or more
application contributions, allowing interaction with the
environment. Application functionality is provided to the
environment through these interactions. An application
composition represents a composition of interacting
application services.

3.3 Application implementation concepts

Figure 6 depicts the high-level structure of the
conceptual model underlying BPEL4WS [3]. This
language is used to implement business processes by
coordinating the collaboration between web-services,
possibly from different enterprises.

Scope

ProcessActivity

Variable

CompensationHandler

Receive

FaultHandler

CorrelationSet

EventHandler

PartnerLink

Reply

Invoke

Event

Structured

Basic

Message

1*

*

*

*

*

1..*

*

*

Figure 6. BPEL concepts

An activity represents some unit of behaviour that is
performed by a business process. A structured activity is
composed of other activities and defines their possible
ordering. Examples of structured activities are sequence,
switch and flow. A basic activity represents an elementary
unit of behaviour. Examples of basic activities are invoke,
reply and receive, which are used to call web services.

An activity is defined within a scope. This scope may
associate with the activity (i) correlation sets, which are
used to correlate messages of the conversation in which
the activity is involved, (ii) variables, which are used to
hold data and messages, (iii) fault handlers, which handle
error situations, (iv) compensation handlers, which allow

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

one to reverse the effects of the associated activity, and (v)
event handlers, which allow the concurrent handling of
events. A specific type of event is a message event, which
is similar to a receive activity.

A process represents some business process. We
consider a process as a type of activity, i.e., the top-level
activity. In addition, it defines partner links, representing
the interfaces and roles of the business partners involved
in the business process.

4. ISDL

The Interaction Systems Design Language (ISDL) is
aimed at modelling distributed systems at higher
abstraction levels. In particular, we use ISDL for business
process and distributed application design [13, 18, 19].

We have chosen to use ISDL, because it provides a
small, but expressive set of basic and generic concepts for
behaviour modelling, aimed at modelling the behaviour of
systems from varying domains and at successive
abstraction levels. The semantics of ISDL has been
defined formally, and a method for conformance
assessment has been defined. Furthermore, an integrated
editor and simulator is available, and tools supporting
conformance assessment and model-to-model (code)
transformations are being developed.

4.1 Concepts and notation

Figure 7 depicts part of the behaviour conceptual
model of ISDL, including the entity concept. Figure 8
shows how these concepts are represented.

Entity

Behaviour

* +performs

1

Constraint-
oriented

composition

Action

Activity

Interaction

Interaction
contribution

Attribute

Causality
condition

*

*

*

2..*

*

*

1

+
refers

1 *

*

1

+has

Causality-
oriented

composition

Point

Entry
point

Exit
point

Parameter

Entry point
dependency

1

1

1+has

+
refers

*

*

+refers

+has

11

*

* *

Figure 7. ISDL concepts

The entity concept represents a system (part) that can
perform some behaviour. A behaviour is essentially a set

of causally related activities. An activity represents some
unit of behaviour that is atomic, i.e., cannot be split at the
abstraction level at which it is defined. Furthermore, an
activity either happens, in which case reference can be
made to its result, or does not happen at all, in which case
no reference can be made to any result, not even to partial
results. We distinguish three types of activities. An action
is performed by a single behaviour (entity). An interaction
is performed by two or more behaviours in cooperation.
An interaction is expressed as two or more connected
interaction contributions, which represent the
participation of the involved behaviours.

a ab ab

(v) start condition of a (vi) enabling condition b of a (vii) disabling condition b of a

b

c

a

b

c

a

a

b

c

a

b

c

(viii) a depends on
the occurrences of
b and c

(ix) a depends on the
occurrence of b or c

(x) choice between a and b: a
depends on the occurrence of c
and the non-occurrence of b

(xi) shorthand for
choice relation
between a and b

B

a

(i) action a

a a

(iii) interaction
contribution a

a

(ii) interactions a and b

b b

b

Information i; Time t;
Location l
“[“ constraints “]”

(iv) attributes

(xii) disabling relation between
a and b: either b occurs and
disables a, or b occurs after a

a

b

c

a

b

c

(xiii) shorthand for
disabling relation
between a and b

(xiv) behaviour

B1
B2 b2

(xvi) behaviour
instantiation

Figure 8. ISDL language elements

An activity can have attributes to represent the relevant
characteristics of the occurrence of the real-world activity
being modelled. Predefined attributes are the information,
time and location attribute (see Figure 8 (iv)), representing
the activity result (e.g., some information or product), the
time of occurrence at which the result is available, and the
location where the result is available, respectively.
Constraints can be defined on the possible attribute
values. These constraints also specify the relation between
attribute values established in causally dependent
activities. ISDL does not prescribe a language for defining
attribute types and constraints, but provides bindings to
existing languages that can be used for that purpose.
Currently, bindings to Z, Java and Q exist.

Relations between activities are modelled by causality
conditions. Each activity has a causality condition, which
defines how this activity causally depends on other
activities. An activity is enabled, i.e., allowed to occur, if
its causality condition is satisfied. Three types of basic
causality conditions are identified as illustrated in Figure
8: (v) the start condition represents that activity a is
enabled from the beginning of some behaviour and
independent of any other activity, (vi) enabling condition
b represents that activity b must have occurred before a

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

can occur, and (vii) disabling condition ¬b represents that
activity b must not have occurred before nor
simultaneously with a to enable the occurrence of b. These
elementary conditions can be combined using the and- and
or-operator to represent more complex conditions. Figure
8 depicts some simple examples.

Containment of one behaviour by another (the
composite), is represented by behaviour instantiation. A
behaviour instantiation represents that some behaviour
instance is created in the context of the behaviour that
contains the instantiation.

Client

ShopProvider

I_Shopping s

checkout

pay

add

I_Shopping se

Article a

Cart c

Cart c

c = add(e.c, a)

e

Cart c

I_Payment p

Cart c [c = s.x.c]
e

pay
Price p [p = c.priceOf()]

Article a
[a = “CD”]

add

Price p

ee

checkout
Cart c

x

c = x.cc = e.c

x

Figure 9. Behaviour composition in ISDL

Behaviours in a composite behaviour can be related
using: (i) constraint-oriented composition: interactions
that relate the interaction contributions of the component
behaviours; and/or (ii) causality-oriented composition:
entry and exit points that represent a causality condition
entering a behaviour or a causality condition exiting a
behaviour, respectively. The condition that an entry point
represents is associated to it via an entry point
dependency. Entry and exit points are represented by
triangles that point into or out of a behaviour,
respectively. ‘Attributes’ of points are called parameters.
Interaction contributions of a component behaviour can
contribute to interactions of their composite behaviour.
This is represented by drawing a line between the
interaction contributions of the component and interaction
contributions of the composite. Figure 9 depicts a
composite behaviour in ISDL. It shows two behaviours
that are related by interactions. The ShopProvider

behaviour is a composite of two interface behaviours. For
example, interface I_Shopping allows a client to add
articles to its shopping cart and to check out. The interface
behaviours contribute to the interaction contributions of
the provider behaviour (represented by the circle segments
in gray), and are related by an enabling condition that

exits one behaviour and enters the other. Normally, we
represent a behaviour and its instantiation separately (so in
Figure 9 there would e.g. be a behaviour I_Shopping and an
instantiation s). For brevity, we represent them as one.

4.2 Conformance assessment

A method has been defined for ISDL to assess the
conformance of an abstract behaviour to a concrete
behaviour that refines the abstract behaviour. For a
detailed explanation of this method we refer to [18].
Section 6 presents an example

Figure 10 illustrates our approach to conformance
assessment. The (concrete) service design adds design
information to the (abstract) service specification, e.g., the
interactions between the constituent sub-services, or the
refinement of an abstract activity into smaller, more
concrete activities. To assess conformance, we abstract
from the added design information. After abstracting from
this information, the obtained abstraction should be
equivalent to the original service specification. The
particular notion of equivalence being applied, determines
the type of service refinements (decompositions) that are
considered correct. We assume that the occurrence of each
abstract activity corresponds to the occurrence of one or
more concrete activities. This assumption makes it
possible to compare the abstract behaviour with the
concrete behaviour. Concrete activities that correspond to
abstract activities are called reference activities, since they
are considered reference points in the concrete behaviour
for assessing conformance. Concrete activities that are not
reference activities are called inserted activities, since
they are inserted during behaviour refinement.

Service
Specification

Service
Design

Refinement

Abstraction of
service design

Abstraction

Comparison

(adding design
information)

(removing design
information)

(equivalent?)

Figure 10. Conformance assessment

Two elementary types of behaviour refinement are
distinguished: activity refinement and causality
refinement.

Activity refinement allows one to model in more detail
a real-world activity that is represented by a single
abstract activity. This activity is decomposed into a
concrete activity structure, which consists of multiple
related, more concrete (sub-)activities. The concrete
activity structure makes its result available through the
occurrence and associated attributes of one or more of its
final activities, which are the reference activities that
correspond to the original abstract activity. A concrete

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

activity structure can make its result available through the
occurrence of (i) a single final activity, (ii) a conjunction
of multiple, independent final activities, (iii) a disjunction
of multiple, alternative final activities, or (iv) a
combination of these options.

Causality refinement allows one to model the relations
between abstract activities in more detail through adding
inserted activities. Abstract activities are not further
detailed, and therefore correspond to a single reference
activity. Causality refinement should obey the following
conformance criteria: (i) an indirect relation between
reference activities defined via an inserted activity in the
concrete behaviour must be equivalent to the relation
defined directly between the corresponding reference
activities in the abstract behaviour; and (ii) similarly, an
indirect relation between attributes must be equivalent to
the direct relation.

Rules have been defined to obtain the abstraction of a
behaviour that has been obtained through activity or
causality refinement. These rules are explained in [18].

5. ISDL profiles

This section describes the mapping of the conceptual
models from section 3 onto ISDL, indicating that ISDL is
at least expressive enough to represent those conceptual
models. A complete definition of the mappings falls
outside the scope of this paper.

5.1 Business and application concepts

The three types of business functions and application
activities distinguished in Figure 4 and Figure 5,
respectively, can be mapped onto actions, interactions and
interaction contributions. For example, Figure 11 shows
two alternative ISDL models of a business task, depending
on whether (i) one is only interested in the task result, or
(ii) also in the period during which it is executed.

task

Information result;
Time t;

end

Time t

start

Information result; Time t;
[end.t – start.t = period]

(ii) business task (period)

(i) business task (result)

Figure 11. Business task

Relations between business functions and application
activities can be modelled using causality conditions in
ISDL. Business and data objects can be modelled using

activity attributes. Business behaviours (roles) and
application behaviours are mapped onto ISDL behaviours.
Business collaborations and application compositions are
modelled as interacting ISDL behaviours using constraint-
oriented composition. Business and application services
are represented by ISDL behaviours having interaction
contributions and, possibly, actions. These interaction
contributions may be grouped into business or application
interfaces by introducing a sub-behaviour for each group
of interaction contributions. These sub-behaviours are
composed using causality-oriented composition, such that
relations between interfaces are represented by entry and
exit points. An example is given in Figure 9.

5.2 BPEL concepts

BPEL activities can be modelled in ISDL using
compositions of actions, interaction contributions,
causality conditions and behaviours. The scope of an
activity can be represented by a composite behaviour in
ISDL that contains the activity. This behaviour may
instantiate other behaviours representing fault,
compensation and event handlers. Figure 12 illustrates the
containment relationship between these behaviours,
abstracting from the causal relations between them.

Activity scope

Activity

CompensationHandler

FaultHandler

EventHandler

Figure 12. Activity scope in ISDL

A fault handler behaviour is enabled by an error
activity representing the occurrence of some error
situation. The ISDL disabling and choice relation can be
used to model the disruption of the scoped activity by the
error activity. A compensation handler behaviour is
enabled by the occurrence of the scoped activity, such that
it can refer to the activity result. In addition, this
behaviour depends on some other activity that initiates the
compensation and reverses the established result. An event
handler behaviour consists of interaction contributions,
representing events that can be triggered by the
environment. BPEL variables are represented by activity
attributes and entry/exit point parameters.

Correlation between messages is modelled in ISDL
using constraint-oriented composition of interaction
contributions and causal relations between these

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

contributions. Since interaction contributions are uniquely
identified correlation is implicit. Only in case a behaviour
can have multiple instances of the same interaction
contribution explicit correlation may be required, which
can be modelled using attributes.

Figure 13 depicts an ISDL model of one-way message
passing. Because ISDL adopts a synchronous interaction
model, the activity of sending and receiving the message
is modelled separately, making the role of middleware
explicit. A shorthand is introduced to represent message
passing directly in ISDL.

receiversender middleware

send send receive receive

receiversender

send receive

(i) one-way message passing, modelling
the role of middleware explicitly

(ii) shorthand for one-way message passing,
abstracting from the role of middleware

Figure 13. One-way message passing

A BPEL process is modelled by the top-level
behaviour of a composite behaviour in ISDL. Partner links
are modelled through constraint-oriented composition of
the business partner behaviours.

6. Example

This section presents parts of the design of a web-shop
application. The aim of this example is to illustrate how
business and application services can be related in our
service-oriented design approach.

UML Activity
diagrams

Business
Concepts

ISDL Basic
Concepts

Application
Implementation

Concepts

Application
Design

Concepts

concept
mapping

conformance
assessment
technique

ISDL
dialect

BPEL

concept
mapping

Figure 14. Applied conceptual models

Figure 14 depicts the modelling languages that are used
to model these services. The web shop business process is

modelled by a UML Activity diagram. A dialect of ISDL
that comprises composite concepts to represent frequently
occuring constructs of basic concepts is used to model the
web shop application service and its design. And BPEL is
used to model part of the implementation.

6.1 Business process

Figure 15 depicts a UML activity diagram of a web-
shop business process. Activity select represents the
selection and addition of articles to the client’s shopping
cart, followed by a request from the client to checkout.
The web shop coordinates the payment and ordering of the
articles. In case of success, the checkout request is
accepted, and logistics is responsible for receiving,
packing and delivering the articles. The client may cancel
the order until the articles are packed. A checkout is
rejected in case payment or ordering fails. In the latter
case and in case of cancellation, the client gets a refund.

WebShopClient Logistics

select

checkout

cancel

accept

reject

refund
deliver

receive

pay

order

ok

!ok ok

!ok

pack

Figure 15. Web-shop business process

This example shows a typical use of activity diagrams,
identifying business roles (and actors), business tasks and
flow relations. Interactions between business roles are not
considered, although some tasks require the involvement
of two business roles. In general, such tasks are assigned
to the role that is ‘most responsible’ or ‘takes the
initiative’. Furthermore, interactions in activity diagrams
would be limited to message passing, which does not
allow one to model interactions at a high abstraction level
representing more complex negotiations.

Figure 16 depicts an alternative ISDL model that
represents the interactions between the business roles
explicitly. For example, activity checkout is an interaction

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

between a client and the web shop, in which the contents
of the shopping cart is established. ISDL allows one to
model the constraints each role has on this contents,
without modelling how the negotiation on these
constraints takes place, e.g., through a complex pattern of
message passing. In this example, we added the simple
constraint that the client wants to shop for a maximum
amount of money and the web shop only accepts orders
for some minimum amount. Interactions inform and ready

are introduced to represent that the web shop has to
inform logistics about the new order and, vice versa, that
the order has been packed. A filled diamond represents an
and-split (concurrency) in ISDL.

Figure 16. Interactions between business roles

We assume here that the web shop needs to be
supported by some application. Therefore, the WebShop

behaviour defines the required application service. In this
respect, the model of Figure 15 may be considered a
model of the integrated application service, including its
relationship to certain business tasks in the application
environment. This model integrates the contributions of
the involved actors by modelling all activities as actions,
in this way abstracting from the individual responsibility
of each actor in the business process. Figure 17 depicts an
ISDL representation of this integrated behaviour,
abstracting from interactions inform and ready. The
behaviour has been structured using causality-oriented
composition, such that each sub-behaviour corresponds to
a swimlane in the activity diagram. Since causality-
oriented composition is a pure syntactic operation in
ISDL, and therefore no interactions are modelled between
sub-behaviours, the integrated model does not define the
individual behaviour of actors. This allows one to focus
on what the web shop business process should do, and not
on how this can be done, or by whom.

The application service of Figure 16 can be obtained
from the integrated model by considering in which tasks
the application is either completely or partially involved.

Activities for which the application is completely
responsible are modelled as actions inside the web shop
behaviour. Activities for which the application is partially
responsible are modelled as interactions between the
application and the other actors involved.

Figure 17. Integrated web-shop behaviour

6.2 Application design

Figure 18 depicts a design for the web shop application
service. Three application components are distinguished,
each providing an application service that defines
application contributions, and possibly internal application
functions. The Payment service allows one to check the
status of a client’s account, credit and debit the account,
and send a notification about the account. The Ordering

service allows one to order articles, using a two-phase
commit pattern. The Coordinator service is responsible for
client interaction and coordinating the payment, ordering
and delivery of the articles.

Figure 18. Application design

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

Figure 19 depicts the composite (or integrated)
behaviour of the design, which is obtained by integrating
the interactions between the application components.

Figure 19. Integrated application design

This behaviour should conform to the application
service defined for the web shop in Figure 16. This can be
assessed using the method of section 4.2. Activities in
gray are inserted activities obtained through causality
refinement. Figure 20 depicts the behaviour that results
after abstracting from the inserted actions.

Figure 20. Abstraction from inserted actions

Three instances of activity refinement are used:
(i) status and debit refine abstract activity pay, with debit

being the (single) final activity;
(ii) rollback and commit refine abstract activity order,

forming a disjunction of final activities; and
(iii) cancelrej(ect) and cancelacc(ept) refine abstract

activity cancel, forming also a disjunction of final
activities.

Figure 21 depicts the behaviour that results after
replacing each final activity structure by the abstract
activity it refines.

Without proof, we state that applying the abstraction
rules to these refinements renders an abstract behaviour
that is equivalent, and thus conformant, to the WebShop

behaviour in Figure 16. This behaviour can be obtained
from the behaviour in Figure 21, after renaming action
credit to refund and removing the enabling relation between

actions inform and ready, while this relation is implied by
behaviour Logistics in Figure 16.

Figure 21. Abstraction from final actions

6.3 Application implementation

As an example, we consider the implementation of
interaction debit from Figure 18. In BPEL, this interaction
can be implemented using an invoke activity at the
Coordinator side, and a receive and reply activity at the
Payment side, as shown in Figure 22. Although this
involves two BPEL processes, one at the Coordinator side
and one at the Payment side, we represent them in one
figure.

<process name="DebitCoordinator"/>
 ...
 <invoke name="debit_invoke" operation="debit">
 <catch faultName="fault">
 ...
 </catch>
 </invoke>
 ...
</process>

<process name="DebitPayment"/>
 ...
 <sequence>
 <receive name="debit_receive"
 operation="debit"/>
 <switch>
 <case condition="...">
 <reply name="debit_reply"
 operation="debit"/>
 </case>
 <otherwise>
 <reply name="fault_send"
 operation="debit"
 faultName="fault"/>
 </otherwise>
 </switch>
 </sequence>
 ...
</process>

Figure 22. BPEL implementation of interaction debit

Figure 23 depicts an ISDL model of this
implementation. Interaction contributions debit_invokereq

and debit_invokersp represent the sending of the invoke
request and the receipt of the reply message, respectively.

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

Interaction contributions fault_send and fault_receive

represent the sending and receiving of a fault message in
case the debit operation fails. At the Coordinator side,
fault_receive may disable the occurrences of
debit_invokereq/rsp, but may not occur after debit_invokersp

has occurred. For brevity, activities and fault handlers are
not defined in separate behaviours as would be the case
when applying the rules from section 4.1 systematically.

Figure 23. Implementation of interaction debit

Activities debit_invokereq/rsp, debit_receive and
fault_receive are inserted activities obtained through
causality refinement. Activities debit_reply and fault_send

are alternative final activities of abstract activity debit,
such that a positive debit_reply corresponds to a successful
debit, and a negative debit_reply or fault_send corresponds
to an unsuccessful debit. Assuming the BPEL semantics is
captured properly, Figure 23 would be a correct
implementation of interaction debit.

7. Conclusions

We have described a service-oriented design approach
to relate business and application models that are
produced at successive abstraction levels and are possibly
constructed from different conceptual models. This
approach consists of two ISDL-based (meta-)modelling
techniques. First, we have explained how ISDL profiles
can be used to relate different conceptual models used by
different stakeholders, including the modelling languages
the stakeholders use to express them. More work is
needed on the precise and complete definition of these
profiles. Second, a technique is provided to assess the
conformance of ISDL models. The combination of this
technique with ISDL profiles allows one to relate any two
models produced in the design process. Besides using
ISDL as underlying conceptual model, we believe ISDL is
also suited to be used directly as a modelling language,
possibly by introducing one or more dialects.

Various research groups have proposed languages for
service-oriented design [4, 5, 7, 16]. [16] also supports a
form of conformance verification. Our work extends this
work, because we describe how different modelling
languages in the design process can be related and
because we consider modelling at higher levels of

abstraction. Our work complements the work on design
processes for service-oriented design [2, 8], because we
take a more precise (formal) approach to modelling and
conformance verification. Finally, design languages have
been proposed to graphically represent (XML-based)
service descriptions (see e.g. [6, 15]). Our work
contributes to this area, because we also consider higher
abstraction levels. We refer to [9] for a more detailed
overview of related work.

Currently, our work focuses on the development of
techniques and associated tools to support our service-
oriented design approach, based on ISDL. An integrated
editor and simulator is available for use [13]. The
simulator allows a designer to “step through” an ISDL
behaviour, by allowing one to simulate in each step the
execution of an action or interaction for which the
causality condition is satisfied. A prototype tool that
calculates the abstraction rules for causality and activity
refinement exists. Further, we are working on tools to
relate and transform meta-models to facilitate the
implementation of ISDL profiles. An ISDL profile for
BPEL, including some preliminary results on an ISDL-to-
BPEL/WSDL model transformation have been presented
in [11]. In addition, we plan to develop profiles for UML
activity and state diagrams.

8. References

[1] W. van der Aalst, et al. Workflow patterns. Distributed and
Parallel Databases, 14(3):5–51, July 2003.
[2] G. Alonso, et al. Web Services: Concepts, Architectures
and Applications. Springer, 2003.
[3] BEA Systems, Microsoft, IBM, and SAP. Business process
execution language for web services (BPEL4WS) version 1.1.
http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, May
2003.
[4] B. Benattallah, et al. Conceptual modeling of web service
conversations. In Proc. of the 15th Int. Conf. on Advanced
Information Systems (CAiSE), Klagenfurt, Austria, 2003.
Springer.
[5] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv
environment for web services composition. IEEE Internet
Computing, 7(1):40–48, Jan/Feb. 2003.
[6] BPMI. Business process modeling language (BPML)
version 1.0. http://www.bpmi.org/bpml-spec.esp, Nov. 2002.
[7] T. Bultan, et al. Conversation specification: A new
approach to design and analysis of e-service composition. In
Proc. of the Int. Conf. on the World Wide Web (WWW),
Budapest, Hungary, May 2003.
[8] C. Bussler. B2B integration - concepts and architecture.
Springer, 2003.
[9] R. Dijkman and M. Dumas. Service-oriented design: a
multi-viewpoint approach. In: International Journal of
Cooperative Information Systems 13(4), pp. 337-368, 2004.
[10] R. Dijkman, et al. An Approach to Relate Viewpoints and
Modeling Languages. In Proceedings of the 7th IEEE

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

Enterprise Distributed Object Computing (EDOC) Conference,
Brisbane, Australia, pp. 14-27, 2003.
[11] T. Dirgahayu. Model-Driven Engineering of Web Service
Compositions: A Transformation from ISDL to BPEL, M.Sc.
thesis, University of Twente, The Netherlands, July, 2005.
[12] H. Eertink, et al. A business process design language. In
Proc. of the World Congress on Formal Methods, 1999.
[13] ISDL home. http://isdl.ctit.utwente.nl/, n.d.
[14] H. Jonkers, e.a. Concepts for Modelling Enterprise
Architectures. Int. Journal of Cooperative Information Systems,
vol. 13, no. 3, Sept. 2004, pp. 257-287.
[15] K. Mantell. From UML to BPEL. http://www-
106.ibm.com/developerworks/webservices/library/ws-uml2bpel/,
2003.
[16] M. Mecella, et al. Modeling e-service orchestration through
Petri nets. In Proc. of the 3rd Intl. Workshop on Tech-nologies
for E-Services (TES), pp. 38–47. Springer, Sept. 2002.
[17] D. Quartel, et al. Methodological support for service-
oriented design with ISDL. In Proc. of the 2nd Int. Conf. on
Service Oriented Computing, New York City, NY, USA, 2004.
[18] D. Quartel, et al. On architectural support for behavior
refinement in distributed systems design. Journal of Integrated
Design and Process Science, 6(1), March 2002.
[19] D. Quartel, et al. On the role of basic design concepts in
behaviour structuring. Computer Networks and ISDN Systems,
29:413–436, 1997.

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

