A Logic for Constraint-based Security Protocol Analysis

Ricardo Corin
University of Twente, The Netherlands

Ari Saptawijaya*
University of Indonesia, Indonesia

Sandro Etalle
University of Twente, The Netherlands

Abstract

We propose PS-LTL, a pure-past security linear tempo-
ral logic that allows the specification of a variety of authen-
tication, secrecy and data freshness properties. Further-
more, we present a sound and complete decision procedure
to establish the validity of security properties for symbolic
execution traces, and show the integration with constraint-
based analysis techniques.

1 Introduction

The communication via a shared medium, like the Inter-
net, is inherently insecure: anyone has access to en route
messages and can potentially eavesdrop or even manipulate
the ongoing communication. Security protocols are dis-
tributed programs specifically designed to achieve secure
communication over such media, typically exchanging mes-
sages constructed using cryptographic operations.

Security protocols are difficult to design correctly, hence
their analysis is critical. A successful analysis model is the
Dolev Yao model [17], in which the attacker has complete
network control and ideal cryptography is assumed. The
model is attractive because it has an appropriate level of
abstraction, as many attacks are independent of the under-
lying details of the cryptographic operations. Moreover, the
model can be easily formalized using languages and tools
based on formal methods (e.g. [5, 26, 24, 23, 15]). For
the case of analysis with a bounded number of protocol
instances (and also allowing the attacker to use composed
keys), the security problem is known to be decidable [29].
In this setting, constraint solving approaches (originally
presented by Millen and Shmatikov [28] and later extended
and improved [10, 1, 13, 21]) are efficient and effective,
since instead of considering all possible traces (i.e. proto-
col executions) only evaluate a finite number of symbolic

*Part of this work was done while the author was affiliated to University
of Twente.

traces in a lazy fashion.

Unfortunately, constraint-based verification systems are
relatively weak when it comes to specifying the properties
one wants to check. Typically, for each security property
an ad-hoc recipe is given, which amounts to modifying the
protocol instance with particular tests that capture viola-
tions of the property under analysis. For example, to check
authentication [28], one has to craft a protocol instance in
which some participant is present but not its corresponding
party, and observe whether the participant can still finish its
run. This is coarse-grained and cumbersome to implement.
(Later, Millen [27] implemented a fixed, built-in notion of
authentication in his Prolog verifier.) Checking secrecy is
also done ad-hoc and in a restrictive manner, by adding an
artificial protocol role which expects a secret no other par-
ticipant would send.

In this paper we remedy this situation by proposing a
dedicated language to specify security properties. The lan-
guage is expressive and flexible, and allows the specifica-
tion of complex properties in a clean and intuitive manner,
fairly separated from the protocol being analyzed. More
specifically, our contribution is twofold:

e First, we develop PS-LTL, a language to specify se-
curity properties based on linear temporal logic (LTL)
with pure-past operators. As we shall see, our lan-
guage provides adequate flexibility, allowing one to
specify several security properties like authentica-
tion ([23, 12]) (including aliveness, weak agreement
and non-injective agreement), secrecy (standard se-
crecy [2] and perfect forward secrecy [16]) and also
data freshness [9]. We also present a preliminary study
of denial of service (DoS) [25] within our language.

e While the semantics of PS-LTL is defined as usual on
concrete (variable-free) traces, constraint-based proto-
col verifiers generate symbolic traces which contain
constrained variables (i.e. variables which may be in-
stantiated only with values the attacker can compute).
We present a decision procedure which allows to check

a relevant subset (that covers all the properties of in-
terest) on the symbolic traces produced by constraint
solving systems. Moreover, we show the soundness
and completeness of our decision procedure. Finally,
we implement the procedure using Prolog into our pro-
tocol verification tool thereby providing a full verifica-
tion system (an online demo is available[11]) where we
verify several protocols (at present, more than twenty
protocols from the Clark and Jacob library [6]).

To the best of our knowledge, in the context of
constraint-based methods our proposal is the first lan-
guage for the specification of security properties which is
equipped with a sound and complete procedure for evalu-
ating formulas against a symbolic trace. Moreover, besides
the theoretical value of our results we believe that our con-
tribution has also practical significance, as protocol design-
ers can use our approach to systematically engineer and de-
bug protocols during the early design phases.

Paper Structure We review the protocol model and the
constraint solving technique in Section 2. PS-LTL is pre-
sented in Section 3, along several example properties. Our
decision procedure is presented in Section 4. Section 5 dis-
cusses related work and finally Section 6 concludes the pa-
per. Example scenarios and proofs may be found in [8].

2 Protocol Model and Constraint Solving

We introduce some notation for the rest of the paper: first
the term algebra and intruder rules, then the protocol model
and finally constraint solving as introduced in [28].

2.1 Preliminaries

Term algebra and substitutions Messages are repre-
sented as terms in a free algebra 7 generated by the op-
erators in Table 1 (left), from an enumerable set of vari-
ables V (denoted by uppercase letters A, B, Na, K, ...),
and an enumerable set of constants C (denoted by lower-
case a, b, na,k,...), representing the principal identities,
nonces and keys. (We do not consider different rypes, al-
though it would be straightforward to do so.) A special con-
stant e € C is distinguished to denote the intruder’s identity.
We have constructors for representing public keys, pair-
ing, message hashing, symmetric and asymmetric encryp-
tion, and signature. Private keys in asymmetric encryption
are not modelled in the term algebra since we assume that
these keys are never part of messages in protocols. (This
assumption is realistic, as every protocol we consider does
not send its private key in messages.) For readability, we
simply write (¢1,%o,...,t,—1,t,) to denote multiple pair-
ing (tl, (tQ, ey (tnfl,tn) ..))

For ¢ < j, the integer interval {i,s + 1,...,5 — 1,5}
is denoted as [i ... j]. The set of ground terms, denoted by
T, is generated like 7 above but only from constants C
and excluding V. When t € 77, we say that ¢ is ground,
otherwise it is non-ground. The variables of a term t are
denoted as var(t).

Substitutions (denoted by o, p,~,...) are finite map-
pings from V to 7. Ground substitutions map V to 7 .
The domain of ¢ is denoted as dom(c). The empty sub-
stitution is denoted as €. Givenv € Vand t € 7, ['/v]
denotes the singleton substitution mapping of v to ¢. Given
aterm ¢ € 7 and a substitution o, to denotes the term re-
sulting from substituting each occurrence of v € dom(o) in
t by o(v). A term ¢’ is an instance of another term ¢ if there
exists o s.t. t' = to. The same terminology is used for the
(later introduced) events, protocol roles and traces.

Intruder model Rules are used to represent the abilities
of the intruder. Let A be a set of terms and ¢ a term, and
let £ be a rule label, stating the name of the rule. A rule is
denoted by A —, t. We work with the set of rules given in
Table 1 (right), where ¢; and ¢, are terms in 7. As usual, the
attacker is allowed to pair and split terms, hash, symmetri-
cally encrypt terms with any (possibly non-atomic) key and
decrypt symmetrically if the key is known. Public-key en-
cryption (penc) is modelled by allowing to encrypt with any
key. However, rule pdec only allows the asymmetric de-
cryption of a term encrypted with the attacker’s public key.
The attacker cannot decrypt any term encrypted with a dif-
ferent public key than his own, since we assume that private
keys are never leaked (as they do not take part of any mes-
sage). Moreover, the attacker can only sign terms using his
private key, represented in rule sig (here pk(e) is the public
key that is needed to verify the signature).

We now define F(T) (the fake operation), representing
the terms the intruder can generate from the set of ground
terms 1"

Definition 1. Let T be a set of ground terms, i.e. T C T ™.
Then, F(T) is defined as Uy, >0 F"™(T'), where F"(T) is the
set defined inductively as follows:
FNT) = T
FYT) = FYT)U{t|A —ytisaDY ruleand
ACFHT)}
Intuitively, when the attacker knows (e.g. has eaves-

dropped) a set of messages 7', then he can compute the set
of terms F (7).

2.2 Protocol Model
Our protocol model is related to the strand-space formal-

ism [31], although we sometimes use a different terminol-
ogy, e.g. we call system scenario what in strand spaces is

ti,to = ¢ constant in C
v variable in V
pk(ty) public key
(ti,t2) pair
h(tl) hash

{tl}tz
{t:1}s

sigy, (t2) signature

symmetric encryption
asymmetric encryption

{t1,t2} — pair (t1,t2)
{(t17t2)} 7 first tq

{(th t2)} —second 12

{t} —hash h(t)

{t17 tQ} —senc {tl}t2
{{tl}tza t2} —sdec tq

{tlv t2} _>penc {tl}g
{{tl}p_];(e)} —pdec t1

{t1} —sig Sigpk(e) (t1)

Table 1. Grammar for terms (left) and DY rules (right)

called a semibundle. In the following, we introduce events,
traces, protocol roles, and system scenarios.

Definition 2. An event is one of the following:

e A communication event is a pair {(a : m ob) where a,b
are variables or principal constants, o € {<,>} and
m is a term. a is called the active party, and b is the
passive party.

Since we will let the attacker intercept and forge com-
munication messages, the event {a : m »> b) reads
as “principal a sends message m with intended des-
tination b”. Symmetrically, (a : m < b) stands for
“principal a receives message m apparently from b”.

o A status event: p(dy,--- ,dy,), with d; a term for i €
[1...n] and p is a function symbol.

We consider three different, self-explanatory status
events: start, run and end (see Example 4).

Definition 3. A protocol role is a finite sequence of events
in which all events share the same active principal.

Given a protocol written in standard ‘a — b : m’ nota-
tion, it is straightforward to obtain its parametric protocol
roles', as shown in the next example.

Example 4. Consider the BAN Concrete Andrew Secure
RPC protocol [5], that aims to achieve mutual authentica-
tion of two agents a and b which share a long term key ki;.
(The last message is stripped out, since it is not necessary
for security.)

1. a — b (av na)
2.b—a {(nm kst)}kzt
3.a—b {na}k‘st

First a sends a message with her identity and a fresh nonce
ng. Upon receipt, b generates a short term session key kg,

A parametric role is the most general role; it can be later instantiated
in particular scenarios.

encrypts it along with a’s nonce n, using the long term key
ki, shared previously with a. Finally, a replies with her
nonce n, encrypted with the newly established key k. In
the following, we name protocol roles such as init, and resp,
denoting an initiator and a responder respectively. The
parametric protocol roles are as follows (We show the sta-
tus events in bold typeface).

init(Av Bv NAa Klta Kst) =
(start(A, B, initiator)
(A: (A, Ny)> B)
<A : {(NA’ KSt)}Klt < B>
run(A, B, initiator, N, Kj;, Kgt)
(A:{Na}tx,, > B)
end(A, B, initiator, Na, Ky, Kgt)
)

resp(A, B, Na, K3, Kg4) =

({ start(B, A, responder)
(B:(A,Na)<A)
run(B, A responder, N4, Kj;, Kgt)
<B : {(NAvKSt)}Ku I>A>
(B: {Na}x, < A)
end(B, A responder, Na, K, Kqt)

)

While start and end status events are located in the obvi-
ous places, the position where run status events are located
is more subtle. We locate these events as soon as the pro-
tocol role has received every piece of data relevant to the
protocol run (this becomes relevant in Section 3.2).

The next step consists of (partially) instantiating the
parametric roles, i.e. gathering several protocol roles to-
gether providing a particular system instance to be analysed.

Definition 5. A system scenario is a multiset of protocol
roles.

A system scenario determines which sessions are
present, and which agents play which roles.

Example 6. Consider the following simple system scenario,

where init and resp are the roles of Example 4:
SCO = {init(a7 B7 Na, klt; Kst)7 resp(Aa b7 NA7 klt7 kst)}

The initiator is played by a, using fresh nonce na and
shared key ki, while the responder is b, using the shared
key ki and the (freshly created) session key k.

Intuitively, this scenario is crafted so that, if the proto-
col is secure, then the unknown participants A and B can
only be played by a and b, respectively, as they are the only
participants that know their shared key k.

2.3 Trace Validity

A trace is a sequence of events. Traces can be obtained
from system scenarios by interleaving events from the pro-
tocol roles, and possibly instantiating variables. Formally,
v is an interleaving of Sc if v € ||Sc, for ||Sc defined
as: [|Sc = Ui pyese a.(]|(Se\ {{a 7)} U {r}), with
s.S¢c = {{sr) | r € Sc}. A prefix interleaving is a pre-
fix of a complete interleaving.

Definition 7. We say that a trace tr derives from scenario
Sc if there exists an instance Sc’ of Sc s.t. tr is a prefix
interleaving of Sc'.

Appending an event ev to trace tr is written (tr ev).
Functions last and length have the usual meaning:
last({tr ev)) = ev (last is undefined for the empty trace),
length({)) = 0 and length({tr ev)) = length(tr) + 1.
The prefix trace consisting of the first 7 events is denoted as
tr;, with tro = () and tr,,, = tr for m > length(tr).

The initial intruder knowledge set, denoted IK, is a
ground set of terms representing what the intruder knows
before starting the analysis of a specific scenario. This set
includes the intruder identity e, and may include other pub-
lic information, like principal identities or public keys.

When the protocol is executed in presence of the in-
truder, we apply the Dolev Yao model: (a) every message
sent by an honest principal is added to the intruder’s knowl-
edge, and (b) every message received by an honest princi-
pal is produced by the intruder using the knowledge accu-
mulated until that point. Formally, after the events in tr
have taken place, the knowledge of the intruder is equal to
IK U K (tr), with K (¢tr) defined as follows.

Definition 8. The (intruder gathered) knowledge of a trace
tr is given by K(tr) = {m | last(tr;) = (a : m>b),i €
[1...length(tr)]}.

Suppose we have a ground trace tr = (tr’ ev), with ev =
(a : m <b). We say that the event ev in ¢r is valid if the
intruder could produce m using IKU K (tr’). A whole trace
is valid when all its receive communication events are valid,
as shown in the next definition.

Definition 9. A ground trace tr is valid w.r.t. IK if for
each i € [0...length(tr) — 1], last(tr;41) = {a : m <
by implies that m € F (K (tr;) U IK).

2.4 Constraint Solving

Central to this paper is the notion of constraint and con-
straint set, as defined below.

Definition 10. A constraint is a pair m : K, of a term m
and a term set K (standing for knowledge). m : K is sim-
ple if m is a variable. A constraint set C'S' is a finite set
of constraints; CS' is simple if each constraint in the set is
simple.

A solution of a constraint set is a substitution that makes
every constraint to be solvable. We formalize this notion in
the next definition, using the fake operator F(-) introduced
in Definition 1.

Definition 11. We say that o is a solution of the constraint
m : K if mo and Ko are ground and mo € F(Ko).
m : K is solvable iff it has a solution. Also, y is a partial
solution of m : K iff m~y : K~ is solvable. Finally, a con-
straint set is solvable iff each of its constraints is solvable.

Millen and Shmatikov’s reduction algorithm (called P in
the following) [28] maps a constraint set C'S' to (a possibly
empty) set of pairs of simple constraints C'S’ and substitu-
tions 7. We do not explicitly define P here but rather use
it as a black box (since our extensions do not concern its
details), relying on P’s properties:

Theorem 12 ([28]%). (a) P always terminates. (b) Sound-
ness: If P applied to C'S outputs (C'S’,~), then ~ is a par-
tial solution of C'S, and every solution of C'S’ is also a so-
lution of C'Sv. (c) Completeness: If C'S is solvable with
solution o, then applying P to C'S returns some (C'S’,~)
such that, for some solution o' of CS’, 0 = vo'.

We now describe an algorithm (sketched in [10]) which
given a system scenario Scg and an initial intruder knowl-
edge IK non-deterministically produces a set of traces. This
procedure differs from the original given in [28] in that the
scenario is directly executed by incrementally adding events
during an execution and checking that the constraint set re-
mains solvable. This ensures that unsolvable interleavings
are never considered and thus results in a significant effi-
ciency gain.

Procedure 13. A state is a 4-tuple (Sc,IK,CS, tr), where
Scis a system scenario, IK is the initial intruder knowledge,
CS is a simple constraint set and tr is a (possibly non-
ground) trace. An execution step from state (Sc,IK,C'S, tr)
to (Sc',IK,CS',tr") is obtained by performing:

2We actually reformulated the result [28] using the terminology of par-
tial solutions as given in Definition 11.

1. Choose non-deterministically a non-empty role r &€
Sc. Let r = (ev r'). Consider the following cases
for ev:

(a) If ev is a send communication event or a status
event, let v be the empty substitution and C'S”
be CS.

(b) If ev is a receive communication event, i.e. ev =
(a : m < b), check that the intruder can generate
m using the knowledge K (tr) U IK, by applying
procedure P to CS U {m : (K(tr) UIK)}, ob-
taining a new simple constraint set C'S” and a
partial solution ~y (Note that there may be many
possible CS" and).

2. Let S¢’ := (Se\ {r} U {r'})y, CS’" := CS” and
tr! = (tryevy).

A run for Scy with IK is a sequence of execution steps start-
ing from state (Sco, IK, (), {)).

Every (and only!) valid traces (as defined above in Def-
inition 9) should be output in states of Procedure 13. The
formal statement of this result, along with its proof, appears
in [8, Theorem 2.3.6].

3 PS-LTL

We first introduce the syntax and semantics of PS-LTL
and then specify security properties with the language.

3.1 Syntax and Semantics

The syntax of PS-LTL is defined as follows.

Definition 14. PS-LTL formulas are generated by the fol-
lowing grammar:

¢ = true|false|p(dy,...,d,)]| learn(m)
| =g oNG| ¢V P|YP| PSP |Tv.0|Vv.p

where each d; (i € [1...n]) and m is either a variable in
V or a ground term in T™.

Standard formulas true, false, =¢, ¢ A ¢, ¢ V ¢ carry
the usual meaning. The formula p(dy,...,d,) is a status
event. (For simplicity and w.l.o.g. we allow d;s to be only
constant terms or variables.) learn(m) is a predicate stat-
ing that the intruder knows term m (we borrow the name
from NPATRL [30]). Y¢ means ‘yesterday ¢ held’, while
¢1S¢po means that ‘¢ held ever since a moment in which
¢2 held’. When v € V, we write Jv.¢ and Vv.¢ to bind v
in ¢, with the quantifiers carrying the usual meaning with
v ranging over terms. Other operators can be represented
using the above defined operators: ¢; — ¢ is defined as

—1 V ¢a; O¢ (once ¢) is a shorthand for true S ¢ and fi-
nally Ho (historically ¢) is a shorthand for -0—¢. For clar-
ity, we impose a precedence hierarchy for operators, where
unary operators bind stronger than binary operators. Op-
erators Y, O, and H bind equally strong and bind stronger
than —. The precedence hierarchy for binary operators is
S > A >V > —, where op; > ops means “op; binds
stronger than ops”. In the sequel, we assume that PS-LTL
formulas are closed (i.e. they contain no free variables), and
that each variable is quantified at most once. Also, we as-
sume that the variables occurring in a formula ¢ are disjoint
from the variables occurring in execution traces tr from the
considered system scenario (this can always be achieved by
alpha conversion).

Our semantics (tr, IK) = ¢ is defined for two different
cases: First, we define it when ¢r is a ground trace, which
we call concrete validity. Later (in Definition 17), we ex-
tend the semantics to the general case, in which ¢ contains
variables. This establishes symbolic validity. Given a trace
tr, we recall that ¢r; denotes its prefix trace consisting of
the first ¢ events.

Definition 15 (Concrete validity). Let ¢ be a closed PS-
LTL formula, tr be a ground trace and IK be an initial in-
truder knowledge. Then, (tr,IK) |= ¢ is defined in Table 2.

It is easy to see that the semantics of O and H coin-
cide with the intuitive ones, i.e. that (¢r,IK) = 0¢ iff
3 € [0,length(tr)] : (tr;,IK) = ¢, and (tr,IK) = Ho
iff Vi € [0,length(tr)] : (tr;,IK) E ¢. In fact, we can
also state and prove other standard results for LTL and infi-
nite traces, like the tautology Hp — O¢. Furthermore, we
can state some particular relations of PS-LTL, like the fol-
lowing proposition which intuitively shows that the intruder
never forgets information.

Proposition 16. For every ground trace tr, initial intruder
knowledge IK and message m:

(i) (tr,IK) |= learn(m) if (tr,IK) = O learn(m) iff
(tr,IK) = learn(m) S learn(m); and

(ii) (tr,IK) = Y learn(m) implies (tr,IK) |=
learn(m).

Proof. Straightforward from unfolding Definition 15 and
the monotonicity of F(-), ie. F(K(tr;) U IK) C
F(K(trj) UIK) for each i < j. O

3.2 Writing Security Properties with PS-
LTL

In this section we show how to specify several secu-
rity properties in PS-LTL for the BAN Concrete Andrew
Secure RPC protocol [5], shown in Example 4. In addi-
tion to this protocol we also have successfully used our

7dn) q(ela"°7em)

(tr,IK) |= true

(tr,IK) t~ false

(tr,IK) = p(dy,...,dy,) iff tr=(tr' q(e1,...,em)) and p(dy,...
(tr,IK) = learn(m) iff me F(K(tr) UIK)

(tr, IK) = = iff (tr,IK) £ ¢

(tr,IK) = Jv.p iff FeTt: @rIK) E [t/
(tr,IK) | Yv.p iff VeeTt: r,IK) E p[t/.]
(tr, IK) = 1 A 2 iff (tr,IK) = o1 and (¢, IK) = @9
(tr,IK) = @1 V @2 iff (tr,IK) |= ¢ or (tr,IK) = @2
(tr, IK) = v iff tr = (tr' ev) and (tr',IK) = ¢
(tr, IK) = ¢1Sp2 iff

3i € [0, length(tr)] : ((tr;,IK) = @2 A Vj € [i + 1, length(tr)] : (tr;,IK) = ¢1)

Table 2. Concrete validity (ir, IK) = ¢

tool properties for several other protocols, see [11] (we al-
ready analysed over twenty protocols from the Clark Jacob
library [7]).

3.2.1 Authentication

First we specify various forms of authentication as defined
in [23]. We cover all the variants except injective agree-
ment, which would require counting events in a trace. (In
principle, we could extend our system to cover injective
agreement, which would result on the ability to detect some
replay attacks on which injective agreement is violated but
non-injective agreement is satisfied.)

We detail the case of authentication of the initiator to a
responder, and do not show here the similar converse case.

Aliveness The aliveness property is the weakest form of
authentication in Lowe’s hierarchy:

A protocol guarantees to a responder B aliveness of another
principal A if, whenever B (acting as responder) completes
a run of the protocol, apparently with initiator A, then A
has previously been running the protocol.

Notice that A may have run the protocol with a principal
other than B. The aliveness of principal A to responder B
is shown in PS-LTL in Table 3 (1).

Caveat. As usual, we prevent the attacker e from record-
ing events in a protocol execution. However, as the at-
tacker may be involved in legitimate executions, there may
be “fake” attacks in which an honest participant talks to the
attacker e, who behaves honestly. For example, it could
be that in some scenario an initiator a talks to e and issues
the event end(a, e, ...), but there is no corresponding start
event (hence violating aliveness). We currently ignore such
“fake” attacks, as we also do with unrealistic type-flaw at-
tacks [20]. However, it would be easy to extend our lan-
guage to prevent such fake attacks from arising, by adding
an atomic predicate honest(X), which holds when X is not

e. Then, for example, we would write the aliveness prop-
erty as VA, B,.... 3B, R'. (end(B, A, responder,...) A
honest(A)) — 0 start(A, B', R')

Aliveness is violated for our protocol of Example 4 on a
scenario containing at least two protocol sessions (i.e. two
initiators and two responders). We run our tool on a suit-
able scenario and found a similar attack to the one found
by Lowe [22]. Furthermore, we also checked the aliveness
property for Lowe’s fixed version of BAN concrete Andrew
Secure RPC protocol [22], and found no attacks, confirming
the validity of Lowe’s fix.

Weak Agreement Weak agreement is slightly stronger
than aliveness:

A protocol guarantees to a responder B weak agreement
with another principal A if, whenever B (acting as respon-
der) completes a run of the protocol, apparently with ini-
tiator A, then A has previously been running the protocol,
apparently with B.

For this property, A may not necessarily have been acting
as initiator. We show this property expressed in PS-LTL in
Table 3 (2). Since weak agreement is stronger than alive-
ness, the attack mentioned above also applies.

Non-injective Agreement Non-injective agreement is
slightly stronger than weak agreement:

A protocol guarantees to a responder B non-injective
agreement with another principal A on a set of data items
D if, whenever B (acting as responder) completes a run of
the protocol, apparently with initiator A, then A has previ-
ously been running the protocol, apparently with B, A was
acting as initiator in his run, and the two principals agreed
on the data values corresponding to all the variables in D.

The property is formalized in PS-LTL in Table 3 (3) (Our
tool also discovers the attack against this property).

1. Aliveness: VA, B, D1, D2, D3. 3B’ R'. end(B, A, responder, D1, D2, D3) — O start(A, B', R')

2. Weak agreement: VA, B, D1, D2, D3. 3R’. end(B, A, responder, D1, D2, D3) — 0 start(A, B, R')

3. Non-injective agreement:

VA, B,D1,D2,D3. end(B, A, responder, D1, D2, D3) — 0 run(A, B, initiator, D1, D2, D3)

4. Perfect forward secrecy:

VA, B,N, Kj;. learn(Ky) A Y(0O (end(B, A, responder, N, Kj;, kst) A H —learn(kst))) — H —learn(kst)

5. Perfect forward secrecy (more efficient form):

VA, B,N, Kj;. learn(K) A Y(0O (end(B, A, responder, N, Kjz, kst) A —learn(kst))) — —learn(kst)

6. Freshness:

VA,Bl,Rl,Nl,Kl,K, BQ’R27N2’K2. Y(O €nd(A,Bl,R1,N1,K1,K)) d ﬂend(A, BQ7R27N27K2’K)

7. Denial of service: VA, B, D1, D2, D3. run(B, A, responder, D1, D2, D3) — 0 start(A, B, initiator).

Table 3. PS-LTL properties

3.2.2 Secrecy

We focus on standard secrecy and perfect forward secrecy.

Standard secrecy We define first the simple case of stan-
dard secrecy, which is the inability of an attacker to obtain
the value of the secret [2]. Recall scenario Scq of Example
6. The secrecy of the session key kg; can be checked by
the PS-LTL formula —learn(ks:), which does not find any
secrecy attack on Scy.

Perfect Forward Secrecy We now consider perfect for-
ward secrecy (PFS), as defined by Diffie, et al. [16]:

An (authenticated key exchange) protocol provides perfect
forward secrecy if disclosure of long-term secret keying ma-
terial does not compromise the secrecy of the exchanged
keys from earlier runs.

In Diffie et.al [16], the proposed Authenticated Diffie-
Hellman key exchange protocol is shown to preserve PFS,
since long term keys are only used to sign messages and are
never related to the session key derivation. This is not the
case for the RPC Andrew protocol and its variants, since the
short term session key is directly encrypted by the long term
key (see below for an example of a secure protocol).

The disclosure of long term secret keying material, e.g.
kit, can be realized by providing an additional protocol role,
which contains only one send event that leaks k;; to the in-
truder 3. The specification of PFS in PS-LTL needs to ex-
press that: (i) the leaking of the long term key k;; happens

3We could easily extend the learn predicate to give extra information
to the attacker, so we do not need to modify a scenario. Thus we would
have learn(m, K) with semantics (¢r,IK) |= learn(m, K) iff m €
FUIKUK(tr) U K).

after a protocol run has been completed, and at that time (ii)
the short term session key (ks in our example) was secret
but (iii) after the leaking of the long term key, the short term
key is learnt by the attacker. Our treatment of this property
is similar to Delicata and Schneider [14]. In Table 3 (4)
we express PFS; thanks to Proposition 16, we can rewrite
the property in a more efficient form, as shown in Table 3
(5). Our tool finds the straightforward attack quickly in an
appropriate scenario.

Discussion. In the definition of Diffie et al. there is a
division in time between the “present” (i.e. when the long-
term key is disclosed) and “past” (i.e. when the earlier runs
took place). In our specification, that moment in time is
given by the moment in which a session finishes succes-
fully, and an end event is recorded in the trace. However,
as an anonymous reviewer points out, it could be that a ses-
sion did not end succesfully, so it remains stuck without an
end event being recorded (due to some interaction with the
attacker). Then, the disclosure of the long-term key allows
the learning of a session key that would not have been pos-
sible in the normal run. It would certainly be interesting to
extend in the future our formulation to cover this case.

A secure protocol w.r.t. PFS Consider the protocol:

{(pk(’l”a), b)}ku
({Est Y prira)s {(A(Kst), a) by,)

This protocol is a modified version of the protocol due
to Boyd and Mathuria [4] that aims to meet perfect forward
secrecy.* Agents a and b share a long term key k;;. Agent
a generates a fresh asymmetric key pair in every protocol

l.a—b
2.b—a

“Note that the protocol provides only one-way authentication, that is
authentication of b to a.

run (indicated by a fresh r,) and discards it after the run
is completed (thus the key pair is ephemeral). In the first
message, a encrypts the public part pk(r,) together with b’s
identity with k;; and sends it to b. Upon receipt, b obtains
pk(r,) and then replies by encrypting the freshly generated
short term session key kg; with pk(r,) and encrypting the
hash of kg and a’s identity with k;;.

Although the disclosure of k;; after a completed protocol
run allows an attacker to impersonate a or b in the subse-
quent runs, it does not provide the attacker with the ability
to recover the session key k; from the previous run. This
session key can only be recovered using a’s private key from
the completed run (which has been discarded as soon as the
protocol run completes).

Assume that when the initiator ends it emits the event
end(A, B,initiator, Ra, Kji, Ks). We verified a scenario
in which the short term key chosen by the responder is ks,
and our tool found no attack, thus confirming the analysis
of a similar protocol by Delicata and Schneider [14].

3.2.3 Beyond Authentication and Secrecy

We now consider the novel specification of some further
properties. First we develop the property of data freshness,
that states that particular session data (e.g. a session key)
should be always fresh in a session. Then we consider the
study of a primitive notion of denial of service.

Data Freshness We state the data freshness property as
follows:

Data D is fresh whenever a principal A never completes a
run with another principal agreeing on D, if once in the
past A has already completed a protocol run with another
principal agreeing on the same data D.

The freshness PS-LTL property of a short term session key
K for the protocol of Example 4 is shown in Table 3 (6).
We run our tool to check the freshness of the session key
ks+ and obtained an attack similar to the previous aliveness
attack. In this attack, the session key ks, is used twice, i.e.
when a was acting as an initiator in one session and as a re-
sponder in the other session. Thus, it violates the freshness
of k. For Lowe’s fixed version of BAN concrete Andrew
Secure RPC protocol [22], no attack was found as expected.

Towards analysing Denial of Service attacks We now
sketch finally the specification of a property to analyse po-
tential vulnerabilities regarding denial of service (DoS) at-
tacks [25] (We plan to study this notion further as future
work.)

In the protocol of Example 4, the first message (a,n,)
can be generated cheaply by anyone (not necessarily by a).

Moreover, upon receiving this message b commits to per-
form several expensive operations (e.g. generating a session
key and allocating state for the running session).

To mount a DoS attack against b, an attacker needs to
start several sessions in which b reaches its run event (since
at that point b commiits to finishing the protocol, see Exam-
ple 4), but there is no corresponding effort done by a (so no
one is committed to finish any session with b). Note that the
attacker does not need to achieve that b finishes his execu-
tion (and emitting the end status event); the attacker needs
only that b emits its run event. Thus this property differs
from the authentication ones given above which always re-
quire b to emit its end event.

We model this indication of DoS attack in PS-LTL, by
specifying that if a responder b runs a session apparently
with a, then the honest initiator a has once started a session
with b, as shown in Table 3 (7).

We successfully use our tool to check this formula on a
single session and obtain a trace that indicates a potential
DoS attack. When we modify the protocol by encrypting
the first message using the long term key k;; (i.e. message 1
is {(a, n4) }x,,) we found no attack. Intuitively, this encryp-
tion allows only honest participants, who share k;;, to gen-
erate the first message (still, the attacker could replay mes-
sage 1 and continue mounting the DoS attack; this would be
detected by an injective analysis, as discussed in the begin-
ning of Section 3.2.1).

4 Deciding PS-LTL in Constraint Solving

The constraint-based Procedure 13 presented in Sec-
tion 2.4 outputs symbolic traces containing constrained vari-
ables. In this section we show how to decide validity of a
PS-LTL formula against such a symbolic trace. Since in
the previous section we defined validity (called concrete)
only w.r.t. ground traces, the first thing we need to do is to
extend the notion of validity for symbolic traces.

Definition 17 (Symbolic validity). Given a trace tr derived
from a system scenario Sc and the initial intruder knowl-
edge IK, we say that {tr,IK) = ¢ when for every valid
instance tr’ of tr, (tr' | IK) = ¢.

Let ¢ be a closed PS-LTL formula representing a secu-
rity property. We let A, = - be its corresponding attack
property. Given a symbolic trace ¢r and the initial intruder
knowledge /K, we now define a procedure D that tries to
find a valid ground instance ¢r’ of tr s.t. (tr',IK) = A,.
If D succeeds, tr’ represents a violation of ¢ (hence an at-
tack), since (tr',IK) = Ay iff (t',IK) [~ ¢, and thus
(tr,IK) £~ . On the other hand, if D fails, then we know
that there is no ¢’ s.t. (tr',IK) = A,. In other words,
for every ground instance ¢’ of tr, (¢tr',IK) E ¢, ie.
(tr,IK) = ¢. Thus D decides symbolic validity.

Our approach consists of two stages. We first translate
a closed PS-LTL formula ¢ into a (shown equivalent) ele-
mentary formula EF, using the transformation T described
next in Section 4.2. Then, we input the translated formula
to the decision procedure D presented in Section 4.3. Pro-
cedure D uses the ability to solve negated constraints, so
we start by defining these negated constraints and then pre-
senting a strategy to solve them.

4.1 Solving Negated Constraints

In Section 2.4 we consider “positive” constraints m : T,
since its solution decides whether there exists a substitution
o s.t. mo can be built from T'o. In the following we con-
sider negated constraints, whose solution decides whether
there exists a substitution o s.t. mao is not derivable from
To.

Definition 18. A negated constraint is denoted by —(m :
T), where m is aterm and T is a set of terms. o is a solution
of =(m : T) if mo & F(To), in which case we say that
—(m : T) is solvable.

If both m and T are ground, then procedure P (see The-
orem 12) can be used to solve —(m : T'):

Corollary 19. Let m be a ground term and let T be a set of
ground terms. Then —(m : T) is solvable iff P applied to
m : T fails.

Proof. By Theorem 12, P fails iff for all o, mo & F(To).
Since m : T is ground, we obtain that P fails ifft m ¢ F(T),
establishing the property. O

When P succeeds, we know that there exists a substitu-
tion o s.t. mo € F(To). So if P fails, we have that for
all substitutions o, mo ¢ F(T'o); However, what we are
trying to establish is whether there exists a substitution o
s.t. mo & F(To). In the case that m : T is ground, then
the two cases collapse and hence we can use Corollary 19.
However, when m or T is non ground, we cannot use P
straightforwardly.

Example 20. Consider the negated constraint ~({X}y :
{{secret1}secrets, €}). Applying procedure P to {{ X}y :
{{secret1}secrets, €}} succeeds, assigning secrety to X
and secrety to Y. However, the negated constraint is solv-
able, e.g. by assigning e to X and secrets to'Y.

Given a state (Sc,IK,C'S,tr) from Procedure 13 for a
run of input scenario Scy and /K and given a negated con-
straint ~(m : K (tr’) U IK)* for some term m and some ¢r’
prefix trace of ¢r, we are interested on finding a solution o
of both C'S and —(m : K (tr') U IK).

SFor readability we only consider one negated constraint; the extension
to the general case is straightforward.

We now present a simple strategy to solve C'S U —(m :
K (tr") UIK) when K (tr') is possibly non ground, although
m has to be ground. This solution is enough for our current
purposes, as all our security properties are covered; a solu-
tion for the general case is still a matter of current research.

Initially, we include a set of fresh constants to the at-
tacker knowledge, one for each variable occurring in the
input scenario Scg. More formally, we assume that the
initial intruder knowledge /K includes a set of constants
Cy = {cx | X € Vand X occursin Scg} (recall that V
is the set of variables) thus Cy, C IK. Cy, contains intruder
generated constants which do not occur in the input sce-
nario, and hence are never needed to to solve the positive
constraint solving phase of C'S (the use of these constants
is inspired by the work of Kéhler and Kiisters [21]).

Let oy be the substitution that maps every variable X to
the corresponding constant cx. Our solving strategy con-
sists on checking whether o is a solution of C'S U —(m :
K(tr") U IK). Intuitively, using a fresh constant for each
variable gives the best chances for the negated constraint
=(m : (K(tr') U IK)oy) to hold; any other arbitrary so-
Iution ¢ could map variables to terms which are more “re-
lated” to each other than the (completely unrelated) fresh
constants used by oy, thus giving more chances that the at-
tacker can derive m from (K (tr") U IK)o. This result is
formalized below, where T A S means that no term ¢t € T
occurs in any term s € S and T' A s means that no term
t € T occurs in s.

Theorem 21. Let (Sc,IK,CS,tr) be a state from Proce-
dure 13 where for each X : Tx € CS, Cy C Tx and
Cy A Tx \ Cy. Let tr' be a prefix of tr and —~(m :
K(tr") UIK) be a negated constraint, where m is ground
and Cy A m. There exists a substitution o solution of both
CS and —(m : K(tr")UIK) iff ov is a solution of both C'S
and —~(m : K(tr") UIK).

The result relies on a series of lemmas, as reported in [8,
Appendix A.2]. Below we briefly describe the proof (for
the non trivial case (=)).

It is easy to see that oy is a solution of C'S. We
then focus on establishing that oy is a solution of =(m :
K(tr") UIK), that is, m ¢ F(K(tr')oy U IK). Recall
that we assume Cy, C IK are intruder generated constants,
one per variable V' occurring in the input scenario, with the
substitution oy mapping each V' to ¢y. We consider a sim-
ilar set of constants Dy, with similar substitution py . Let
(5:{dx—>CX‘X€V}.

We first see that if m ¢ F((K(tr') U IK)o) then m ¢
Fs((K(tr") UIK)py)o’, for o’ the mapping that replaces
each occurrence of dx with Xo and Fjy like F with the
added rule {{¢1 }4,,t5} —cdec t1 When to0 = 5. This fol-
lows from the fact that Fs ((K (¢tr") UIK)py)o’ (the set that
results from replacing each variable X to dx, clausuring

it with F5 and then remapping back each dx to Xo) is
actually included in the original set F((K (tr') U IK)o).
Next, we show that m ¢ Fs((K(tr') U IK)py)o' im-
plies that m ¢ Fs((K(tr') U IK)py)d, i.e. if m is not
in the former set the m is not in the same set which dif-
fers only in that in the last step replaces dxs to cxs (the
d mapping) instead of applying ¢’. Then we establish that
m & F((K(tr') UIK)py0), (that is, if we replace dxs to
cxs inside the closure by d then we can “substitute” F by
F). Finally, we get the theorem m ¢ F((K (tr') UIK)oy),
since applying py and § is equivalent to applying oy .

Now, the problem of deciding whether a negated con-
straint ~(m : K) is solvable (where m is ground) is solved
by Theorem 21, which tells us that —=(m : K) is solvable iff
moy : Koy is not solvable, something that can be easily
checked using P as described in Corollary 19. As we see in
the next, the ability to solve negated constraints is one im-
portant ingredient to decide validity of PS-LTL formulas in
Section 4.3.
4.2 Translating PS-LTL

The first step in solving PS-LTL consists on applying
a transformation to simpler formulas called elementary for-
mulas. We first introduce elementary formulas, whose syn-
tax is given by the following definition:

Definition 22. Elementary formulas EF (ranged over by
w) are defined by the grammar:

mu=true|false|t; =ty |m: K|-7|wAT| 7V
7| Jvr | Vo

Here each t1, t5 and m is either a variable or a ground
term, K is a set of terms and v is a variable.

Let 7 be an EF formula. We define the left free variables
free;(m) and its right free variables free,(r), as follows:

free;(true) = free/(false) = 0

free(ty =t2) = war(ty)

free((m: K = wvar(m)

free,(—m) = free(n)

free/(m Am) = = free(m)U free/(r
freey(m V) = free(m)U free(n
free)(Ju.m) = free(Vv.m) = free/(m)\ {v}

free,(m) is similar, but defined with: free,.(t; = t2) =
var(tz) and free,.(m : K) = var(K).

We now give semantics of an EF formula 7 w.r.t. a ground
substitution o.

Definition 23. Let m be an EF formula and o be a ground
substitution s.t. free;(w) = 0 and free.(w) = dom(o).
Then o ' 7 is defined by:

2)
2)

o E' true

o £ false

U':/tlztg lff t1:t20'
cE'm:K iff meF(Ko)
ocE -7 iff o=«

cE' m ATy if
ocE' mVm if
o v iff
o E' Yo iff

We define a translation T'(¢, tr, IK) from a PS-LTL for-
mula ¢, a trace tr and an initial intruder knowledge /K into
an EF formula:

ocE' miando ' mo
o' moroE m™

JteTt: o nt/)
Vte Tt 0 E n[t/.)

Definition 24. Let ¢ be a PS-LTL formula, tr be an exe-
cution trace and IK be an initial intruder knowledge. Then
T(¢, tr,IK) is the EF formula resulting from applying the
three steps detailed in Table 4.

It can be shown that the transformation T terminates and
is confluent given a finite trace, although we do not prove
that here. The last step (3) removes cases which are known
not to hold. The following lemma states that the translation
T is correct, i.e. it preserves the semantics of PS-LTL w.r.t.
semantics of EF.

Lemma 25. Let ¢ be a closed PS-LTL formula, tr be a
trace and IK be an initial intruder knowledge, and let o be
a ground substitution such that var(tr) C dom(o). Then

(tro,IK) = ¢ iff o E' T(¢,tr,IK).

Transformation T provides the necessary input to the de-
cision algorithm D of the next section, to decide validity of
the original formula.

We call an EF formula existential if it is of the form
Jvy ... 3v,., and ¢ does not contain any quantifiers (V
nor 3J). In addition, we say that an EF formula ¢ is nega-
tion ground if every occurrence of a negated constraint
—(m : T) in ¢ satisfies that m is ground.

We now define the subset ® of PS-LTL over which we
are going to decide symbolic validity:

Definition 26. ® is the set of well-behaving PS-LTL for-

mulas: ® 2 { @ | & closed and T(¢, tr,IK) is existential
and negation ground for all tr,IK }

® is expressive enough to allow the specification of sev-
eral interesting security properties. In particular, every
property ¢ considered in Section 3.2 satisfies A, € ®.

4.3 Deciding Validity

Let ¢ be a well-behaving PS-LTL formula and 7 =
Fv1...3vy,. be the result of the translation T(¢, tr, IK) for
some tr and /K. We transform ¢ into its disjunctive nor-
mal form ¢ = \/;1b;, with ¢p; = A\, 7; ;. Given a simple

1. First, we repeatedly apply transformation |-]-, until none of the rules can be applied:

|Fv.dltr = Ju.|¢|tr
|Vv.gltr = Vo |¢ltr
[=oltr = —[e]tr
o1 Ageltr = |o1]tr Alga]tr
|_¢1 V (bQJtT = I_d)ljt’/‘ \Y WQJ?ST
[Yp]() = false
Yore) = |oltr
[¢18¢2]() = [¢2]0)
(0180 |(tre) = [da](tre) V ([gr](tre) A |¢18ga]tr)
[true|tr = true
|false|tr = false
|[learn(m)]tr = m: (K(tr)UIK)
Ip(dy,...,dn)|() = false
[p(dy, ... dn)|{tr qler,...;em)) = falseifp#qorn#m
[p(dy, ... dn)|{trpler,...,en)) = di=erA---ANd,=¢ey

(Note how a learn translates directly into a constraint. Also, notice that in each equality d; = e;, var(d;) Nvar(e;) =
(), as we require that variables from the formula and from the trace do not clash.)

2. Repeatedly rewrite atoms ——¢ to ¢, and move — inside conjunctions and disjunctions using DeMorgan distributive laws.

3. Move universal quantifiers V as far as possible to the right, and simplify universally quantified formulas over (possibly
negated) equalities and constraints, according to the following rules:

VU.((bl N d)g) = V’U.d)l N VU.¢2
Vo.(o1 Vo) = You.py VVu.de if v is not free in ¢ or v is not free in ¢o
Yv.¢p = ¢ ifvisnotfreein ¢
Yo.(v: K) = false(where K is a term set)
Vv.=(v:K) = false(where K is a term set)
Yo.-(v=1t) = false
Yo.(v=t) = false

(In the last two rules, ¢ is a term s.t. t # v since we require that var(v) = {v} Nwvar(t) = 0.)

Table 4. Transformation T'(¢, tr, IK)

constraint set C'S, the procedure D (7, C'S) we are about
to define either fails and returns false or succeeds and re-
turns a substitution o that makes 7 true. For simplicity, in
the sequel we assume that each 1); contains just one pos-
itive equality L; = R; (where L; and R; denote the left
and right term in the equality, respectively), one negated
equality (L} = R}) (where L} and R} denote the left
and right term in the negated equality, respectively), one
positive constraint m; : K; and one negated constraint
=(mj; : Kj). The generalization to the case with sev-
eral (possibly negated) atomic formulas and with true and
false atoms is straightforward.

Procedure 27. Let o = \/; ¢, with ¢; = (L; = R;) A
(L7 = Ry) A (my + Kj) A=(mj : KJ'). Let CS be a
simple constraint set. Procedure D succeeds if all the fol-
lowing steps succeed, in which case it returns ¢ = pproy
where p is given by Step 2, py, is given by Step 3 and oy is
the substitution described in Section 4.1.

1. Pick a disjunct 1p; while possible, otherwise exit and
return false.

2. Solve Positive Equality: Take a relevant most general
unifier p of Lj and R; such that dom(p) C var(L;)U
var(Rj), i.e. Ljp = R;p (If no mgu exists, go back to
Step 1).

3. Solve Positive Constraint: Apply P to (CS U {m; :
K;})p. Let p1,. .., p; be the partial solutions.

4. Pick py, k € [1...
back to Step 1.

l], while possible, otherwise go

5. Solve Negated Constraint: Apply P to (CS U {m; :
Kj7m; : K;})ppkav (wWhere oy is the substitution
given in Section 4.1). If it is solvable, go back to Step
4.

6. Solve Negated Equality: Check that L3 ppyoy and
R} pprov differ syntactically, otherwise go back to
Step 4.

Step 2 tries to solve the positive equality, finding a suit-
able unifier p. (We need a unifier and not a matching for
the general case of many equalities). In case p is not found,
then the disjunct does not hold , so we try a different one
going back to Step 1. Similarly, Step 3 solves the positive
constraint. Step 5 checks that both p, pj, and oy cause the
negated constraint to hold (this is based on Theorem 21). Fi-
nally, Step 6 checks that the negated equalities hold. Since
we consider (i) relevant unifiers for Step 2, of which there
are only finitely many, (ii) P only outputs a finite number
of solutions for Step 3 and 5, and (iii) we only need to per-
form a syntactic check for Step 6, then we can deduce that
procedure D terminates. The correctness of D is more chal-
lenging to establish.

Lemma 28. Let ¢ be a well-behaving PS-LTL formula,
(Se,IK,CS,tr) be a state from Procedure 13, and m =
T(¢,tr,IK). Then:

1. D(m,CS) succeeds and returns a substitution o im-
plies that o =" 7, with tro valid w.rt. IK; and

2. o E' m, with tro valid w.rt. IK implies that there
exists a substitution v s.t. D(mw, CS) succeeds and re-
turns .

Now we are ready to formulate the main result of this
section, which states that applying the transformation T of
Definition 24 and D defined in Procedure 27 is both sound
and complete.

Theorem 29. Let Scqg be a system scenario, IK be an ini-
tial intruder knowledge, ¢ be a closed PS-LTL formula
representing a security property with Ay = —¢ is a well-
behaving PS-LTL formula. Let also (Sc,IK,CS,tr) be
a state from Procedure 13 and 1 = T(Ay,tr,IK). Then
D(w,CS) fails iff (tr, IK) = ¢.

Proof. D(w,CS) fails iff, by Lemma 28, Yo : o K
T (A, tr,IK). By Lemma 25, (tro,IK) = Ag. By defi-
nition, this is equivalent to (tro,IK) = ¢. So, we obtained
that Vo : (tro,IK) = ¢, which by Definition 17 of sym-
bolic validity is (tr, IK) = ¢. O

4.4 Integrating PS-LTL to Constraint
Solving

Procedure 13 outputs execution traces which are in-
stances of prefix interleavings representing partial runs, in
which not every participant necessarily finishes its execu-
tion. For example, the empty trace () is always output re-
gardless of the input scenario Scy or IK in Procedure 13.
Clearly, the empty trace does not represent an attack on the
protocol in question. We thus need to include a termination
condition TC(s) which is evaluated in every resulting state
s of a run from Procedure 13 against a PS-LTL security
property ¢. When T'Cy;(s) holds, we know that an attack
has happened and we can then stop execution and report the
attack trace. Otherwise, execution should continue in search
for another attack. Given a state (Sc, IK, C'S, tr), we define
TCy((Sc,IK,CS, tr)) to hold when D(r, C'S) holds, for
m = T(—¢, tr,IK) with —¢ is a well-behaving PS-LTL for-
mula. The termination condition essentially checks whether
tr in the current execution state can be instantiated to pro-
vide a solution of —¢, that is, to falsify ¢: by Theorem 29,
we know that D(T(—¢, tr, IK), C'S) holds iff (tr, IK) - ¢.
In that case, the procedure terminates and outputs the trace
tr that shows an attack. Otherwise, the procedure proceeds
until an attack or no attack is found.

Without PS-LTL | With PS-LTL
RPC flawed 0.06s 2.48s
RPC fixed 0.08s 11.91s

Table 5. Benchmarks

Benchmarks In Table 5 we show some benchmarks of the
implementation w.r.t. both the flawed and fixed version of
the Andrew RPC protocol when checking authentication (in
particular, aliveness), comparing to our old implementation
without PS-LTL. As we can see our prototype is consider-
ably slower (we plan to optimize this, see Future Work in
the next section).

5 Related Work

Our logic is related to the trace logic proposed in [9].
PS-LTL provides more powerful temporal operators (e.g.
the yesterday Y and since S operators), which in turn allows
one to write of more expressive security properties, like per-
fect forward secrecy. PS-LTL is inspired by the success-
ful and elegant NPATRL logic [30], but, as shown in sub-
sequent work [26], NPATRL is strictly less powerful than
LTL; also in that paper it is mentioned that the implemen-
tation of NPATRL to NRL Protocol Analyzer [24] presents
difficulties (e.g. the inability to mention several learn’s in
the same formula, a restriction we do not impose and that
is essential to specify e.g. perfect forward secrecy). Our
treatment of pure-past LTL is an adaptation of Havelund
and Rosu [19]. We provide a different semantics tailored
for security and constraint solving, but also include a differ-
ent definition for historically H, which we believe preserves
better the faithfulness to standard LTL.

Our decision procedure exploits the ability to solve
negated constraints. The idea to solve negated constraints
is based on allowing the intruder to generate constants, as
done originally in the work of K&hler and Kiisters [21] for
analysis of contract signing protocols in constraint solving.

Finally, we use events start, run and end to specify au-
thentication properties as correspondence assertions a la
Gordon and Jeffrey [18].

6 Conclusions and Future Work

We propose PS-LTL, a language for specifying secu-
rity properties. Our language is based on linear tempo-
ral logic (LTL) with pure-past operators. This language
is both simple to use and expressive, as evidenced by the
ability to specify several security properties including au-
thentication [23, 12] (aliveness, weak agreement and non-
injective agreement), secrecy (standard secrecy [2] and per-
fect forward secrecy [16]) and also data freshness [9]. We

also study properties to prevent against denial of service
(DoS) [25] attacks. Having a dedicated language to spec-
ify properties allows the protocol designer to fairly separate
the protocol instances under study from the properties one
wants to check. This is useful during the verification phase
of the protocol, as it allows to change the protocol instances
(e.g. to add more sessions) while keeping the property un-
changed.

We present a sound and complete decision procedure to
check a fragment of PS-LTL against symbolic traces, thus
integrating the PS-LTL interpreter into our protocol ver-
ification tool,providing a full verification system This has
significant practical value to protocol designers, as effec-
tive protocol debugging can be applied effectively during
the engineering phase of the security protocol design.

Future Work There are many possible directions for fu-
ture work. As already mentioned, we would like to study
further the specification of denial of service properties (see
Section 3.2.3).

It is theoretically interesting to study whether a general
strategy to solve negated constraints exists (in Section 4.1
we provide a strategy to solve —~(m : T') in the particu-
lar case of m ground; Still, this is enough to cover all our
properties of interest). It would also be interesting to relate
negated constraints to other approaches in the literature to
solve “negative” predicates, e.g. nonunif of [3].

Another direction is to implement formula checking
more efficiently: for example, such an implementation
would not recompute the translation of PS-LTL to elemen-
tary formula EF every time a property is checked, but main-
tain an internal data structure which can be optimized as the
trace gets expanded, along the lines of [19]. We are also in-
terested on enlarging the subclass ¢ of PS-LTL from Sec-
tion 4.2, thus obtaining a more expressive language (e.g. to
cover stronger authentication notions like the ones in [12]).

Acknowledgements We are grateful to Pieter Hartel, Ralf
Kiisters and the anonymous reviewers (both from this con-
ference and from the FMSE2005 workshop) for their very
useful comments.

References

[1] D. Basin, S. Modersheim, and L. Vigano. Constraint differ-
entiation: A new reduction technique for constraint-based
analysis of security protocols. In Workshop on Security Pro-
tocol Verification. CONCUR 2003, September 2003.

[2] B. Blanchet. Automatic proof of strong secrecy for secu-
rity protocols. Research Report MPI-I-2004-NWG1-001,
Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85,
66123 Saarbriicken, Germany, July 2004.

[3] B. Blanchet, M. Abadi, and C. Fournet. Automated Verifi-
cation of Selected Equivalences for Security Protocols. In
20th IEEE Symposium on Logic in Computer Science (LICS

4

—_

(5]

[6

—_

[7

—

(8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

2005), pages 331-340, Chicago, IL, June 2005. IEEE Com-
puter Society.

C. Boyd and A. Mathuria. Protocols for Authentication and
Key Establishment. Springer-Verlag, 2003.

M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, 8(1):18—
36, 1990.

J. Clark and J. Jacob. A survey of authentication protocol lit-
erature: Version 1.0. http://www.cs.york.ac.uk/
~Jjac/papers/drareview.ps.qgz, 1997.

J. A. Clark and J. Jacob. A Survey of Authentication Proto-
col Literature: Version 1.0. University of York, Department
of Computer Science, November 1997.

R. Corin. Analysis Models for Security Protocols. PhD the-
sis, University of Twente, 2006.

R. Corin, A. Durante, S. Etalle, and P. H. Hartel. A trace
logic for local security properties. In Int. Workshop on Soft-
ware Verification and Validation (SVV), volume 118, Mum-
bai, India, Dec 2003. Elsevier Science in Electronic Notes
in Theoretical Computer Science.

R. Corin and S. Etalle. An improved constraint-based sys-
tem for the verification of security protocols. In M. V.
Hermenegildo and G. Puebla, editors, 9th Int. Static Analysis
Symp. (SAS), volume LNCS 2477, pages 326-341, Madrid,
Spain, Sep 2002.

R. Corin, S. Etalle, and A. Saptawijaya. Online
demos. Improved Constraint-based procedure at
http://130.89.144.15/cgi-bin/show.cgi.
PS-LTL demo at http://130.89.144.15/
cgi-bin/psltl/show.cgi, June 2005.

C. Cremers, S. Mauw, and E. de Vink. Defining authentica-
tion in a trace model. In T. Dimitrakos and F. Martinelli, ed-
itors, Fast 2003, Proceedings of the first international Work-
shop on Formal Aspects in Security and Trust, pages 131—
145, Pisa, September 2003. IITT-CNR technical report.

S. Delaune and F. Jacquemard. A theory of dictio-
nary attacks and its complexity. In Proceedings of
the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 2—15, Asilomar, Pacific Grove, Califor-
nia, USA, June 2004. IEEE Computer Society Press.

R. Delicata and S. Schneider. Temporal rank functions for
forward secrecy. In Proceedings of the 18th IEEE Com-
puter Security Foundations Workshop (CSFW’05), pages
126-139, 2005.

G. Delzanno and S. Etalle. Proof theory, transformations,
and logic programming for debugging security protocols. In
A. Pettorossi, editor, /1th Int. Logic Based Program Syn-
thesis and Transformation (LOPSTR), volume LNCS 2372,
pages 76-90, Paphos, Greece, Nov 2001. Springer-Verlag,
Berlin.

W. Diffie, P. C. V. Oorschot, and M. J. Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and
Cryptography, 2(2):107 — 125, June 1992.

D. Dolev and A. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2):198—
208, 1983.

A. D. Gordon and A. S. A. Jeffrey. Types and effects for
asymmetric cryptographic protocols. J. Computer Security,
12(3/4):435-484, 2004.

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

K. Havelund and G. Rosu. Testing linear temporal logic
formulae on finite execution traces. Technical Report TR
01-08, RIACS, 2001.

J. Heather, G. Lowe, and S. Schneider. How to prevent
type flaw attacks on security protocols. In Proceedings, 13th
Computer Security Foundations Workshop. IEEE Computer
Society Press, July 2000.

D. Kdhler and R. Kiisters. Constraint Solving for Contract-
Signing Protocols. In Proceedings of the 16th Inter-
national Conference on Concurrency Theory (CONCUR
2005), 2005. To appear.

G. Lowe. Some new attacks upon security protocols. In
PCSFW: Proceedings of The 9th Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 1996.

G. Lowe. A hierarchy of authentication specifications.
In Proceedings of 10th IEEE Computer Security Founda-
tions Workshop, 1997, pages 31-44. IEEE Computer Soci-
ety Press, 1997.

C. Meadows. The NRL protocol analyzer: An overview.
Journal of Logic Programming, 26(2):113-131, 1996.

C. Meadows. A formal framework and evaluation method
for network denial of service. In CSFW ’99: Proceedings of
the 1999 IEEE Computer Security Foundations Workshop,
page 4, Washington, DC, USA, 1999. IEEE Computer Soci-
ety.

C. Meadows, P. F. Syverson, , and I. Cervesato. Formal
specification and analysis of the group domain of interpreta-
tion protocol using NPATRL and the NRL protocol analyzer.
Journal of Computer Security, 12(6):893-931, 2004.

J. Millen. Constraint solver webpage, at http:
//www.csl.sri.com/users/millen/capsl/
constraints.html.

J. Millen and V. Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In 8th ACM Con-
ference on Computer and Communication Security, pages
166-175. ACM SIGSAC, November 2001.

M. Rusinowitch and M. Turuani. Protocol insecurity with fi-
nite number of sessions is np-complete. In S. Schneider, ed-
itor, Proc. 14th IEEE Computer Security Foundations Work-
shop, 2001.

P. Syverson and C. Meadows. A formal language for cryp-
tographic protocol requirements. Designs, Codes and Cryp-
tography, 7:27 — 59, 1996.

F. Thayer Fabrega, J. Herzog, and J. Guttman. Strand
spaces: Proving security protocols correct. Journal of Com-
puter Security, 7:191-230, 1999.

