
On Consistency Maintenance In Service Discovery

V. Sundramoorthy, P.H. Hartel, and J. Scholten

University of Twente
Enschede, The Netherlands

vasughi.sundramoorthy@utwente.nl

Abstract

Communication and node failures degrade the abil-
ity of a service discovery protocol to ensure Users
receive the correct service information when the ser-
vice changes. We propose that service discovery
protocols employ a set of recovery techniques to re-
cover from failures and regain consistency. We use
simulations to show that the type of recovery tech-
nique a protocol uses significantly impacts the perfor-
mance. We benchmark the performance of our own
service discovery protocol, FRODO against the per-
formance of first generation service discovery proto-
cols, Jini and UPnP during increasing communica-
tion and node failures. The results show that FRODO
has the best overall consistency maintenance perfor-
mance.

Keywords: service discovery, self-healing net-
works

1. Introduction
Service discovery protocols allow devices to discover

their environment, detect and adapt to topology changes,
establish communication with each other and share ser-
vices. One way to classify service discovery protocols
is according to the size of the network: local area net-
work (Jini [20], SSDP-based UPnP [18, 13], SLP [2,
15], FRODO [23]) and wide area network (SSDS [5],
INS/Twine [1]). FRODO was built for the home envi-

ronment, thus we focus on service discovery for small,
local area networks (LAN).

A service discovery protocol has two types of en-
tities: User and Manager. A Manager is a service
provider, which has a set of services. Each service is
represented as a Service Description (SD), which de-
scribes the service in terms of: (1) device type (e.g.
printer), (2) service type (e.g. color printing) and (3) at-
tribute list (e.g. location, paper size). A User is an en-
tity that has a set of requirements for the services
it needs. There are two main types of service dis-
covery architectures: registry-based (e.g. Jini) and
peer-to-peer (e.g. UPnP). A registry-based architec-
ture has a third entity, called the Registry. A Manager
registers its services at a Registry, and Users dis-
cover the services through unicast queries to the
Registry. The peer-to-peer architecture has no Reg-
istries, and Users discover Managers through broadcast
or multicast queries. The registry-based architec-
ture reduces network traffic and makes a network more
manageable by allowing Registries to keep track of ar-
riving and departing services. The peer-to-peer architec-
ture avoids single point of failure problems, as may exist
in the registry-based architecture, but increases net-
work traffic. A hybrid of these two architectures can
be implemented to allow the protocol to be more re-
silient against failure on the Registry, while reducing
network traffic (e.g., SLP and FRODO).

Users typically cache the discovered service descrip-
tion to reduce the access time to the service, and reduce
bandwidth usage (by avoiding repeated queries to redis-
cover the service). The tradeoff to caching is the need
to maintain a consistent view of the service. Polling for

updates (pull model), and notification by the Manager
when the service changes (push model) are two con-
sistency maintenance mechanisms in service discovery.
However, communication and node failures may cause
the consistency maintenance mechanism to fail to up-
date the Users. We find that as communication and node
failures increase, a number of failure scenarios are cre-
ated. How well a service discovery protocol performs
depends on the type of recovery technique that the pro-
tocol adopts when dealing with each failure scenario. We
classify consistency maintenance recovery techniques
according to the failure scenarios, and propose tech-
niques that improve performance.

Contribution. This paper contributes to the research
and development of service discovery systems by (1)
providing a novel classification and detailed analysis of
consistency maintenance recovery techniques, accord-
ing to failure scenarios, (2) comparing recovery tech-
niques in state of the art service discovery protocols
(FRODO, UPnP and Jini), and (3) showing that by em-
ploying a combination of selected recovery techniques,
FRODO has the best overall consistency maintenance
performance.

Section 2 of this paper discusses related work. Sec-
tion 3 provides a brief overview of FRODO. Section 4
describes the consistency maintenance fundamentals in-
cluding the principles, mechanisms, recovery techniques
and the performance metrics. Section 5 presents how we
have modeled FRODO based on the UPnP and Jini mod-
els obtained from NIST, and explains the experimental
design. Section 6 compares the performance of FRODO
against UPnP and Jini, and discusses the impact of the
recovery techniques we present in Section 4 on the con-
sistency maintenance performance. Section 7 concludes.

2. Related Work
While consistency maintenance has been studied ex-

tensively in conventional, large-scale distributed data-
bases and filesystem, there has been little work aimed
specifically at evaluating consistency maintenance in
service discovery protocols. Consistency maintenance
in service discovery protocols conforms to the client-
centric consistency model, which originates from the
work on Bayou [22, 27], a database for mobile sys-
tems with unreliable connectivity. The world-wide nam-
ing system, Domain Name Service (DNS) and the World
Wide Web satisfy the eventual consistency guarantee in
this model, which states that in the absence of updates,
all replicas converge toward identical copies of each

other [26]. We have formally verified that FRODO guar-
antees eventual consistency [24].

Consistency maintenance in service discovery proto-
cols is similar to maintaining cache coherence in dis-
tributed systems [21]. Cache coherence ensures the in-
tegrity of the data stored in the local cache of the User.
The data stored may be part of a structured distributed
shared memory, using tuple spaces such as implemented
in Jini through JavaSpaces [19], or simply copies of
service descriptions, as is stored in FRODO, SLP and
UPnP. Franklin et al. describe push-based and pull-based
cache coherence strategies [12]. Service discovery pro-
tocols use asynchronous update notifications to achieve
cache coherency.

Most service discovery protocols combine periodic-
ity, and leasing with the “announce/listen” model for
consistency maintenance. The announce/listen model
originates from IGMP [10] and is refined in the MBone
Session Announcement Protocol [16]. The model helps
Users to achieve eventual consistency when detecting
the presence of the Registry and the Manager. To en-
sure consistency of the updated service, Users subscribe
to Managers and maintain a subscription “lease” to lis-
ten for service updates. The concept of leases originates
from Gray and Cheriton [14], as a time-based mecha-
nism that provides efficient consistent access to cached
data in distributed systems. FRODO and Jini implement
flexible leasing, as proposed by Duvvuri et al. [9], where
the expiration time is adapted to suit the demand of the
service Manager, while the Registry has an upper limit
on the maximum lease period for a service.

Existing work on consistency maintenance in service
discovery is done by Dabrowski and Mills from the US
National Institute of Standards and Technology (NIST).
They evaluate the consistency maintenance mechanisms
in UPnP and Jini. An architectural-based approach using
an Architectural Description Language (ADL) is used
to analyze service discovery systems [6]. They bench-
mark the performance of service discovery systems ac-
cording to their Update Metrics, in a dynamically chang-
ing environment, with increasing message loss [7] and
interface failure [4] as the communication failure mod-
els. Dabrowski and Mills also propose a generic model
encompassing the design of first-generation service dis-
covery systems [8]. They suggest service discovery pro-
tocols should provide guarantees of correct behavior
against a set of properties which they call Service Guar-
antees. They report that first-generation service discov-
ery systems do not provide guarantees of correct behav-
ior. In this paper, we use the scenarios from Dabrowski
and Mills [4] to compare the performance of FRODO

2

against the reproduced results of Jini and UPnP.
In our own recent work, we introduce the Service Dis-

covery Principles [24], and show that FRODO is the
first service discovery protocol that provides guarantees,
by increasing robustness at the service discovery layer.
We also benchmark the consistency maintenance perfor-
mance of FRODO against those of Jini and UPnP dur-
ing increasing message loss [25], and find that FRODO
is more efficient in maintaining consistency, with shorter
latency, while not relying on lower network layers for ro-
bustness. In this paper, we combine the findings of our
own results and those of Dabrowski and Mills to further
investigate consistency maintenance in service discov-
ery.

Frank and Karl [11] study the impact of caching dis-
covered services in mobile ad-hoc networks. They show
that Users in mobile ad-hoc networks remain inconsis-
tent with a service Manager that has become unavail-
able, when service lease periods are long. They pro-
pose that the service Manager explicitly announce when
its service becomes unavailable. A cross-layer approach
is taken, where Users learn about the continuous exis-
tence of Managers from the underlying routing proto-
col. Frank and Karl claim that this method allows Users
to regain consistency faster than if they depend on the
periodic announcements of the Manager, especially in
a highly loaded network. They assume that the demand
for a service Manager increases in a highly loaded net-
work, hence increasing the possibility for Users to re-
ceive routing packets from the Manager. We find the de-
pendance on the routing protocol is not a proper solu-
tion when the service Manager is not in high demand,
therefore reducing the chances for interested Users to re-
fresh their cache on the Manager. Furthermore, this solu-
tion is more useful for service removals than service up-
dates. We suggest that the Manager and the User main-
tain a subscription lease, which is refreshed periodically
through unicast, so that the Manager will know which
Users it should update when the service changes. We
also focus on small networks, where periodic announce-
ments through broadcast or multicast are acceptable.

3. FRODO
A home environment differs in two aspects from the

professional connected environment. These are:

• Resource-awareness - Cost of devices is a prime
factor for the home user. New sophisticated tech-
nologies should not demand too much additional
resources on existing services, and raise cost.

• Robustness - Unlike the professional environment,
the home environment does not have the luxury
of a network administrator to monitor and resolve
network disturbances. Home owners should not
be restricted in how they manage their appliances
(unplugging, moving).

Thus resource-awareness and robustness are two
main objectives for service discovery in the home envi-
ronment.

To satisfy resource-awareness, FRODO introduces
device classification: (1) 3C (Cent) device class - simple
devices with restricted resources (e.g. simple sensors).
Nodes in this class are only Managers. (2) 3D (Dollar)
device class- medium complex devices (e.g. temperature
controller). A node in this class can be a Manager and a
User with limited behaviors and (3) 300D (Dollar) de-
vice class - powerful devices, controlled by a complex
embedded computer. A node in this class can be a Man-
ager, a User and a Registry (e.g. set-top boxes).

To address robustness, the system is made resilient to
single point of failure problems through a leader elec-
tion protocol. The 300D nodes elect the most powerful
node as the Registry. We call the Registry the Central,
because besides being the repository for service descrip-
tions, the Central also actively monitors the system for
new and defunct nodes, and responds according to their
device classes. A Backup is appointed by the Central to
store configuration information. The Backup takes over
automatically in case of Central failure.

Unlike first generation service discovery systems,
FRODO does not depend on the recovery abilities of
lower layer protocols (such as TCP) to perform its tasks.
This allows the protocol to be deployed together with
leaner lower layer protocol stacks, with little or no er-
ror recovery mechanisms.

4. Fundamentals of Consistency
Maintenance

“Consistency” is the state where the User obtains the
correct service information after the service changes.
Users become consistent with the Manager when they
successfully receive update information from the Man-
ager. To explain update information, we use an example
of a Manager which offers a printing service. The ser-
vice description is a list of attribute-value pairs.

SD = {DeviceType=Printer,
ServiceType=ColorPrinter,
AttributeList{PaperSize=A4,
Location=Study}}

3

If the structure, or information in the attribute-value
pair changes, the service description changes. For ex-
ample, the “ServiceType” changes from “ColorPrinter”
to “Black&WhitePrinter”. In the registry-based architec-
ture, the printer updates the Users via the Registry, while
in the peer-to-peer architecture, the printer updates the
interested Users directly.

4.1. Consistency maintenance principles

Service discovery complies with eventual consis-
tency, because it is client-centric, which tolerates tran-
sient inconsistencies, just like Bayou [22], the distrib-
uted database system for mobile users. For discovered
services to be useful, it is important that the consis-
tency guarantees are specified clearly. We specify
the requirements for consistency maintenance in ser-
vice discovery protocols in the Service Discovery
Principles [24], where the Configuration Update Prin-
ciples require the User and/or Registry to always
eventually regain consistency with the Manager af-
ter the service changes. The User detects the change
in the Manager, and regains consistency by obtain-
ing the correct view of the service, either from the
Manager directly (2-party Configuration Update Prin-
ciple), or via the Registry (3-party Configuration Up-
date Principle). The principles hold true only when
there is connectivity among the communicating en-
tities (e.g., valid communication paths). The term
always eventually states that a successful update in-
variably takes place at some time in the future, without
giving a concrete time constraint.

4.2. Consistency maintenance mechanisms

Before we delve deeper into the issues facing consis-
tency maintenance in an environment with communica-
tion and node failures, we first introduce the basic mech-
anisms that existing service discovery protocols imple-
ment. The User has to subscribe either directly to the
Manager (2-party subscription) or to a Registry (3-party
subscription) to receive updates. A subscription between
the User and the Manager or between the User and the
Registry remains valid as long as the subscription lease
does not expire. To maintain a valid subscription lease,
Users are required to send messages periodically to the
lessee to indicate their continued interest with the ser-
vice.

Dabrowski and Mills classify the basic consistency
maintenance mechanisms as:

(CM1) Notification (push-based update) - The User re-
ceives an update when the service description
changes. In 3-party subscription, the Manager no-
tifies the Registry which then propagates the
update to subscribed Users. In 2-party subscrip-
tion, the Manager notifies subscribed Users
directly. Update notification is a built-in mech-
anism in a service discovery protocol. Examples
of state of the art protocols that have this capabil-
ity are FRODO, UPnP and Jini.

(CM2) Polling (pull-based update) - The User regains
consistency by polling the Manager or the Reg-
istry to retrieve the updated service description.
In 3-party subscription, the Manager updates the
Registry by re-registering its services. In both sub-
scription schemes, periodic queries from the User
eventually retrieve the updated service description.
Typically, polling is implemented in the applica-
tion layer, with hooks from the service discovery
protocol. In FRODO, UPnP, Jini and SLP, polling
is implemented by requiring the User to query the
service periodically.

User Registry Manager

ServiceRegistration

ServiceSearch

ServiceFound

SubscriptionRequest

Ack

SubscriptionRenew
ServiceUpdate

Ack
ServiceUpdate

Ack

Figure 1. Consistency maintenance
through notification, in FRODO with
3-party subscription. The User discov-
ers the Manager and subscribes to receive
updates via the Registry. The User pe-
riodically renews the subscription lease
by sending SubscriptionRenew messages.
The Manager sends a ServiceUpdate mes-
sage when the service changes.

4

Dabrowski and Mills show that periodic polling is the
more effective method if the application allows persis-
tent polling (even when the lower protocol layers signal
a connection failure), therefore increasing the chances
for the User to retrieve the updated service descrip-
tion eventually. However, Dabrowski and Mills show
that polling is a slower mechanism than update noti-
fication because of the dependency on the period of
polling. We find that polling is also a less efficient mech-
anism than update notification in scenarios where ser-
vices rarely change, causing multiple redundant polls.
Furthermore, unlike update notification, polling is an
application-dependent approach (e.g., frequency of poll)
and does not reflect the actual built-in consistency main-
tenance capability of service discovery protocols. Thus,
in this paper, we focus only on issues and performance
of consistency maintenance through notification to as-
sess the ability of the protocols (FRODO, UPnP and
Jini) to recover from failures and regain consistency.

During update notification, the Manager updates the
Users by: (1) propagating an invalidation message that
indicates that the service has been updated. In UPnP,
the Manager notifies the interested User that a change
has occurred, whenever the service changes. Consecu-
tive polling by the User retrieves the updated data. This
method is efficient for a service that has frequent up-
dates, but causes unwanted redundancy and delay for
services that rarely change. (2) Propagating the updated
data, as used in Jini and FRODO. This method is fast
and efficient for a service that changes infrequently.
An adaptive method that dynamically switches between
sending an invalidation message or sending the update
can be implemented, as done in the Alex protocol [3],
a filesystem that adapts the type of update propagation
based on the age of the file (it assumes older files are
less likely to be modified than younger files). However,
to our knowledge, no existing service discovery proto-
cols adopt the adaptive mechanism, due to the complex-
ity in implementation.

Consistency maintenance in registry-based architec-
tures relies on the successful communication between
the Manager and the Registry, and between the Registry
and the User (3-party subscription). Peer-to-peer archi-
tectures rely only on the successful communication be-
tween the User and the Manager (2-party subscription).
FRODO is unique because it implements both 2-party
(for 300D Managers) and 3-party (for 3D/3C Managers)
subscriptions. The User is able to detect which subscrip-
tion process to use, based on the device class of the Man-
ager (future work for FRODO will allow 300D Man-
agers to dynamically switch to 3D/3C mode as their re-

sources decrease). The sequence diagram in Figure 1
shows a typical consistency maintenance scenario for
FRODO with 3-party subscription, when there are no
failures.

4.3. Recovery techniques for consistency main-
tenance

Due to temporary communication failures or node
failures, notification of updates may fail. Nevertheless,
when connectivity among entities is restored, the ser-
vice discovery system is expected to recover and regain
consistency, as stated by the Configuration Update Prin-
ciples. Our in-depth analysis of the behavior of service
discovery during communication and node failures re-
sults in a novel method of identifying, classifying and
proposing new recovery techniques based on the type of
update and failure scenario. Table 1 is a summary of our
classification of recovery techniques.

During communication and node failures, the sub-
scription between the entities may remain valid, even
though update notification fails. This is because the par-
ticipating entities may face short-term failures, and re-
store connectivity before the subscription lease expires.
Hence, it is up to the continuing subscription process
to ensure Users regain consistency. We call this type of
recovery subscription-recovery. When the subscription
lease expires, consistency maintenance depends on the
inherent capability of the service discovery protocol to
detect, and rediscover purged nodes and services. Hence,
this type of recovery is called purge-rediscovery.

1. Subscription-recovery. The success of consistency
maintenance using this type of recovery depends on how
persistently the subscription process tries to update the
User. The degree of persistence in notifying updates de-
pends on the type of update scenario: critical update and
non-critical update. This is because not all applications
require the same level of persistence in sending and re-
ceiving updates. By specifying the update scenario, we
isolate necessary techniques for successful consistency
recovery.

Critical update. This update scenario applies to ser-
vices that are critical, and need correct information ur-
gently. An example is a fire alarm Manager that changes
the value of an attribute, “status” from “ON” to “OFF”,
and is required to update the PDA of the homeowner. For
critical updates, we propose two types of recovery tech-
niques.

(SRC1) Acknowledgements and retransmissions of noti-
fication - Update notifications sent by the Man-

5

Subscription-recovery Purge-rediscovery
Update scenario Recovery technique Purge and rediscover scenario Recovery technique
Critical update SRC1 Manager rediscovers the Registry (and

vice-versa)
PR1

SRC2 User rediscovers the Registry PR2
Non-critical update SRN1 Registry rediscovers the User PR3

SRN2 Manager rediscovers the User PR4
User rediscovers the Manager PR5

Table 1. Classification of recovery techniques for consistency maintenance. Subscription-
recovery techniques for each type of update take effect when subscription still remains valid.
Purge-rediscovery techniques occur when subscription expires, and may coincide based on
the failure scenario.

ager or the Registry must be acknowledged to indi-
cate success or failure. We propose no retransmis-
sion limit for the notification messages. Retrans-
mission is only stopped when (a) the subscrip-
tion expires, (b) acknowledgement for the notifi-
cation is received, or (c) the application layer indi-
cates loss of connectivity. Update retransmissions
can be spaced in a periodic manner, until acknowl-
edged by the Registry or the User.

(SRC2) Active User and Registry monitoring of updates
- This technique takes effect if the User requires
a history of missed updates from the Manager.
The User and the Registry monitor either the se-
quence number on the update notifications, or the
time period for the next notification (the latter ap-
plies only to Managers that provide fixed, peri-
odic updates). When an expected update is missed,
the User or the Registry requests the update. The
Manager caches the history of service changes and
only purges the cached updates after all interested
Users successfully obtained the complete view of
the service.

Non-critical update. Unlike the critical update sce-
nario, the non-critical update scenario applies to ser-
vices that are not sensitive to, or not overly affected by
missed updates. An example is a printer Manager that
updates a User when its paper tray empties. We pro-
pose the following recovery techniques to improve con-
sistency maintenance performance.

(SRN1) Acknowledgements and retransmissions of noti-
fication - Update notifications sent by the Man-
ager or the Registry are acknowledged to indicate
success or failure. Retransmissions of unsuccess-
ful notification is done until either (a) retransmis-
sion limit is reached, (b) acknowledgement is re-
ceived, (c) the subscription expires, (d) the appli-

cation layer indicates lack of connectivity, or (e)
the service changes again, requiring the Manager
to reset the notification process.

(SRN2) Future retry of unsuccessful notification - This
technique occurs after SRN1 fails to update the
User. The Manager caches information on incon-
sistent Users and retries notification once a mes-
sage from the inconsistent User is received (such
as the subscription lease renewal message). The
status of the inconsistent User is cached until (a)
the subscription expires, (b) the service changes
again, requiring the Manager to reset the notifica-
tion process, or (c) the update is acknowledged.

The Configuration Update Principles only require the
User to regain consistency eventually, but not necessar-
ily recover particular values of previously missed up-
dates. Therefore recovering updates caused by multiple
changes are not treated in the non-critical update sce-
nario.
2. Purge-rediscovery. The success of consistency main-
tenance using this type of recovery depends on the profi-
ciency of the service discovery protocol to detect, regis-
ter and rediscover nodes and services after the subscrip-
tion expires. We propose the following recovery tech-
niques for the User to regain consistency, based on the
“purge” scenario. A combination of purge-rediscovery
techniques take effect if several failure scenarios occur
simultaneously.

(PR1) The Manager purges the Registry, or vice-versa:
the Manager and the Registry rediscover each
other through (a) the Registry’s periodic broad-
cast/multicast announcement, or (b) the Man-
ager’s periodic broadcast/multicast announce-
ment (here, the Registry contacts the Manager).
When the Manager re-registers, the Registry noti-
fies interested Users of the new registration. The

6

Consistency maintenance
mechanisms and recovery
techniques

UPnP Jini FRODO

Subscription type 2-party subscription 3-party subscription 3-party subscription (3C/3D
Manager), 2-party subscrip-
tion (300D Manager)

Configuration maintenance
mechanism

CM1, CM2 CM1, CM2 CM1, CM2

Subscription-recovery tech-
niques

SRC1(TCP-dependent),
SRN1(TCP-dependent)

SRN1(TCP-dependent),
SRC1(TCP-dependent), SRC2

SRN1, SRN2, SRC1, SRC2

Purge-recovery techniques PR4, PR5 PR1, PR2, PR3 3-party subscription: PR1, PR3,
PR5(application dependent). 2-
party subscription: PR1, PR4,
PR5(application dependent)

Number of update messages,
for N Users, 1 Registry, and
1 Manager when there are no
failures

5N with TCP messages. 3N
without TCP messages

2N + 2 with TCP messages.
N + 2, without TCP messages.
If Users and Managers are regis-
tered with y Registries: y(2N +
2), with TCP messages

N + 2

Table 2. Taxonomy of consistency maintenance mechanisms and recovery techniques for state
of the art service discovery systems.

User regains consistency from the Registry notifi-
cation. Users receive notifications of new service
registrations by explicitly requesting for ser-
vice notification, when they first establish contact
with the Registry.

(PR2) The User purges the Registry: the User rediscov-
ers the Registry through (a) the periodic Registry
announcement, or (b) the User’s periodic broad-
cast/multicast announcement (here, the Registry
contacts the User). The User then queries the Reg-
istry for the required service to regain consistency
with the Manager (provided that the Manager reg-
isters the updated service description).

(PR3) The Registry purges the User: subsequent lease re-
newal from the User to the Registry results in a re-
subscription process, where the User then receives
the updated service description from the Registry.

(PR4) The Manager purges the User: subsequent mes-
sages received from the purged User allows a re-
subscription process, where the User then receives
the updated service description.

(PR5) The User purges the Manager: the User can purge
the Manager when the service lease expires, or
when the Registry notifies the User when it purges
the Manager. The User purges the Manager only
if the application layer is not communicating with
the Manager. The User rediscovers the Manager
through (a) broadcast/multicast query with its re-
quirements, where the matching Manager replies

with the updated service description, or (b) broad-
cast/multicast periodic announcement of the Man-
ager, where the User then queries the Manager for
the service description, or (c) unicast query to the
Registry for the service

During communication failure through mes-
sage loss [25], retransmissions and acknowledgements
through SRC1 and SRN1 are useful, as long as sub-
scription remains valid. SRC2 and SRN2 are neces-
sary for satisfying the eventual consistency guarantee
in the Configuration Update Principles [24]. In Sec-
tion 6, we show that during short-term interface and
node failures (where nodes recover from failures be-
fore the subscription expires), SRN2 is the most ef-
fective technique. When the subscription expires, PR5
in 2-party subscription is found to be most effec-
tive, where Users can listen to the broadcast/multicast
announcement of the Manager, and retrieve the up-
dated service. PR1 is beneficial in 3-party subscription,
where the Registry notifies the Users when the Man-
ager registers.

4.4. Consistency maintenance through notifica-
tion in Jini, UPnP and FRODO

We now compare the consistency maintenance of
Jini, UPnP and FRODO. Jini uses 3-party subscrip-
tion. The Manager sends an update to the Registry,
and receives an acknowledgement. The Registry propa-
gates the update to the subscribed Users. In UPnP, the

7

Manager sends update notifications to the subscribed
Users through 2-party subscription. The notification (in-
validation message) indicates only that the service has
changed. A User receives the actual update after it re-
quests the change. In both Jini and UPnP, a message is
sent only if the reliable transmission using TCP success-
fully sets up a connection between the sender and the re-
ceiver. Messages for setting up the connection and noti-
fying the update are acknowledged and retransmitted, as
part of the TCP behavior.

FRODO with 3-party subscription supports resource
lean 3D and 3C Managers, while 2-party subscription is
used for 300D Managers. The task of maintaining sub-
scriptions for resource-lean Managers is delegated to the
Central, so that the Manager needs only to notify the
Central if its service changes. The Central notifies the
subscribers when the Manager sends an update. In both
subscriptions, every update message sent by the Cen-
tral and Manager is acknowledged. This is still a smaller
overhead compared to that incurred by reliable transmis-
sion used by Jini and UPnP, as shown in Table 2.

The recovery techniques used during purge-
rediscovery depends mainly on the type of architecture,
whether peer-to-peer or Registry-based. The compe-
tence of the protocols in performing consistency main-
tenance rely upon how they actually implement the re-
covery techniques. For example, as seen from Table 2,
both UPnP and FRODO with 3-party subscription im-
plement PR5, but Users use different approaches in
how they rediscover the Manager. UPnP uses multi-
cast User queries and Manager announcements, while
FRODO uses unicast queries to the Registry, before try-
ing multicast queries. We analyze the differences in
implementation in Section 6.

Table 2 also shows that FRODO is unique be-
cause it supports both 2-party and 3-party subscrip-
tions. FRODO is also the only protocol to support
SRN2, where the Manager retries an unsuccess-
ful update when it receives a subscription renewal
message from the User. In small, local area net-
works, FRODO with a single Registry is the most
efficient protocol, because it propagate the least num-
ber of messages to get N Users updated. This is because
FRODO is a single Registry architecture, which uses in-
expensive UDP, and propagates the updated data, un-
like TCP-based UPnP (which uses invalidation), and
Jini (which becomes inefficient with redundant Reg-
istries). In our work on Service Discovery Principles,
we show that FRODO satisfies the Configuration Up-
date Principles for the critical update scenario with
a combination of SRNC1 and SRC2 failure recov-

ery techniques, where periodic updates are monitored
by the User, and when the expected update does not ar-
rive, the User requests for the update from the Registry
or the Manager.

4.5. Update Metrics

We can benchmark the consistency maintenance per-
formance of state of the art service discovery systems
by using the Update Metrics, developed by Dabrowski
and Mills. The Update Metrics measure the consistency
maintenance performance of service discovery systems
against a particular failure rate, λ (0 ≤ λ ≤ 1). An ex-
ample of failure rate is the proportion of time that a node
is unable to communicate during the lifetime of the sys-
tem.

1. Update Responsiveness, R(λ). Measures the ratio of
the time left after the update is propagated to a User, be-
fore a deadline, D to the total time available for the Man-
ager to propagate the update before D.

Let X be the number of runs repeated in the experi-
ment, N the number of Users in the system, C(i)(< D)
the time when the service changes, and U(i, j) the time a
User receives the update and reaches consistency, where
j = 1 to N , and i = 1 to X . The relative change-
propagation latency, L(i, j, λ) is:
L(i, j, λ) = [(U(i, j, λ)− C(i))/(D − C(i))]
Update Responsiveness, R(λ) is the median of 1 −
L(i, j, λ), taken over j ∈ 1..N and i ∈ 1..X . The me-
dian calculation eliminates biasing from extreme scenar-
ios where only messages from the Manager or the Reg-
istry are lost (outliers), unlike mean calculation.

2. Update Effectiveness, F (λ). Measures the probabil-
ity of success for a User to reach consistency.

Define F (λ) =

X∑
i=1

N∑
j=1

chg(i, j, λ)

X.N
where chg(i, j, λ) = 1 if U(i, j, λ) < D and

chg(i, j, λ) = 0 otherwise.

3. Update Efficiency, E(λ). Measures the effort re-
quired to maintain consistency. Let m be the minimum
number of messages across all systems to propa-
gate a change to the Users. In this experiment, m=7
based on the Jini and FRODO models. Let y be the to-
tal number of messages for all Users to regain consis-
tency in the system (therefore, this metric only depends
on i and λ). The Update Efficiency, E(λ) is the ra-
tio of m to y.

8

E(λ) =

X∑
i=1

(m/y(i, λ))

X
The Update Efficiency metric fixes the minimum num-
ber of messages, m and requires all protocols to base
their efficiency measurement against the protocol which
is the most efficient at 0% failure rate. This gives the pro-
tocols that own the value of m an advantage over other
protocols. Moreover, the metric does not reflect how the
protocols perform when the failure rate increases. It is
possible that a protocol that propagates more messages
at 0% failure rate degrades slower than the baseline pro-
tocols at higher failure rates.

4. Efficiency Degradation, G(λ). We make a simple
modification to the Update Efficiency metric by replac-
ing m with a protocol’s own minimum number of mes-
sages to propagate the update, m′. This metric permits
a more accurate evaluation of protocol efficiency be-
cause it reflects how heavily the protocol has to prop-
agate messages as failure rate increases, to ensure all
Users achieve consistency.

G(λ) =

X∑
i=1

(m′/y(i, λ))

X

5. Modeling Methodology

Device
(abstract)

Registry ManagerUser

Figure 2. In the Jini model from NIST, a de-
vice can instantiate as a User, a Manager,
or a Registry

We use Rapide [17], an Architectural Descrip-
tion Language and tool suite to build an executable
model of FRODO. Rapide is designed to support
component-based development of systems by uti-
lizing architecture definitions as the development
framework. It offers event-based simulation for distrib-
uted, time-sensitive systems.

Manager
(abstract)

Manager
300D

Manager
3C

User
3D

User
300D

User
(abstract)

Device
(abstract)

Registry

3C3D300D
Manager

3D

1

1111 1

Figure 3. In the FRODO model, a device
can instantiate as a 3C, 3D or 300D class.
A 300D node has a Registry component
which performs leader election, and is
triggered when it is elected as the Cen-
tral. 300D and 3D nodes can instantiate as
a User and a Manager, while 3C nodes are
only Managers. The User and Manager be-
haviors are tailored according to the de-
vice class limitations.

We simulate a total of five models: (1) UPnP, (2) Jini
with 1 Registry, (3) Jini with 2 Registries, (4) FRODO
with 3-party subscription using 1 300D node as the Reg-
istry and (5) FRODO with 2-party subscription, using
8 300D nodes (but still a single Registry system). Our
model on FRODO with 2-party subscription contains
only 300D nodes, because the nodes have resources sim-
ilar to the nodes in Jini and UPnP. We reproduce the
published results for UPnP and Jini from Dabrowski
and Mills to benchmark against FRODO. The follow-
ing steps describe our approach.

Step 1: Modeling FRODO. Since FRODO and Jini are
both registry-based architectures, we build our FRODO
model based on the Jini model by Dabrowski and Mills.
The class diagrams in Figure 2 and 3 show the difference
in the structure of our FRODO model against the Jini
model. The main challenge in modeling FRODO is in
developing a framework of behaviors for User and Man-
ager, according to the type of device class. In UPnP and
Jini, nodes are homogenous, allowing more straightfor-
ward models. In this experiment, we do not include 3C
Managers because they behave exactly the same as 3D
Managers during consistency maintenance.

Step 2: Interface failure We use interface failure to
model communication and node failures. During the ex-
periment, failures on the receiver or the transmitter sim-
ulate communication failure, where a node may send

9

Network behavior and failure response UPnP and Jini FRODO
Multicast UDP UDP
Unicast TCP UDP
Transmission delay 10µs-100µs 10µs-100µs
Unreliable protocol (UDP) response to
message loss

Message discarded. No retransmission. Redundant 6
times transmission for all messages

Message discarded.
No retransmission.

Reliable protocol (TCP) to message loss Connection setup: 4 retransmission attempts with delays
6s, 24s, 24s, 24s, then REX if unsuccessful. Data trans-
fer: retransmit until success, increasing, timeout by 25%
on each retry (first time-out is round trip time)

-

Table 3. Network characteristics. Unlike FRODO, UPnP and Jini rely on the transport layer to
detect transmission failures. Redundant multicast transmissions also do not occur in FRODO
because it does not fit the resource-aware context.

messages, but is not be able to receive messages, or vice-
versa. Simultaneous receiver and transmitter failure on a
node simulates node failure.

For each node, the transmitter and/or receiver are
failed randomly, at a failure rate λ, varying from 0.00
to 0.90, in increments of 0.05. Interface failure occurs
at a random time, from 100s to 5400s. Once the inter-
face failure is activated, it remains in effect for a portion
of the simulation duration (λ x 5400s), where 5400s is
the entire simulation duration (the reason for 5400s is
given in Step 5).

Step 3: Constructing the failure response of transmission
protocols. All three protocols use unreliable multicast
transmission (UDP). For unicast transmission, FRODO
also uses inexpensive UDP, while Jini and UPnP use re-
liable unicast transmission (TCP). In UDP, when a mes-
sage is discarded, the source does not learn of the loss.
In TCP, a Remote Exception (REX) is sent to the service
discovery layer of UPnP and Jini when an acknowledge-
ment is not received after retrying and waiting, as ex-
plained further in Table 3.

Step 4: Constructing the service discovery behavior
and recovery techniques. In UPnP, the Manager sends
6 multicast announcement messages every 1800s. In
Jini, the Registry sends 6 multicast announcements mes-
sages every 120s, while in FRODO, the Registry sends
2 multicast announcements every 1200s. In Jini and
FRODO, when the Registry is purged, the Manager re-
discovers the Registry by listening for the Registry an-
nouncements. FRODO also requires 3D Managers to an-
nounce their presence periodically until the Registry is
discovered. 300D Managers multicast announcements
to start the leader election process to discover the Reg-
istry. We deliberately model FRODO parameters to re-
flect resource-awareness by not requiring all messages

to be retransmitted and acknowledged (only a selected
few). We set the period of the Registry announcements
so that it is short enough for the discovery process, but
long enough so that severe interface failures at high fail-
ure rates do not imbalance the system by continuously
restarting the leader election process.

The registration lease period for a discovered service
to remain valid in the cache of the Registry or User is set
to 1800s for all three protocols. In UPnP and FRODO
with 2-party subscription, the User subscribes to a dis-
covered Manager. The subscription lease is 1800s for
both systems.

Table 4 compares the recovery techniques in the mod-
els, and show the differences in implementation.

Step 5: Experiment design We use the application sce-
narios and parameters used by the UPnP and Jini mod-
els at NIST [4] for fair comparison. A simulation run
lasts for 5400s. The run time is based on the UPnP rec-
ommended service lease period of 1800s. All three sys-
tems use this period for maintaining a lease for registra-
tion and subscription. Thus, using three announcements
provides a reasonable opportunity for a system to regain
consistency. Five Users discover the Manager and ob-
tain the service description. This process occurs within
the first 100s without interface failure. At a random time
between 100s to 2700s, the Manager’s service changes,
causing the Users to become inconsistent with the Man-
ager. Users are notified of this change through 3-party or
2-party subscription.

6. Results and Discussion
The results we present in this section is a product of a

detailed analysis on a random selection of 5 to 10 event
logs (out of 30 logs) for each simulated system, at every

10

.

Consistency maintenance re-
covery techniques

UPnP Jini FRODO

Topology 1 Manager, 5 Users 2 topologies. (a) 1 Registry, 1
Manager, 5 Users, (b) 2 Reg-
istries, 1 Manager, 5 Users

2 topologies. (a) 1 300D Registry, 1 3D
Manager, 5 3D Users (b) 1 300D Reg-
istry, 1 300D Manager, 5 300D Users, 1
300D Backup

SRN1: Retransmissions and ac-
knowledgements

TCP enables SRN1 TCP enables SRN1 Retransmissions and acknowledgements
of selected messages

SRN2: Retry on unsuccessful
notification

- - Manager in 2-party subscription re-
tries update notification when it receives
subscription renewals from inconsistent
Users

PR1: Manager re-registers, and
Registry notifies User

- Users are notified when the
Manager registers in the future.

Users are notified if the Manager is avail-
able or registers in the future

PR2: User queries the rediscov-
ered Registry for service

- Users query for the service
when the Registry is rediscov-
ered

-

PR3: Registry rediscovers the
User, and requests resubscrip-
tion

- Registry responds to an un-
known User with an error mes-
sage that requires the User to re-
discover the Registry

Registry requests the User to resubscribe

PR4: Manager rediscovers
User, and requests resubscrip-
tion

Manager requests purged
Users to resubscribe

- 300D Manager in 2-party subscription
requests purged Users to resubscribe

PR5: Users purges and redis-
covers Manager

Users rediscover the Man-
ager through muticast
queries, or by listening
for multicast announce-
ments from the Man-
ager

- 3-party subscription: Users purge the
subscription when the Registry purges
the Manager. Managers are rediscovered
by querying the Registry or by sending
multicast queries when the Registry is
not responding

Table 4. Recovery techniques, as implemented in the UPnP, Jini and FRODO models.

failure rate. For ease of understanding, we first present
the summary of the analysis according to the Update
Metrics. Then we elaborate on the results by decompos-
ing our findings according to the type of recovery tech-
nique.

6.1. Summary of performance according to the
Update Metrics

Update Effectiveness is the predominant metric that
reflects the impact of recovery techniques. We find that
at lower failure rates (below 30%), the prominent re-
covery technique is SRN2, as implemented in FRODO
with 2-party subscription (Figure 4(i)). At higher fail-
ure rates, PR5 as implemented in UPnP (Figure 4(iv))
is the most effective. In FRODO with 2-party subscrip-
tion, Users rediscover the Manager via the Registry, as
opposed to direct, peer-to-peer communication in UPnP,
causing the PR5 implementation in UPnP to be more ef-
fective than in FRODO. PR1 as implemented in FRODO
(Figure 4(ii)) yields the next highest effectiveness.

Update Responsiveness metric as shown in Figure 5

reveals that FRODO with 2-party subscription incurs the
overall shortest delay for Users to regain consistency,
due to a combination of direct, peer-to-peer commu-
nication between the User and the Manager, fast UDP
transmission, low number of messages during consis-
tency maintenance and the use of SRN2 and PR1 recov-
ery techniques.

Efficiency Degradation metric is shown in Figure 6.
FRODO gives the best performance for the Efficient
Degradation metric. At 0% failure rate, Jini with two
Registries and UPnP are the least efficient because they
propagate 14 and 15 messages each, while the rest of
the systems propagate an average of 7 messages to re-
gain consistency. UPnP uses invalidation during update
notification, which requires the User to poll for the up-
date, after receiving a notification from the Manager
that indicates an update has occurred. As mentioned ear-
lier in Section 4.2, update propagation using the inval-
idation method is not efficient for services that do not
change frequently, as is the scenario in the experiment.
In Jini with 2 Registries, update notification has twice
the number of messages than in Jini with a single Reg-

11

Average Effectiveness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Interface failure (%)

Jini with 1 Registry Jini with 2 Registries UPnP
Frodo with 3-party subscription Frodowith 2-party subscription

(i) SRN2 for FRODO
 with 2-party subscription

(iv) PR5

(iii) PR1, PR4

(ii) PR1, PR3

Figure 4. (i) SRN2 is most effective be-
cause the Manager resends the update no-
tification when the lease is renewed. (ii) Ef-
ficient PR1 in FRODO allows the Registry
to update the Users when the Manager or
the Registry recovers from failures. PR3
and PR4 in (ii) and (iii) allows Users to re-
subscribe to the Registry and the Manager
respectively. (iv) PR5 is most effective at
high failure rates where Users rediscover
the Manager through the Manager’s peri-
odic announcements.

istry because the Manager notifies both Registries, and
the Users also receive notifications from both Registries.
Although Jini with a single Registry is as efficient as
FRODO and more efficient than UPnP, it degrades faster
than the other two protocols when failure rate increases.
The Efficiency Degradation metric of the UPnP and Jini
models do not take into account the messages used by
the transmission layers. Therefore, the true performance
for Jini and UPnP is even lower than shown in Figure 6.

6.2. Analysis of the recovery techniques

At low failure rates (below 30%), subscription may
remain valid, because nodes recover from failures before
the subscription expires, and manage to renew the sub-
scription. At high failure rates, nodes purge cache entries

Median Responsiveness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Interface failure (%)

Jini with 1 Registry Jini with 2 Registries UPnP
Frodo with 3-party subscription Frodo with 2-party subscription

 (i) PR2 for Jini

(ii) UDP, PR1, PR3

 (iii) UDP, SRN2, PR1, PR4

Figure 5. (i) PR2 allows Users in Jini to
regain consistency by querying the Reg-
istry. FRODO uses SRN2, which depends
on the subscription lease period to regain
consistency. (ii) UDP transmits messages
faster than TCP. PR1 enables the Reg-
istry to update the Users when the Reg-
istry or the Manager recovers from fail-
ures. PR3 enables purged Users to resub-
scribe with the Registry. (iii) 2-party sub-
scription, UDP, SRN2, PR1 and PR4 allow
Users in FRODO to be the most respon-
sive.

on discovered nodes. Henceforth, we refer to “low fail-
ure rates” for rates below 30%, and “high failure rates”
for rates above 30%.

SRN1: The logs show that SRN1 has no apparent posi-
tive impact during interface failure because nodes typi-
cally fail longer than the total period for update retrans-
missions. SRN1 is more useful during heavy message
losses [25].

SRN2: The impact of SRN2 is apparent especially at
low failure rates because Users recover from failures
quickly, before subscription is purged. An example of a
scenario with a lack of SRN2 is given below. The exam-
ple shows the simulation result of UPnP at 15% failure
rate. Tx and Rx mean transmitter and receiver, and the
numbers represent time, in seconds. The service changes

12

Efficiency Degradation

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)
Jini with 1 Registry, m'=7 Jini with 2 Registries, m'=14
UPnP, m'=15 FRODO with 3-party subscription, m'=7
FRODO with 2-party subscription, m'=7

Figure 6. FRODO uses lesser messages
during consistency messages than Jini
and UPnP. In average, UPnP propagates
lesser messages than Jini, even though
UPnP sends more messages when there
are no failures.

at 2507s, but the Manager fails to update the User which
has both interfaces down from 2023s until 2833s. The
update notification fails, and the User never regains con-
sistency! This is a failure to satisfy the Configuration
Update Principles.

Failure Rate: 15%

Manager Tx down at 381, up at 1191
User Tx and Rx down 2023, up at 2833

UPnP 15% User 2507 5400

FRODO with 2-party subscription implements SRN2,
where the Manager retries the update at a later point
of time, when the User renews its subscription with the
Manager. Therefore, the effectiveness of FRODO with
2-party subscription is the highest at low failure rates
(Figure 4(i)). However, SRN2 causes longer delay in
update notification, as can be seen in Figure 5 (below
30%), because of the dependency on the subscription
lease period.

PR1: This technique is implemented differently in Jini
and FRODO. In Jini, the Registry notifies interested
Users of a new service registration only if the Manager

registers after the User. If the Manager is already reg-
istered before the User discovers the Registry, the Reg-
istry does not notify the User. Therefore, service notifi-
cation in Jini is only for future registrations. This anom-
aly is reported by Dabrowski and Mills [6]. Jini over-
comes this problem by forcing Users to always send
queries after the User requests for service notification
from the Registry, so that existing registered services can
also be retrieved (PR2). Service notification in FRODO
is more efficient since the Registry notifies interested
Users on existing service registrations. A control exper-
iment with and without PR1, shown in Figure 7 demon-
strates the impact of PR1 on the Update Effectiveness of
both FRODO systems.

PR1 Impact on FRODO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)

A
v
e
ra

g
e
 E

ff
e
c
ti

v
e
n

e
s
s

Frodo with 3-party subscription, without PR1 Frodo with 2-party subscription, without PR1
FRODO with 3-party subscription, with PR1 Frodo with 2-party subscription, with PR1

Figure 7. Impact of PR1 recovery tech-
nique on the Update Effectiveness of
FRODO with 2-party and 3-party subscrip-
tions

In addition to a more efficient Registry notification,
Users in FRODO discover the Registry not only by lis-
tening for Registry announcements (as used in Jini), but
also by announcing their presence through multicast.
This allows faster discovery of the Registry. This recov-
ery technique helps FRODO to generally have a higher
responsiveness, effectiveness and efficiency than Jini.

PR2: In Jini, PR2 is implemented together with PR1. As
mentioned earlier, Jini requires Users to always query
the rediscovered Registry to retrieve the service. There-
fore, PR2 depends on whether the Manager was purged

13

.

Update Metrics UPnP Jini with 1 Reg-
istry

Jini with 2 Reg-
istries

FRODO with 3-party
subscription

FRODO with 2-party
subscription

Update Responsiveness, R 0.553 0.474 0.476 0.580 0.666
Update Effectiveness 0.922 0.802 0.825 0.878 0.861
Efficiency Degradation, G 0.385 0.311 0.361 0.428 0.429

Table 5. Average metrics results across failure rates from 0% to 90%

and re-registered before the User discovers the Registry.
We see that such an implementation of PR2 benefits the
responsiveness of Jini at low failure rates where Users
regain consistency faster than FRODO, as shown in Fig-
ure 5(i).

PR3: This technique benefits the responsiveness and
effectiveness of FRODO with 3-party subscription, as
shown in Figures 4(ii) and 5(ii). The Registry in FRODO
explicitly requests purged Users to resubscribe. The re-
sponse to the resubscription is the updated service de-
scription. PR3 in Jini is implemented such that purged
Users are simply returned with an error message from
the Registry. The Users then redo Registry discovery,
service notification request (PR1), and service query
(PR2). Therefore, PR3 in FRODO with 3-party subscrip-
tion allows faster and more effective consistency main-
tenance.

PR4: This technique benefits both 2-party subscriptions
in UPnP and FRODO, where the Manager requests
purged Users to resubscribe so that Users can obtain the
updated service description. The recovery is beneficial
for the responsiveness and effectiveness of both systems,
which remain high above Jini at failure rates above 40%.

PR5: This technique gives the highest effectiveness, as
shown in Figure 4(iv) and Table 5. Users in UPnP listen
to the periodic announcements of the Managers to redis-
cover the Manager. The Users have high chances of re-
gaining consistency because they can get updated when
the Manager recovers from failures and announces its
presence. FRODO with 3-party subscription employs a
weaker recovery with PR5, where Users depend on the
Registry to purge the Manager, and only then perform
unicast or multicast queries to rediscover the service.

Table 5 shows that although FRODO is a single Reg-
istry architecture with unreliable transmissions, FRODO
has the highest responsiveness, with the least degrada-
tion in efficiency compared to Jini (even Jini with two
Registries) and UPnP, while maintaining a high degree
of effectiveness.

7. Conclusion
Consistency maintenance in service discovery en-

sures that Users eventually obtain the correct view of the
discovered services. We present a novel classification of
recovery techniques for consistency maintenance, and
propose new techniques to improve performance. We
use simulations to show that the type of recovery tech-
nique a protocol uses, and how it implements them sig-
nificantly impacts the proficiency of consistence main-
tenance. We benchmark the performance of our own
service discovery protocol, FRODO against the perfor-
mance of first generation service discovery protocols,
Jini and UPnP during increasing communication and
node failures. The results show that FRODO has the best
overall consistency maintenance performance.

8. Acknowledgement
This research is part of the At Home Any-

where project sponsored by the Netherlands Orga-
nization for Scientific Research (NWO) under grant
number 612.060.111, and by the IBM Equinox pro-
gram. We thank Christopher Dabrowski and Kevin Mills
from the US National Institute of Standards and Tech-
nology for their support and contribution to this pa-
per. We also thank NIST for supporting this work
through their Foreign Guest Researcher Program.

References
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an inten-
tional naming system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP),
pages 186–201. ACM Press, December 1999.

[2] C. Bettstetter and C. Renner. A comparison of service
discovery protocols and implementation of the service
location protocol. In Proceedings of 6th EUNICE Open
European Summer School: Innovative Internet Applica-
tions, pages 101–108. University of Twente, September
2000.

14

[3] V. Cate. Alex - a global file system. In Proceedings of
the USENIX File System Workshop, pages 1–11, Ann Ar-
bor, Michigan, 1992.

[4] C.Dabrowski, K.Mills, and J.Elder. Understanding con-
sistency maintenance in service discovery architectures
during communication failure. In Proceedings of the
Third International Workshop on Software and Perfor-
mance, pages 168–178. ACM Press, July 2002.

[5] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz. An architecture for a secure service
discovery service. In Wireless Networks, Volume 8, Is-
sue 2/3, Selected Papers from Mobicom’99, pages 213–
230. Kluwer Academic Publishers, MA, USA, March-
May 2002.

[6] C. Dabrowski and K. Mills. Analyzing properties
and behavior of service discovery protocols using an
architecture-based approach. In Proceedings of Work-
ing Conference on Complex and Dynamic Systems Archi-
tecture (CDSA). Distributed Systems Technology Cen-
tre, December 2001.

[7] C. Dabrowski, K. Mills, and J.Elder. Understanding con-
sistency maintenance in service discovery architectures
in response to message loss. In Proceedings of the 4th
International Workshop on Active Middleware Services,
pages 51–60. IEEE Computer Society, July 2002.

[8] C. Dabrowski, K. Mills, and S. Quirolgico. A Model-
based Analysis of First-Generation Service Discovery
Systems. Special Publication 500-260, National Institute
of Standards and Technology, 2005.

[9] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A
strong consistency mechanism for the world wide web.
IEEE Transactions on Knowledge and Data Engineer-
ing, 15(5), 2003.

[10] W. Fenner. Internet group management protocol, version
2, rfc-2236, 1997.

[11] C. Frank and H. Karl. Consistency challenges of ser-
vice discovery in mobile ad hoc networks. In Proceed-
ings of the 7th ACM International Symposium on Model-
ing, Analysis and Simulation of Wireless and Mobile Sys-
tems (MSWiM), pages 105–114, 2004.

[12] M. J. Franklin, M. J. Carey, and M. Livny. Transac-
tional client-server cache consistency: alternatives and
performance. ACM Transactions on Database Systems,
22(3):315–363, 1997.

[13] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright.
Simple service discovery protocol, version 1.0.3, ietf
internet-draft, 1999.

[14] C. Gray and D. Cheriton. Leases: An efficient fault tol-
erant mechanism for distributed file cache consistency.
In Proceedings of the 12th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 202–210, Austin,
Texas, December 1989. ACM Press.

[15] E. Guttman, C. Perkins, J. C. Veizades, and M. Day. Ser-
vice Location Protocol, V.2, RFC-2608. Internet Engi-
neering Task Force (IETF), December 2003.

[16] M. Handley and V. Jacobson. Sdp: Session description
protocol, rfc-2327, 1998.

[17] D. Luckham. Rapide: A language and toolset for simula-
tion of distributed systems by partial ordering of events.
In Y. Masunaga, T. Katayama, and M. Tsukamoto, edi-
tors, Proceedings of Worldwide Computing and Its Ap-
plications, International Conference, WWCA ’98, Sec-
ond International Conference, volume 1368 of Lecture
Notes in Computer Science, pages 88 – 96. Springer-
Verlag, March 1998.

[18] Microsoft. Universal Plug and Play Architecture, V1.0,
Jun 2000.

[19] Sun Microsystems. JavaSpaces Service Specification ,
version 2.0, June 2003.

[20] Sun Microsystems. The Jini Architecture Specification,
version 2.0, June 2003.

[21] S. L. Min and J.-L. Baer. A performance comparison of
directory-based and timestamp-based cache coherence
schemes. In In Proceedings of the International Con-
ference on Parallel Processing, Volume I. CRC Press.

[22] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer.
Bayou: replicated database services for world-wide ap-
plications. In EW 7: Proceedings of the 7th workshop
on ACM SIGOPS European workshop, pages 275–280,
1996.

[23] V. Sundramoorthy, M. D. Speelziek, G. J. van de Glind,
and J. Scholten. Service discovery with FRODO. In 12th
IEEE Int. Conf. on Network Protocols (ICNP), pages 24–
27, Berlin, Germany, Oct 2004. Computer Science Re-
ports, BTU Cottbus.

[24] V. Sundramoorthy, C. Tan, P. H. Hartel, J. I. den Hartog,
and J. Scholten. Functional principles of registry-based
service discovery. In 30th Annual IEEE Conf. on Lo-
cal Computer Networks (LCN), page to appear, Sydney,
Australia, Nov 2005. IEEE Computer Society Press.

[25] V. Sundramoorthy, G. J. van de Glind, P. H. Hartel, and
J. Scholten. The performance of a second generation ser-
vice discovery protocol in response to message loss. In
1st Int. Conf. on Communication System Software and
Middleware, page to appear, New Delhi, India, Jan 2006.
IEEE Computer Society Press.

[26] A. S. Tanenbaum and M. V. Steen. Distributed Systems:
Principles and Paradigms. 2002.

[27] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees
for weakly consistent replicated data. In Proceedings of
the Third International Conference on Parallel and Dis-
tributed Information Systems (PDIS), pages 140–149,
Austin, Texas, September 1994. IEEE Computer Soci-
ety Press.

15

