

Academic Panel: Can Self-Managed Systems be trusted?

Rogério de Lemos*, Julie A. McCann% (editor), Omar F Rana@ and Andreas Wombacher#

* Computing Laboratory, University of Kent, UK, r.delemos@kent.ac.uk

% Department of Computing, Imperial College London, UK, jamm@doc.ic.ac.uk
@ School of Computer Science, Cardiff University, UK, O.F.Rana@cs.cardiff.ac.uk

Department of Computer Science, University of Twente, NL, A.Wombacher@utwente.nl

1. Introduction.
Trust can be defined as to have confidence or faith in; a
form of reliance or certainty based on past experience; to
allow without fear; believe; hope: expect and wish; and
extend credit to. The issue of trust in computing has
always been a hot topic, especially notable with the
proliferation of services over the Internet, which has
brought the issue of trust and security right into the
ordinary home. Autonomic computing brings its own
complexity to this. With systems that self-manage, the
internal decision making process is less transparent and
the ‘intelligence’ possibly evolving and becoming less
tractable. Such systems may be used from anything from
environment monitoring to looking after Granny in the
home and thus the issue of trust is imperative.

To this end, we have organised this panel to examine
some of the key aspects of trust. The first section
discusses the issues of self-management when applied
across organizational boundaries. The second section
explores predictability in self-managed systems. The third
part examines how trust is manifest in electronic service
communities. The final discussion demonstrates how trust
can be integrated into an autonomic system as the core
intelligence with which to base adaptivity choices upon.

2. Self-management Applied across
Organizational boundaries - Andreas
Wombacher.

Integration of information systems is performed on
different organizational levels: the intra-organizational
integration means to couple systems which are owned and
maintained within a single organizations by different
departments or business units, while cross-organizational
integration results in B2B systems allowing business to
coordinate their processes using information systems.
While the requirements on trust and security are much
higher at cross-organizational integration, the underlying
processes of implementing the integration are similar. In
particular, right now, the implementation process works
like this: people meet, discuss different options of the

integration, decide on a particular one, drill it down to the
different parts to be provided by the different parties, and
afterwards implement the agreed specifications. This
centralized process is expensive and time consuming, but
provides sufficient options to pay attention to personal
and trust relationships. However, this kind of integration
is appropriate for long running business relationships,
which result in stable information system interfaces
provided by the different parties as a basis for the
integration.

Opposed to this static approach of integration, Service
Oriented Architectures (SOA) provide a set of standards
for communication and the loosely coupling of services.
Services, in particular, are offered and maintained by a
service provider, thus are maintained in a decentralized
way. The loose-coupling supports integration of systems
with lower costs supporting also short-term integration of
information systems. As a consequence, the process of
integration can be addressed in a more bottom-up way
where services are provided first and coupling of services
is performed in case it is needed. The loose-coupling
allows ad-hoc composition of services implementing
system integration in a cheap and fast way.

Inspecting the way SOA is applied in current
applications indicates that they make use of the common
communication methods, but do not use the potential of
loosely-coupling, that is, the bottom-up integration. In
particular, the decentralized maintenance of services has
not been established right now. That is, decisions on
changing the functionality, the Quality of Services (QoS)
parameters, or the provided options of a service (process
model) are made by the service provider, but are not
necessarily be based on the observed requirements of his
service users. In particular, the service development
process has to be changed from a centrally coordinated
one to a decentralized, market driven one. Market-driven
means that the success of a service offering is measured,
e.g., monetary, in the number of parties using the service,
or the number of invocations of a service in average. If
software is developed in this decentralized and market
driven way, the change of properties and functionality of

services is more dynamic and communication of these
changes gets more complicated.

Such a change in the service development process has
also implications on the systems derived from the system
integration process. A potential change of a service may
not affect the integrated system at all, may require a slight
change of other services provided by third parties, who
are willing to apply these changes, or may result in a
termination/cancellation of the integrated system in case
other service providers are not willing to adapt the
required changes. Since services are changing more often,
an integrated system requires also adaptation of the way it
is integrated and maintained to remain operative. This
continuous adaptation is clearly specified, is quite easy to
automate and has a clear optimisation function, which
makes it a good candidate for self-management.

Self-management in system integration based on SOA
means that a service provider doesn't have to do the
integration processes himself, that is, initiating the lose-
coupling of the services, but use service provisioning
system providing this functionality to him. In particular,
the self-managed service provisioning must support the
initialisation of an integrated system as well as its
maintenance especially keeping track and adapting to
changes initiated by all kind of changes either locally or
by external service providers.

Applying this concept to e.g. Web Services as a
potential infrastructure of SOA, it turns out that the
technology provided so far is not mature enough. In
particular, the following issues can be observed:
• the service discovery of state dependent services does

not cover process, QoS, and semantic aspects in an
appropriate way, although a lot of work is currently
going on in this area

• the decentralized decision making on consistency of
an integrated system with regard to cover process,
QoS, and semantic aspects has only been addressed
partially

• self-managed fault-tolerance and recovery of SOA
based integrated systems is not supported right now,
although approaches exists which are mainly
applicable to services with a centralized coordinator

• decentralized, efficient and reliable auditing of the
execution of a SOA based integrated system has not
really been addressed in research community

• change management of processes, QoS, or semantic
aspects of a service and its application to the currently
running SOA based integrated system instances is
another open issue

Due to these exemplary limitations derived from the
underlying infrastructure, the risk of causing a non-
working integrated system is quite high, which results in
high costs due to the nun-operational integrated system.
Thus, the willingness of system integrators to consider
self-managed SOA based integrated systems is quite

limited. However, a big community of researchers are
working on the specific areas mentioned above to cover
up the technological issues, thus it is worth digging into
applications of self-management approaches to SOA
based integrated inter- and cross-organizational systems.

3. Predictability in Self-Managed Systems -
Rogério de Lemos.

Trust can be defined as the reliance put by a system on
some properties of another system [8]. Consequently, a
trusted system has a set of properties that are relied upon
by another system, i.e., there is an accepted dependence.
This concept of accepted dependence is dependence allied
to the judgment that the level of dependence is acceptable
[1], and this level of dependence can vary from total
dependence to complete independence. For total
dependence, for example, the failure of one system might
cause the failure of another system that relies upon its
services. From a narrow perspective, dependence might
be associated to the services correctness delivered by a
system [3,7]. However, dependence, like trust, cannot be
considered in absolute terms, instead it should be
expressed by a set of properties.

A self-managing system can be seen as a system that
has the ability to react and adapt dynamically to either
internal or external changes without any outside
interference. Whether a self-managed system can be
trusted relies on the level of dependence that another
system places upon it, and not necessarily on its services
or quality of its services. If the effect of self-management
activities are completely transparent to the services that
the system delivers, then whether the system is self-
managed or not should not affect the level of trust that
other systems place upon it. On the other hand, if the
effect of self-management activities is reflected on the
services that the system delivers, then uncertainties might
appear on its services depending on the techniques
employed for implementing the self-managing
capabilities [4].

Techniques for implementing the self-managing
capabilities essentially depend on how a system is
described: process or data [6,9]. Process description
characterises the system as sensed by providing the means
for producing or generating objects having the desired
characteristics [9]. Data description characterises the
system as acted upon by providing the criteria for
identifying objects, often by modelling the objects
themselves [9]. The difference between process and data
representations can be interpreted from the perspective of
accuracy and precision. While uncertainties in process
descriptions can be eliminated within a certain degree of
confidence, in data descriptions, these are difficult to be
eliminated.

If trust is based on the predictability of the services
required from a self-managed system, then in the context
of process descriptions this could be achieved, as it is
achieved in most of the existing dependable systems. In
contrast, in the context of data descriptions, the
elimination of uncertainties for obtaining predictable
services might not be as desirable, since it would remove
a feature that could be essential for the provision of
adaptability. Clearly, a trade off is established between
the self-management capabilities of a system and the trust
that other systems place upon that system. For example,
let us assume a system composed of several self-managed
components whose behaviours are not entirely
predictable. If no constraints are imposed on the
interactions between these components, it would be
difficult to establish overall system emergent behaviour,
considering the uncertainties associated with the
behaviours of the individual component. Moreover, the
emergent behaviour might be either beneficial or harmful,
how to incorporate means that are able to clearly identify
and promote which is which, still remains a challenge.
From the practical point of view of a system based on
process description, let us consider dynamic
reconfiguration as a mechanism for handling replication
in self-managed systems [5]. Assuming that only one
fault might occur, the defined architectural solution
compares two streams of data for implementing crash
failure semantics (processing halts before an incorrect
outcome is produced). With a certain degree of
confidence, which depends on the veracity of the fault
assumption, trust can be obtained that the service
delivered by the system will be correct if enough
replicated resources are available. For a system based on
data description, let us consider anomaly detection as the
first stage for self-management in the context of a
hierarchy of dependable embedded systems [2]. Systems
at the lower level have the capability for identifying new
anomalies, and incorporate corresponding detectors into
their repertoire of detectors. Whether these new detectors
should be distributed among other systems, as an analogy
to vaccination, it is not yet an automatic process since it
requires them to be validated by a domain expert.

In conclusion, considering predictability as a major
criterion for placing trust upon a self-managed system,
data description solutions seem promising for emerging
complex applications that are open and collaborative in
their nature, however they still lack in providing the
necessary assurances in the context of dependable
applications.

4. Trust-based Electronic Service
Communities - Omer F. Rana.

 The general notion of “trust” is excessively complex, and
appears to have many different meanings depending on

how it is used. There is also no consensus in the computer
and information sciences literature on a general definition
of “trust” – although its importance has been widely
recognized in the increasing number of publications that
utilize it. Trust is also a multifaceted issue and may be
related to other themes such as risk, competence, security,
beliefs and perceptions, utility and benefit, and expertise.
Hence, a service user may only be interested in evaluating
the trust of a service provider if there is likely to be some
risk to the service user directly. Overall, two main
approaches may be deduced from literature. The first is
based on allowing “agents” in a system to trust each other
and therefore there is a need to endow them with the
ability to reason about the reliability or honesty of their
counterparts. This ability is captured through trust
models. The second is based on allowing agents to
calculate the amount of trust they can place in their
interaction partners. This is achieved by guiding agents in
deciding on how, when and who to interact with. An
agent in this context refers to either a service user or a
provider. However, in order to do so, trust models
initially require agents to gather some knowledge about
their counterparts. This may be achieved in three ways:
• A Presumption drawn from the agent's own

experience: trust is computed as a rating of the level
of performance of the trustee. The trustee's
performance is assessed over multiple interactions to
check how good and consistent it is at doing what it
says it will [1,12]. This aspect of trust may utilize a
pre-agreed contract between a service user and
provider. Violation of a contract is likely to impinge
on the trust that the service user has in the provider.

• Information gathered from other agents: trust in this
approach is computed indirectly from
recommendations provided by others. As the
recommendations could be unreliable, the agent must
be able to reason about the recommendations gathered
from other agents. The latter is achieved in different
ways: (1) deploying rules to enable the agents to
decide which other agents' recommendation they trust
more; (2) weighting the recommendation by the trust
the agent has in the recommender [13,14]. Such a
referral mechanism may involve a multi-hop
interaction.

• Socio-Cognitive Trust: trust in this case is the
capability to characterize the likely motivations of
other agents. This involves forming coherent beliefs
about different characteristics of these agents, and
reasoning about these beliefs in order to decide how
much trust should be put in them [5].
Client agents involved in an autonomic system may

need to choose between a set of partners to interact with.
This situation arises when a client requires a service, and
multiple providers are available to offer such a service.
Selection between such a set of providers incurs a

computational cost – which may increase as the number
of interactions and service execution requests increase.
We therefore define the concept of a “community”,
within which participants can interact with a higher level
of trust on each other. In this instance, trust may be
viewed with reference to each of the three criteria
mentioned above. A reason for the formation of such
communities may be to reduce the subsequent cost of
interaction once the community has been established. An
agent may therefore decide to incur an initial cost to
determine which community it should participate in, what
actions it should undertake within the community (its
role), which other participants it should communicate
with (its interactions), and when to finally depart from the
community. Based on such an analysis, an agent would
have to pay an initial cost to make some of these
decisions. Subsequently, the agent will only incur an
“operational” cost -- much lower than that for making
some of these initial decisions. Formation of such
communities may be implicit – i.e. based on analysing
interactions of agents and determining the level of trust
that can be placed on other participants, or explicit – i.e. a
system administrator may determine which set of agents
must be placed in a community. We demonstrate implicit
service communities, and use this as a basis to evaluate
trust. Communities, by definition are dynamic in nature,
and will have a varying membership.

5. Integrating Trust as Autonomic
Intelligence – Julie A McCann1.

The paradigm shift in computing required to achieve
Mark Weiser’s vision of Calm for ubiquitous computing
lies in the emergent intelligence embedded in the
autonomic middleware governing it. Context-awareness is
the ability of an application to adapt itself to the context
of its user(s), whereby a user’s context can be defined
broadly as the circumstances or situations in which a
computing task takes place. One of the most common
contexts is the location of the user (or of objects of
interest). In smart-homes, location can be obtained using
a variety of different alternative sensor types, including
ultrasonic badges, RFID-tags, and even pressure sensors
in the floor. The quality (which is quantitatively
application-specific) of the location information acquired
by different sensors will however be different. For
instance, ultrasonic badges can determine location with a
precision of up to 3 cm, while RF lateration is limited to
1–3 m. Thus, we can define properties, which we call
Quality of Context (QoC) attributes that characterise the
quality of the context data received. QoC is essential to
choosing the best alternative among those available when

1 Based on work carried out by Markus Huebscher with Julie A

McCann (see [10]).

delivering a specific type of context. Therefore this
discussion focuses on the intra- dependences within the
autonomic systems services. Context providers need to
specify QoC attributes for the context information they
deliver. These attributes may vary over time and therefore
must be updated regularly. But how can we trust the QoS
advertised by each service? This section briefly
introduces a method that allows an autonomic system to
discern between service contexts while tracking the
published quality rating [10].

An application makes use of a number of context
services that in turn use one or more context providers.
The application defines the minimum QoC required for
correct functioning. We define an application’s
satisfaction for a particular CP as a utility function that
maps the CP’s QoC attributes to a value that quantifies
the application’s satisfaction (where values >= 0 mean the
application is satisfied with this CP and values < 0 mean
the application is not satisfied). Given each application’s
idea of the CP utility it requires in the form of its utility
function, the adaptation engine can then apply each
application’s utility function to each CP and select for
each application the best CP. For example, the utility
function could define a reference point of the
application’s QoC expectations and then use linear
distance (1-norm), Euclidean distance (2-norm), or return
the maximum distance (maxnorm) between a CPs
provided QoC and an application’s QoC expectation. This
way we can determine an application’s satisfaction (or
dissatisfaction) when the CP is unable to provide an
estimate of a QoC attribute, given the value wished for by
the application. The various norms won’t usually be
applied but one also considers the sign (satisfaction (+)
vs. dissatisfaction (-)) of each dimension and also of the
final distance. Since each QoC attribute is not necessarily
equally important, e.g. precision may be more important
than refresh rate, applications may set weights to the QoC
attributes.

We believe that among the descriptive attributes of a
CP that are used as input to an application’s utility
function, there should also be a measure of the CP’s trust.
In our middleware, we define the trust of a CP as the
probability that, when it delivers context information, the
quality of this information will match the descriptive
attributes advertised. Therefore, if a location precision of
10cm is advertised, but the actual location is 50cm from
what is delivered by the CP, then the CP is being
unreliable. Instead, a CP advertising a location precision
of 100cm but delivering information within 50cm of the
actual location is dependable. Including trust in the input
of the utility function allows an application to choose how
much risk it is willing to take in the hope of receiving
good quality information. Trust (from now on abbreviated
as tw) is different from all other descriptive attributes in
that it cannot be determined by the CP itself (which could

otherwise choose maximum tw=1), but must be
determined externally. We use a learning model that takes
as input binary positive/negative feedback from context
consumers and cross-validation with other CPs and feeds
this feedback into a parameterised probability density
function that is used to predict the CP’s current trust. The
model allows for dynamic trust by keeping a window of
recent feedbacks that affect the learning model. Thus,
should the ratio of positive/negative feedbacks change
over time, and then so will the predicted tw of the CP.
Concluding trustworthiness as one of the metrics in the
utility function deciding which alternative provider to
pick, we have found in an experimental case study that
the resulting output from the middleware is not only as
good as the best alternative, but even better, as the
middleware switches continuously to the current best.
This is a result of the fact that no alternative is the
trustworthiest all the time. As trustworthiness is not
necessarily a result of malicious intent, it is volatile and
dynamic.

6. Conclusion.
Through the exploration of trust from as diverse
approaches as the examination of trust cross-
organizationally and in electronic service communities,
its predictability and finally, trust as the core of the self-
managing system, we can see that the issue is quite large
and complex. We have shown that in each domain we
continue to observe technological advances aiming to
help solve the problems of trust in autonomic systems and
have identified that trust is possibly key to the take-up of
self-managing systems in the future. However this is
closely tied to the provision of assurances as we see
perhaps that assurance can only be safely given within
closed technological and/or organisational communities
(initially at least).

7. References.
1. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.

“Basic Concepts and Taxonomy of Dependable and
Secure Computing”. IEEE Transactions on
Dependable and Secure Computing 1(1). January-
March 2004. pp. 11-33.

2. M. Ayara, J. Timmis, R. de Lemos, and S. Forrest.
“Immunising Automated Teller Machines”.
Submitted to the 4th International Conference in
Artificial Immune Systems (ICARIS 2005). Banff,
Canada. August 2005.

3. F. Cristian. “Understanding Fault-Tolerant
Distributed Systems”. Communications of the ACM
34(2). 1991. pp. 56-78.

4. R. de Lemos. “The Conflict between Self-*
Capabilities and Predictability”. Self-Star Properties

in Complex Information Systems. O. Babaoglu, M.
Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van
Moorsel, M. van Steen (Eds.). Lecture Notes in
Computer Science 3460. Springer. Berlin, Germany.
2005. pp. 219-229.

5. R. de Lemos. “Architecting Web Services
Applications for Improving Availability”.
Architecting Dependable Systems III. R. de Lemos,
C. Gacek, A. Romanovsky (Eds.). Lecture Notes in
Computer Science 3549. Springer. Berlin, Germany.
2005 (to appear).

6. G. J. MacFarlane. “Information, Knowledge and
Control”. Essays on Control: Perspective in the
Theory and its Applications. H. L. Trentelman, J. C.
Willians. Birkhäuser (Eds.). 1993.

7. D. Parnas. “On the Criteria to be used in
Decomposing Systems into Modules”.
Communications of the ACM 15(12). December
1972. pp. 1053-1058.

8. D. Powell, and R. Stroud (Eds.). Conceptual Model
and Architecture of MAFTIA. MAFTIA deliverable
D21. IST Project on Malicious- and Accidental-Fault
Tolerance for Internet Applications (MAFTIA).
January 2003.

9. H. A. Simon. The Sciences of the Artificial. Second
Edition. MIT Press. Cambridge, MA, USA. 1981.

10. M C. Huebscher, and J A. McCann. “A Learning
Model for Trustworthiness of Context-awareness
Services”. Proceedings of the 3rd International
Conference on Pervasive Computing and
Communications (PerCom). March 2005.

11. J. Sabater, and C.Sierra, “REGRET: A Reputation
Model for Gregarious Societies”. Proceedings of the
1st International Joint Conference on Autonomous
Agents and Multi-Agents Systems. 2002.

12. M. Witkowski, A. Aritikis, and J. Pitt. “Experiments
in building Experiential Trust in a Society of
objective-trust based agents”. Trust in Cyber-
societies. 2001.pp. 111-132,

13. S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina, “The Eigentrust Algorithm for Reputation
Management in P2P Networks”. Proceedings of the
Twelfth International World Wide Web
Conference.2003.

14. L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Tech. Report SIDL-WP-1999-0120, Stanford
Digital Library Technologies Project, Stanford Univ.,
1999; http://dbpubs.stanford.edu:8090/pub/1999-66.

15. R. F.C.Castelfranchi, “Principles of Trust Formas:
Cognitive Anatomy, Social Importance and
Quantification” Proceedings of the International
Conference on Multi-Agent Systems 1998.

