
A Security Architecture for Personal Networks

Assed Jehangir, Sonia M. Heemstra de Groot
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
Enschede, The Netherlands

{jehangira, heemstra} @cs.utwente.nl

Abstract—Personal Network (PN) is a new concept utilizing
pervasive computing to meet the needs of the user. As PNs edge
closer towards reality, security becomes an important concern
since any vulnerability in the system will limit its practical use. In
this paper we introduce a security architecture designed for PNs.
Our aim is to use secure but lightweight mechanisms suitable for
resource constrained devices and wireless communication. We
support pair-wise keys for secure cluster formation and use
group keys for securing intra-cluster communication. In order to
analyze the performance of our proposed mechanisms, we carry
out simulations using ns-2. The results show that our mechanisms
have a low overhead in terms of delay and energy consumption.

Keywords-Personal Networks; secure communication; security
agent, group key; key management

I. INTRODUCTION
The goal of our security architecture is to provide users of

Personal Networks (PNs) [1] with a reliable communication
platform to access their services. A PN comprises a core
consisting of a PAN (Personal Area Network) which can be
extended on demand to include other devices belonging to the
user, both in his vicinity and those at remote locations such as
the home or office. This transparent extension of the PAN will
physically be made via infrastructure-based networks such as
an organizations intranet, other ad-hoc networks, etc. Devices
belonging to the PN can have one or more wireless interfaces
such as Bluetooth, IEEE 802.11, UWB and ZigBee. These
devices are expected to be mobile and their membership status
as well as their physical location within the PN can change at
any time. Fig. 1 outlines the PN architecture developed in the
QoS for PN@Home project [2].

Figure 1. Clusters in a Personal Network

Providing security for PN devices is a major challenge
since the majority of current security algorithms were designed
for powerful workstations and are not practical for resource
constrained devices. As a result, often for the sake of feasibility
and efficiency, security is sacrificed. We believe that as
technology advances and devices become more ubiquitous,
strong security is necessary for a viable system. As discussed in
[5], [6] and [7] the limited computational and energy resources
of many PN devices imply that any proposed security solution
must be simple and lightweight in order that it does not create a
performance bottleneck of its own. Therefore our system is
based on symmetric cryptographic primitives where public key
cryptography is optional and only used between two parties
when mutually agreed.

Since energy is the scarcest resource in our system, our
security mechanisms must be frugal in their power
consumption. We would like to minimize the security overhead
in data packets and also restrict key management activities in
order to conserve power. Fortunately since devices from a
particular PN share the same owner, we believe that it is
sufficient for PN devices to demonstrate group membership of
a cluster rather than their individual identity. Such a restriction
improves on system efficiency by using a shared group key
(henceforth called the cluster key) to verify cluster membership
instead of as many keys as members in the cluster. It reduces
the overhead associated with key management such as the
amount of processing required, the number of messages
exchanged, authentication delay and storage space.

As illustrated in Fig. 1, personal devices initially organize
themselves in the form of clusters. A cluster is defined as a
collection of personal devices which can communicate amongst
each other without using any non-personal devices. In order to
operate as a cluster some devices perform additional
organizational tasks. Fig. 1 shows two roles; that of a master
node and a cluster head [4]. In this paper we define a new role,
that of a security agent (Section III.A). Our proposed
architecture requires each cluster to have one device
functioning as a security agent; however there is no restriction
to any other role that such a device may serve.

This remainder of this paper is organized as follows:
Section II describes related work; Section III introduces some
basic architectural concepts and Section IV explains the
security requirements of our system. Section V describes how
devices form clusters while Section VI explains key
management, including device authentication/eviction and key

updates. Section VII analyses the performance of our proposed
mechanisms in ns-2 and Section VIII concludes the paper.

II. RELATED WORK
The only PN specific security architecture we know of is

the work done in MAGNET [15] [16]. For a device to join a
cluster it needs to have a long-term security association with
any one neighboring clustered device. Cluster merge and splits
do not post a challenge as there is no centralized management
such as a security agent. The main weakness of the MAGNET
approach is its large overhead. Since traffic sent between
neighbors is encrypted using pair-wise keys, the system uses
hop by hop encryption for both unicast and broadcast traffic. A
large number of messages must be exchanged for a device to
establish the required security associations with all its
neighbors, particularly during high mobility. Our approach of
using a shared key reduces the overhead of key management
significantly. Additionally, messages no longer need to be re-
encrypted at each hop.

The SPINS [5] set of protocols are designed for sensor
networks where the network topology is rather different from
that in a PN. Networks form around a base station where sensor
nodes establish a routing tree, with the base station at the root.
Devices establish a master key with the base station upon
introduction to the network, and use that key to derive two new
keys for protecting unicast traffic between the base station and
themselves. Routing is much simpler since devices are only
required to have a path towards the base station. A secure
routing tree is created (for traffic to the base station) by having
the base station send routing beacons protected using μTesla.
Lastly, since battery replacement is designed to delete all the
keys, there is no key management.

TinySec [6] is the first implemented link layer security
protocol for sensor networks. As with our proposed
mechanisms, it uses a shared symmetric key which is used by
senders to first encrypt the data and then apply the MAC. The
receiver uses the MAC to verify that the packet was not
modified in transit. The TinySec protocol is not a complete
architecture in the sense that it does not cover aspects such as
key management and device discovery etc. However, the
TinySec protocol has been well analyzed (and designed) in the
context of sensor devices, especially related to its energy and
communication overhead.

III. ARCHITECTURAL CONCEPTS
Our approach is based on establishing a line of defense

between the PN and the rest of the world by distinguishing
between cluster members (trusted) and non-members (un-
trusted). The semi-independent nature of clusters coupled with
the fact that inter-cluster connectivity is not always guaranteed
(even when possible it is infeasible to maintain it at all times
for key synchronizations etc.) motivates our separation of trust
at the cluster level.

Although we use group authentication for increasing
efficiency, we appreciate that key compromise can have serious
consequences since there is no easy way to uniquely identify
the attacker. Unfortunately there are no ideal solutions for

source authentication in group communication, especially in
the case of multiple senders. One possibility is to use public
key cryptography, but it is costly to generate and verify digital
signatures on every packet. There exist schemes with the
source authenticity allowed by public key cryptography but
without the performance penalty [8] [9] [10], however they
have their drawbacks.

A. Security Agents
The security agent authenticates new devices that join the

cluster and initiates the periodic cluster key updates. It also
periodically broadcasts cluster advertisements (CAs) which are
used by other devices to discover the cluster. Additionally, the
security agent is able to evict short-term members on demand
and is responsible for setting the cluster policy which lets
devices joining the cluster know about various cluster
parameters like the frequency of cluster advertisements and key
updates, and the length of certain timers etc. We decided to use
a centralized mechanism for cluster authentication to ease
management, reduce the number of security associations that
need to be established and to limit the vulnerability of the
system to compromised devices.

In terms of security agent functionality, we also define two
new classifications of devices. Some devices have the
capabilities to function as security agents and others do not.
When not connected to other devices, a Security Agent
Capable (SAC) device will function as a security agent and is
thus considered a special form of a cluster which only contains
itself. Security Agent Incapable (SAI) devices, unable to act as
security agents, do not constitute a cluster when alone and need
to join existing clusters. We expect SAI devices to be less
sophisticated and typically not useful by themselves. They are
designed to be used in conjunction with other smarter devices,
when networked together as a cluster.

B. Cluster Key
The cluster key introduced previously is used to guard

against unauthorized access that can degrade the quality of
service for PN users. The cluster key is randomly generated for
each time period, and given to new members by the security
agent after a successful authentication. Once devices receive
the cluster key they are able to take part in intra-cluster
communication. The cluster key is periodically refreshed by the
security agent and distributed to all existing cluster members.

Devices append a MAC (message authentication code)
calculated using the cluster key to all cluster traffic that they
generate. Consequently any subsequent device receiving the
traffic can verify that it was generated by a trusted device and
not modified in transit by any un-trusted device. Any packet
with a source address of the cluster that does not have a valid
MAC is dropped. The security provided to cluster traffic by the
communication infrastructure is therefore group message
integrity and authentication.

As appending the MAC increases the original packet size
and thus the communication overhear, it should not be too
large. Conventional security protocols use overly conservative
security parameters, having MAC size of 8 or 16 bytes [6]. A
larger MAC reduces the chance of an adversary blindly

guessing the appropriate code but correspondingly costs more
to transmit. Reference [6] validates using a 4 byte MAC and
explains how it is not detrimental in the context of low
bandwidth links.

Earlier we pointed out the performance advantages of
having devices authenticate themselves as part of the trusted
group. However it becomes more difficult to identify any
malicious behavior from inside the cluster as the attacker can
alter his source address to that of another cluster device and
still authenticate as part of the cluster. Even though such
malicious behavior (typically due to device compromise) will
be rare, it is something that can conceivably happen. In order to
keep our mechanisms lightweight we do not attempt to identify
malicious behavior of trusted devices. However our design
allows the user to blacklist any suspect devices from the PN.

IV. SECURE COMMUNICATION
In this section we look at the security properties of our

system. In order to protect the communication infrastructure
and secure applications, devices require packet authentication.
Therefore they will not accept invalid messages injected by an
adversary.

A. Message Integrity and Authentication
Since every new cluster key is encrypted using the existing

cluster key (Section VI.A), we limit further direct use of the
cluster key in order to minimize its exposure to attack. If the
cluster key were to get compromised then there is no forward
secrecy because the attacker can use it to decrypt further re-key
packets. Therefore the key used to generate the MAC (Kmac) is
derived from the cluster key using a globally known one way
hash function. This way we maintain forward secrecy because
even if Kmac is compromised it can not be used to derive the
existing or the future cluster keys. Similarly, backward secrecy
is also guaranteed since only the security of the current session
is compromised.

B. Encryption
As the aim of our security architecture is the dependability

of the communication infrastructure and not confidentiality,
messages are not automatically encrypted. Moreover, because
encryption/decryption consumes power and increases latency,
it is difficult to justify confidentiality as a basic requirement for
all traffic. Most applications that require confidentiality already
encrypt their traffic end-to-end, so duplicating the same
functionality at the lower layers is not efficient.

If necessary, data confidentiality can be supported at the
link layer by encrypting sensitive messages with an encryption
key (Kencr). Similarly to Kmac, the encryption key is also derived
from the cluster key using a globally known one-way
transformation. This is also done so as to limit as much as
possible the direct use of the cluster key.

V. CLUSTERING
Clustering, the process by which all PN devices within each

others transmission range connect to form a cluster, is an
integral part of a PN. Therefore one aim of all devices is to

discover others around them that belong to their own PN. In
principle, this is done by listening for cluster advertisements
(CAs).

As mentioned before, SAI devices are envisioned to operate
only as part of clusters and to be less sophisticated (a good
example is that of a sensor). These devices can be left powered
up for extended periods either purposely or mistakenly by the
owner of the PN. We do not want such otherwise idle devices
to spend precious energy continuously advertising themselves
to non-existing neighbors. Clusters on the other hand, as shown
by their interconnected state, are more active in nature.
Therefore, only clusters are allowed to advertise, while un-
clustered devices periodically wake up to listen for such
advertisements. When an un-clustered device receives a cluster
advertisement from a cluster belonging to its own PN, it will
attempt to authenticate itself to, and join that cluster

Cluster advertisements are periodically generated and
broadcasted by the security agent. Other cluster members re-
broadcast non-duplicate advertisements, in effect “propagating”
them to the edged of the cluster like a ripple on a pond. The
periodicity of cluster advertisements and the decision on which
devices take part in propagating these advertisements depends
on the cluster policy at the security agent. Each member
receives a copy of this policy when it joins the cluster.

A. PN and Cluster Address
We imagine the world to be full of wireless devices,

belonging to a multitude of users. Therefore we need an
efficient mechanism for PN devices to distinguish between
those belonging to their own PN from all the rest. This is
because we do not want devices from one user to continuously
try to connect to others of different users and failing, wasting
precious energy in the process. Therefore we assume the
existence of a PN address, calculated randomly over a
sufficiently large space so as to reduce the possibility of
collisions. Devices learn of their PN address during the initial
imprinting phase. Although the exact type of this address is
beyond the scope of this document, it is conceivable that it
could belong to either the IP domain, or a new layer between
the IP and the MAC layers. Devices check the PN addresses of
any cluster advertisement they receive, and only attempt to
authenticate with clusters with similar PN addresses.

Additionally, we also assume the existence of a cluster
address so cluster members can distinguish between traffic
from inside and outside the cluster. The cluster address is
derived from the physical address of security agent, and should
therefore be unique. Cluster advertisements include both the
PN address and the cluster address.

B. Cluster Dynamics
Cluster advertisements do more than just advertise the

existence of a cluster to non-members; they also let cluster
members know that their cluster is “alive”. A cluster that is
alive has a functioning security agent and can therefore grow
by adding new members. Conversely a zombie cluster is one
that has lost its security agent (but has a valid cluster key).
Devices belonging to a zombie cluster can still communicate

securely with each other, but the cluster can not grow because
there is no security agent to authenticate new members.

Devices believe they have lost connectivity with the
security agent (and that they are part of a zombie cluster) when
they miss “i” number of sequential cluster advertisements. The
value of “i” is set by the security agent of the cluster and given
to each member (as a part of the cluster policy) when it joins
the cluster. Devices that believe they are part of a zombie
cluster take steps to reorganize themselves. If possible, devices
try to join other clusters belonging to their PN. SAC devices
may also choose to leave a zombie cluster to create one of their
own. Zombie clusters can only be resuscitated by the return and
the resulting cluster advertisement generated by the original
security agent. Since each security agent stores some state
information about its cluster, it is not possible to recover from
the loss of a security agent by re-election, only by creating a
new cluster.

In the absence of a security agent, as there is no one to
update the cluster key of the zombie cluster, it will eventually
expire. If devices have not been able to join new clusters in the
meantime, when this happens, they can no longer communicate
amongst each other. SAI devices enter the orphan state, where
they wait indefinitely to join other clusters while SAC devices
form their own clusters.

C. Authenticating Cluster Advertisments
Like other cluster traffic, cluster advertisements are also

protected by a MAC. Attackers cannot generate verifiable
cluster advertisements unless they possess the valid cluster key.
Furthermore they can not replay older advertisements because
these contain a sequence number and duplicate advertisements
are discarded by cluster devices. However compromised
devices can generate illicit cluster advertisements with valid
sequence numbers that can be verified by other cluster devices.
The only possible aim of such an attack would be to hide the
absence of the security agent from other cluster devices,
possibly to stop them from abandoning the existing cluster.
However this attack can not be successful indefinitely because
the attacker can not create a verifiable re-key packet (Section
VI.A). Additionally the negative affect of such an attack is
limited since the attacker can launch much more deadly attacks
such as polluting the routing information etc.

Since devices have no way of verifying advertisements
from clusters to which they do not belong, attackers can easily
generate fictitious cluster advertisements. However as devices
always perform mutual authentication this is at best a denial of
service attack. Devices can protect themselves against such
false advertisements by limiting the rate at which they attempt
to re-authenticate after recent failed attempts.

VI. KEY MANAGEMENT
During device authentication the security agent establishes

a secure channel, verifies the supplicant device’s credentials,
and downloads the cluster key and policy to the supplicant. The
cluster key is then periodically refreshed with the period whose
duration depends on the security level required. In general, re-
key messages can be sent unicast or broadcasted for more
efficient distribution. We rejected the unicast approach because

it is inefficient and does not utilize the properties of the
broadcast medium.

Our approach also implements an efficient mechanism to
evict short-term cluster members. Short-term cluster members
are basically foreign devices that have been granted cluster
membership for a limited duration. These could be devices
belonging to friends and family or even rented devices that
should be evicted from the cluster before returning. Cluster
devices that belong to the user’s own PN are considered long-
term members. Evicting long-term members is a rare
occurrence which for example needs to be done if a device gets
sold or compromised. In such a case, the device’s long-term
security associations with the PN will be eliminated, followed
by the security agent dismantling the existing cluster. When the
cluster re-forms the evicted PN device will not have any long-
term security associations to be able to authenticate itself.

A. Cluster Key Updates
Even though all cluster traffic is protected using a MAC,

we believe that re-key messages containing the new cluster key
require an additional level of security. This is necessary in
order to reduce the impact of compromised devices which can
otherwise hijack the cluster by pretending to be the security
agent and updating the cluster key. Therefore broadcast re-key
messages are protected using source authentication so that they
can not be forged by compromised devices. Finally, to ensure
confidentiality, the new key is distributed encrypted using the
existing cluster key.

As we are broadcasting the re-key messages, there is no
way for the security agent to ensure that all members receive
the new cluster key. We can imagine a solution in which
members can generate negative acknowledgements when the
cluster key that they are using is about to expire and they have
not received the new key. However devices can not send
negative acknowledgements if the re-key is being done ahead
of schedule, for example, to evict a shot-term member. Lastly,
a reliable key update using pair-wise keys and acknowledged
unicast transmission is possible but significant more costly and
requires the security agent to have an up-to-date list of all
cluster members.

Our re-key mechanism has two goals. The first goal is to
ensure a reliable distribution of re-key messages to all cluster
members. The second goal is to enable cluster members to
verify the source of these messages. In order to do so we need a
reliable broadcast authentication mechanism based on
symmetric cryptography. The broadcast authentication
mechanism we use has some similarities with μTesla [5], but
ported to the peculiarities of our system. Notably we do not
want to use clock synchronization, even the “loose” clock
synchronization required by μTesla.

μTesla brings about asymmetry by a delayed disclosure of
symmetric keys. It divides time into equal intervals, assigning a
different key to each interval. All packets generated by the
source within a specific time interval use the key assigned to
that interval. Messages are then broadcasted with a MAC
generated using the secret key, which will be disclosed at a
specific time in the future. When the receiver receives a
message, it confirms that the key has not been disclosed, and

then buffers the message. The message is later authenticated
when the corresponding key is publicly disclosed.

Although our solution is also based on a delayed disclosure
of symmetric keys (hash chain values), it is not tied to time
intervals but rather to each round of the re-key algorithm. In
our approach, re-key messages are protected with a MAC
calculated using a symmetric key (hash chain value) related to
that round of re-keying. In order to ensure the reliable delivery
of a re-key message, it is encapsulated within “i” consecutive
cluster advertisements; where “i” was defined as the number of
sequential cluster advertisements that are missed by a device
before it believes it has lost connectivity with the security
agent. Note that the “complete” cluster advertisement carrying
the encapsulated re-key message is protected with the MAC
generated using Kmac. This means that even though re-key
messages cannot be authenticated till the corresponding hash
chain value is released, external attackers can not launch
denial-of-service (DoS) attacks against the cluster. This is
because they cannot generate valid cluster advertisements
encapsulating the false re-key messages!

The hash chain value corresponding to this re-key message
is then publicly released in the next “i” sequential cluster
advertisements. As above, any device which has connectivity
with the security agent should successfully receive this hash
chain value. The value is then verified against the authenticated
hash chain value given to all devices by the security agent
when they joined the cluster. Thus re-key messages cannot be
successfully attacked, even by compromised devices, because
nobody but the security agent knows an undisclosed authentic
hash chain value.

The cluster advertisement which includes the hash chain
value being disclosed is not source authenticated, and is
therefore open to attack by compromised devices. However, if
such a device changes the original hash chain value (and
updates the MAC of the cluster advertisement) then the
disclosed value will not match the re-key message.

B. Evicting Short-Term Members
In order to evict short-term members the new cluster key

can not be distributed by encrypting it in a KEK (Key
Encrypting Key) that is known to both long and short-term
members. Therefore unlike PN devices which are given the
actual cluster key when they join the cluster, foreign devices
are only given the derived cluster keys Kmac and Kencr.
Although this allows them to create a valid MAC for
authentication they are unable to decrypt the broadcasted re-
key messages meant for long-term members that contain the
updated cluster key. The security agent simultaneously updates
the derived keys at the foreign device using unicast
transmission. This does not create a performance drawback
because the number of such short-term members is limited. The
re-key messages meant for long-term members are for a much
broader audience and are broadcasted for increased efficiency.

Consequently, when a short-term member needs to be
removed from the cluster, the security agent updates the cluster
key of all long-term members using the mechanism described
in Section VI.A. It will then change the keys of the other short-

term members (except the device that is being evicted) using
secure unicast transmission.

C. Device Authentication
Earlier we stated that devices wishing to join a cluster need

to authenticate with the security agent of that cluster. We also
said that members of a cluster only forward authenticated
cluster traffic. This implies that for supplicant devices to
authenticate with a cluster, they need to be within the
transmission range of the security agent (belonging to the
cluster they wish to join). Similarly, for two clusters to merge
together, the two security agents also need to be within each
others transmission range. Such a restriction on the
extensibility of the cluster is not practical. We would like
clusters to extend with devices that are within the range of even
peripheral cluster members. Similarly, two clusters should be
able to merge when their periphery overlaps and not only when
the transmission range of the two security agents overlaps. To
that end, cluster members enable IEEE 802.1X based port
authentication.

As a result, besides authenticated cluster traffic (i.e. traffic
protected using Kmac) cluster members also accept
unauthenticated EAP [11] requests which are forwarded to the
security agent for authentication. As a result supplicant devices
do not need to be within the communication range of the
security agent to be able to authenticate themselves. Although
allowing clustered devices to forward unauthenticated EAP
requests make them vulnerable to DoS attacks, clustered
devices can protect themselves by limiting the rate at which
they forward such requests. Predictably, devices that are not
part of a cluster do not forward EAP requests.

The mechanisms we propose for use have some important
differences with IEEE 802.1X. For instance, after a successful
authentication the supplicant no longer maintains any
relationship with the authenticator. Additionally, our
mechanisms allow complete clusters to merge instead of just
permitting individual devices to join a cluster. When clusters
merge, the authentication takes place between the two security
agents using a secure tunnel and any confidential information
exchanged is not visible to the intermediaries who are just
forwarding the EAP messages. A detailed specification of the
new EAP protocol is beyond the scope of this document.

For a cluster that is extended with a single device the
process is simple. The new device configures itself according
to the cluster policy and begins to use Kmac to take part in
cluster communication. When two clusters merge, the security
agent of one cluster needs to step down. This is done using a
simple check to see which security agent has a higher “weight”.
Security agents calculate their weight, a numerical value that
expresses their current status keeping in mind device
parameters like mobility, battery level, number of devices in
the cluster etc. When two clusters merge the yielding security
agent needs to update all the devices in its cluster with the
information it has received. As with cluster key updates, this
must be done using source authentication. Therefore the
mechanisms used are the same as that for re-keying.

D. Pre-Authentication
In order for two devices to authenticate each other they

must have an existing security association, the creation of
which precedes the actual authentication. As of now we have
assumed that such an association already exists between the
security agent and the device it is authenticating. Since security
associations require some work to set up, we would like to
reduce the total number of security associations required by our
system. Our model assumes that all PN devices have a security
association with the core node, a PN wide master node. This
association is formed during the imprinting process, which
each device goes through when it becomes a member of the
PN. In order to reduce the number of security associations
between devices and security agents, security agents can
forward the authentication requests of unknown devices to the
core node. The core node will authenticate the device and also
assist in creating a long term security association between the
security agent and the device. Therefore in the future the
security agent will not have to proxy the authentication
requests.

If connectivity with the core node is not available, or there
is no security association between the authenticating device and
the core node then the security agent can give the user an
option of authenticating using manual intervention (like
Bluetooth pairing).

VII. SIMULATIONS
The objective of our simulations was to quantify the cost of

initial cluster formation and to optimize its performance by
examining the effect of different parameters. In this first set of
simulations, we study the formation of one cluster with one
security agent. We do not (yet) look at key management,
cluster merging or effects of mobility.

We simulate a CSMA/CD (802.11b [12]) wireless ad-hoc
network with the wireless mobility extensions in ns-2.29 [13].
The transmission range of each device is 10m and simulations
are carried out till all devices have authenticated with the
security agent (to form a cluster). When not specified
otherwise, the simulation uses default ns link layer parameters,
for instance a RTS/CTS threshold of 0 bytes. Setting a higher
RTS/CTS threshold value produced errors [14]; therefore the
default value was used in all simulations. All our simulation
scenarios use a grid size of either 25 x 25m or 50 x 50m, which
correspond to average inter device distances of approximately 2
and 5 hops respectively. For each scenario (each row in Tables
I and Table III) we generated 50 connected graphs with random
device positions. The simulation of each of the 50 graphs was
performed 10 times using a random seed. The results are
summarized in the corresponding tables.

The scenarios differ in their grid size, the number of
devices and/or the value of certain PN specific simulation
parameters. The performance in each scenario is judged by the
average time and the total transmissions at the MAC layer
required for all the devices to complete authentication with the
security agent. This gives a quantitative idea of the cost in
terms of clustering delay and energy consumption. Ideally we
would like to compare the security overhead to data traffic, but
that can vary depending on the amount of data traffic.

TABLE I. SIMULATION RESULTS USING DEFAULT PARAMETERS

Grid Size
(m)

No. of
devices

Avg.
Time (s)

Avg.
Bytes (k)

Avg. SA
Bytes (k)

25 x 25 5 1.3 35 12
25 x 25 10 2.8 108 26
25 x 25 20 4.0 244 54
25 x 25 30 4.4 353 83
25 x 25 40 5.0 461 111
25 x 25 50 5.3 561 140
50 x50 20 6.8 424 54
50 x 50 50 10.1 1378 138

TABLE II. PN SIMULATION PARAMENTERS AND THEIR DEFAULT VALUES

Simulation Parameter Default Value

CA period 1s

CA packet size 44 bytes (incl. 4 bytes
MAC, 20 bytes IP)

EAP packet size 534 bytes (incl. 4 bytes
MAC, 20 bytes IP)

EAP Round Trips 4
EAP timeout 2.5s
Auth. timeout 20s
Auth. delay 0s

Processing delay of
CA/EAP packets Average of 10ms

The results in Table I are achieved using the default PN
simulation parameters of Table II. When comparing the sixth
and the eighth simulations of Table I, we see that the extra
number of hops (avg. of 2 vs. 5) has a significant effect on the
total transmission overhead. However, since the total number
of devices authenticating with the security agent is the same in
both scenarios the transmissions overhead of the security agent
is identical.

Fig. 2 illustrates one simulation instance of a grid size of 25
x 25m with 20 devices. At time 10ms the security agent (SA)
transmits the first cluster advertisement (CA). Every
unauthenticated device that hears this CA will attempt to
authenticate with the SA, i.e. all the devices within the dark
grey circle around the SA. In the best case when there are no
collisions at the link layer, all unauthenticated devices within
the first hop will successfully authenticate with the SA. At 0.5s
in Fig. 2 we see that 6 devices have completed authentication
with the SA. Once authenticated, devices are able to validate
the MAC on any future CAs they receive, and will therefore
forward such CAs. In the best case we can expect devices
which are two hops away from the SA to authenticate with the
SA after the second CA is transmitted. As the default CA
period is 1 second during the clustering phase, we see 5 more
devices have authenticated at 1.5s in Fig. 2. The value of 1
second for the CA period is only meant to be used during the
clustering phase to reduce the clustering delay and not through
the lifetime of the cluster. At 2.5s, we see that two devices in
spite of being within the transmission range of the third CA, are
unauthenticated. This is due to collisions at the link layer;
either they did not receive the CA, or the EAP packet they sent
got lost. The chosen EAP authentication mechanism is
simulated based on two parameters, the average size of the
EAP packet and the number of round trips necessary to
complete the authentication (default values in Table II). If an
EAP message does not get a reply within the “EAP timeout”

Figure 2. Simulation instance with a grid size of 25 x 25m and 20 devices

Figure 3. CDF for simulations with a 25 x 25m grid and 20 devices Figure 4. Number of devices vs. clustering delay for a 25 x 25m grid

period of 2.5s, it is retransmitted. That is why the two
unauthenticated devices (which received their CA at ≈2s) only
try again at ≈4.5s, and we see that they have successfully
authenticated by 5.5s. Lastly, if the entire authentication does
not complete within the “Auth timeout” period, devices give up
and will only try again the next time they receive a CA

For each scenario of Table I, the time taken for devices to
authenticate with the security agent (although strongly
correlated with the CA period) varies across different
simulation runs. This is due to the collisions at the link layer.
Fig. 3 illustrates a CDF of time taken by devices to authenticate
with the SA. The graph is compiled from data of all the
simulations carried out for the given scenario i.e. 50 graphs x
10 runs each. We can see that although the average clustering
delay for this scenario was 4.0s (Table I), over 60% of the
devices have authenticated by 1.5s. As expected, new devices
authenticate in each round of CAs (shown by large hikes at 0s,
1s, 2s, 3s etc). The small hikes at 2.5s, 3,5 and 4.5s correspond
to authentications that require retransmission of EAP messages.

Fig. 4 illustrates how the time needed to complete cluster
formation varies with the number of devices in the system. We
can see that the increase is almost linear, likely because the
benefit of having more devices authenticating per cluster
advertisement is balanced by delay caused by the increased
collisions at the link layer.

TABLE III. SIMULATION RESULTS FOR A 25 X 25M GRID WITH 50
DEVICES, USING MODIFIED SIMULATION PARAMETERS

EAP
Timeout (s)

Auth.
Delay (ms)

Avg.
Time (s)

Avg.
Bytes (k)

Avg. SA
Bytes (k)

2.5 0 5.3 561 140
3.0 0 7.1 573 141
3.0 30 5.4 562 140
3.5 0 6.4 566 140

Table III illustrates the effect of tuning the “EAP timeout”
and the “Auth delay” parameters. The first row corresponds to
using the default values for the given parameters. In the second
row, the EAP timeout is increased to 3.0s and as expected the
clustering delay increases. This is because the system responds
slower to lost EAP messages. However, when the timeout
value is increased to 3.5s we see that the performance is better
than for 3.0s. This is because with an “EAP timeout” of 3s any
retransmission of EAP messages will happen while CAs are
being disseminated, thus increasing the chance of collisions.
We confirm this by observing a performance increase if there is
a 30ms delay before the authentication phase begins.

As an optimization, when CAs are disseminated in the
network, devices create temporary routing table entries to store
reverse paths towards the SA. As a result, when device forward
EAP messages to the SA, the complete path to the SA already
exists and does not need to be discovered. The forward route to
the sender is created when the first EAP message travels to the
security agent. As a result, the MAC bytes calculated above do
not have any routing over head. However, these optimizations
are derived from the AODV implementation in ns and can only
work when using AODV as the routing algorithm.

VIII. CONCLUSION
In this paper we have formulated a security architecture for

Personal Networks. Since our mechanisms are solely based on
fast symmetric cryptography, they are applicable to a wide
variety of device types. Our design takes into account the
peculiarities of the system, the most constrained of which is
battery life. In this context we have specified the procedures for
clustering, the functionality of the security agent, mechanisms
used for cluster discovery and those for key management.
Additionally we have carried out simulations to show the
feasibility of our proposed security mechanisms.

ACKNOWLEDGMENT
This work was supported by the Dutch Ministry of

Economic Affairs under the Innovation Oriented Research
Program (IOP GenCom, QoS for Personal networks @ Home).
We would like to thank all the members of the project for their
discussions and contributions.

REFERENCES

[1] I. G. Niemegeers and S. M. Heemstra de Groot, “Research issues in ad
hoc distributed personal networking,” Wireless Personal
Communications, vol. 26, no. 2-3, pp. 149–167, August 2003.

[2] http://qos4pn.irctr.tudelft.nl/
[3] Weidong Lu, Anthony Lo, and Ignas Niemegeers, "Research Issues in

QoS Provisioning for Personal Networks", Thirteenth International
Workshop on Quality of Service (IWQoS 200 5), Passau, Germany,
2005.

[4] X. Hong, M. Gerla, Y. Yi, K. Xu, and T. J. Kwon, “Scalable Ad Hoc
Routing in Large, Dense Wireless Networks Using Clustering and
Landmarks”, IEEE International Conference on Communications (ICC
2002), New York City, NY, April 2002.

[5] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar. “SPINS:
Security protocols for sensor networks”, The Seventh Annual
International Conference on Mobile Computing and Networking
(MobiCom 2001), Rome, Italy, July 16-21, 2001.

[6] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks”, The Second ACM
Conference on Embedded Networked Sensor Systems (SenSys 2004),
Baltimore, Maryland, USA, November 3-5, 2004.

[7] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, “Secure Pebblenets”,
Second Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2001), October 2001.

[8] T. Hardjono, and L. R. Dondeti, Multicast and Group Security, Artech
House Inc, Norwood, MA, 2003

[9] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast
packet authentication”, 6th ACM Conference on Computer and
Communications Security, November 1999.

[10] A. Perrig, R. Canetti, D. Song, and J.D. Tygar, “Efficient and Secure
Source Authentication for Multicast”, Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2001.

[11] B. Aboba, and D. Simon, “PPP EAP TLS Authentication Protocol”,
RFC2716, IETF

[12] http://www-ece.rice.edu/~jpr/ns-802_11b.html
[13] http://www.isi.edu/nsnam/ns
[14] http://www.dei.unipd.it/wdyn/?IDsezione=2435
[15] IST MAGNET, http://www.ist-magnet.org/.
[16] IST-507102 MAGNET/WP4.3/UNIS/D4.3.2/PU/1.0, “Final

Architecture of the Network-Level Security Architecture Specification”,
March, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

