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ABSTRACT 

In this paper we use fast simulation methods, based 
on importance sampling, to efficiently estimate cell 
loss probability in queueing models of the Leaky 
Bucket algorithm. One of these models was intro- 
duced by Berger (1991), in which the rare event of 
a cell loss is related to the rare event of an empty 
finite buffer in an “overloaded” queue. In particular, 
we propose a heuristic change of measure for impor- 
tance sampling to efficiently estimate the probability 
of the rare empty-buffer event in an asymptotically 
unstable GI/GI/l /k queue. This change of measure 
is, in a way, “dual” to that proposed by Parekh and 
Walrand (1989) to estimate the probability of a rare 
buffer overflow event. We present empirical results 
to demonstrate the effectiveness of our fast simulation 
method. Since we have not yct obtained a mathemat- 
ical proof, we caii only conjecture that our heuristic 
is asymptotically optimal, as IC + 03. 

1 INTRODUCTION 

In an Asynchronous Transfer Mode (ATM) network, 
data is transportcd in fixed-size cells. An ATM con- 
nection is establishcd with an admission contract 
which specifies the traffic characteristics of the source 
and the quality of service (QOS) requirement to be 
guaranteed by the network. In order for tlic network 
to ensure that the admission contract is not violated, 
the usage parameter control (UPC) procedure is in- 
voked to monitor the actual traffic and to police the 
excess traffic violating the contract. 

The Leaky Bucket (LB) algorithm is a popular 
UPC procedure and can easily be irriplerricnted with 
counters (sce Turner (1986).) Each time a cell ar- 
rives, thc counter is iiicremcritcd by one. As long as 
the counter has a positive value. it is decremented 
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at  fixed intervals, d. When the cell arrivtil “ratc” 
exceeds the periodic decrement ‘‘rate,” the couiitcr 
value will increase. If the counter reachcs a prc- 
specified limit, say, JET, then the source is considered 
to have exceeded its admission contract, and sub- 
sequent cells are discarded (or marked for policing) 
until the counter value falls below the limit again. 
The operation of this LB algorithm can bc rriodelcd 
as a GI/D/l/kT queue, in which the service time is 
set identical to the decrement interval, d. For a two- 
phasc burst/silence source model (sec Section 3.1), 
the stationary cell loss probability can be obtained 
by a numerical method, whose complcxity grows in 
proportion to the value of k~ (Rathgcb 1991.) 

The concept of the LB algorithm is sometimes dc- 
scribed by means of control tokens and a cell-delay 
buffer. Tokens are generated at fixed intervals (cor- 
responding to the counter decrement interval intro- 
duced above) and are stored in a token bank (buffer) 
with a finite capacity k ~ .  A token which arrivcs to 
find the token bank full is lost. If the token baiik 
is not empty, then an arriving cell is transmittcd in- 
stantly and removes one token from the bank. If the 
token bank is empty, then an arriving cell is either 
queued in a cell-delay buffer or lost, if this buffcr lias 
reached it capacity ICc. For the LB algorithm with two 
buffers and a certain class of arrival processes, it is 
shown in Bergcr (1991) that the steady-state through- 
put and cell loss depend only on the sum of the token 
arid cell-delay buffer capacities. In othcr words, with 
respect to throughput and cell loss, thc LB algorithm 
with two buffers is equivalent to another, with only a 
token buffer of size of ICs = ICT + k c ,  and no ccll-delay 
buffer. Therefore, the LB algorithm can be rnodclcd 
as a D/GI/l/ICs queue, in which the server operates 
in a slightly non-standard manner ( S C C  Section 3.3). 
In this model, the arrival process corresponds to the 
token generation process and the service process cor- 
responds to the cell arrival process. For a Markovian 
arrival process (MAP) of cells, Berger (1991) con- 
siders the analysis of an embedded Markov rciicwal 
process to dctcrrriirie the probability that a token is 
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blocked, which is directly related to the cell loss prob- 
ability. The main disadvantage of this approach is 
that a relatively srnall numerical error in the cvalua- 
tiori of the (high) tokcri blocking probability lcads to a 
significant relative error in the evaluation of the (low) 
cell loss probability. We note that tlic rare cell loss 
event in the opciration of the LB algorithm is directly 
related to the irare cmpty-buffer event in Bergcr’s 
model. This is i$ key observation, since the problem 
of estimating the cell loss probability in the LB algo- 
rithm can be solved if we have a method to estimate 
the probability of an empty buffer in an “overloaded” 
D/GI / l /ks  quoue. Informally, by “overloaded” we 
mean that the arrival “rate” is higher than the ser- 
vice “rate,” in urliich case the queue is asymptotically 
(as the buffer size tends to infinity) unstable. 

In order to avoid restrictions necessary for analytic 
tract ability and/or riurncrical feasibility, simulation is 
often preferred for the evaluation of realistic models 
of the LB algorithm. However, accurate estimation 
of the cell loss probability requires observing numer- 
ous cell loss events. But, if the cell loss probability 
is lo-’, thcn each cell loss event takes placc approx- 
imately once ii:i lo9 cells. Observing a sufficiently 
large nurnber of cell loss events will take extremely 
long sirnulation time. 

Importance sampling (Hammcrsley and Hand- 
scomb 1964) has been used effectively to achieve 
significant speed ups in simulations involving rare 
events, such as failure in a reliable computer system 
or cell loss in an ATM communication network. See 
Nicola et al. (1993) for a review of techniques for fast 
sirnulation of highly dependable systems, and Hei- 
delberger (1993) for a survey of efficient simulation 
methods to es timatc buffer overflow probabilities in 
conirriunication systems. The basic idea of impor- 
tance sampling is to sirnulate the system under a dif- 
ferent probability measure (i.e., with different under- 
lying probability distributions), so as to increase the 
probability of typical sample paths involving the rare 
event of interest. For each sample path (observation) 
during the simulation, the measure bcirig estimated 
is multiplied by a correction factor, called the Zike- 
lihood ratio, to obtain an unbiased estimate of the 
mcasurc in the original system. Asymptotically opti- 
 id change of rncasurcs (to use in importarice sam- 
pling) have been found to estimate small probabilities 
of buffer overflow in relatively simple queueing models 
(see, Parckh and Walrand (1989), Sadowsky (1991), 
Chang et al. (1993) and others.) In this paper, we use 
these change of nieasures to estimate very srnall full- 
buffer probabilities in G I / D / l / k  queueing models of 
the LB algorithm; this is motivated by the ~riodel in 
Rathgcb (1991). We also propose a change of rncasure 
to efficiently ostimatc very srnall empty-buffcr proba- 
bilities in asyirnptoticdly unstable DIG I / 1 / k  queues; 
this is motivated by the model in Bcrgcr (1991), as 

described above. This change of measure is, in a 
way, LLdual’’ to that proposed by Parekh arid Walrarid 
(1989). We experiment with iriiportaricc sampling 
methods in simulations of qucueirig models of the LJ3 
algorithm. Two cell arrival processes arc considcrcd, 
namely, a Poisson proccss (msinly for vslidatioii pur- 
poses) and a more realistic two-phase burst/silciicc 
process (sec Section 3.1). Empirical results dc~rioii- 
strate the effectiveness of our method to estimate very 
small cmpty-buffer (and cell loss) probabilities. Siricc 
we have not yet formally established its asyiiiptotic 
optimality, this can only be conjectured. 

The rest of this paper is organized as follows. In 
Section 2, we consider change of nicasurcs used iii irn- 
portancc sampling to speed up sirnulatioris of simplc 
queues; both, rare full-buffer arid rare cinpty-buffer 
events are considered. Experiments with these chaiigc 
of mcasures to simulate queueing rriodcls of the LB 
algorithm are presented in Section 3. Coriclusioris arc 
given in Section 4. 

2 FAST SIMULATION OF SIMPLE 
QUEUES 

In this section we consider two types of rare events 
in a simple queue with a finite buffer. Our interest 
in these rare events is motivated by models of the 
LB algorithm described in Section 1. The first is the 
full-buffer event, when the cell arrival “rate” is much 
smaller than the service “rate”. Efficient simulation 
involving a rare full-buffer event has been consid- 
ered by many (see, for example, Parekh arid Walrand 
(1989) and Sadowsky (1991).) Another r u e  cvciit of 
interest is the empty-buger event, when the arrival 
“rate” is much higher than the service L‘rate”’ (Notc 
that the queue is always stable because of its fiiiitc 
buffer.) To the best of our knowledge, efficient sirriu- 
lation involving the latter rare event using importance 
sampling has not been considered previously. 

2.1 Rare Full-Buffer Event 

Consider an G I / G I / l / k  queue, in which the arrival 
“rate” is much smaller than the service “rate.” Thcrc- 
fore, buffer overflow is a rare event. The probability 
density function (pdf) of the iriter-arrival (rcsp., scr- 
vice) time is given by f A ( t )  (rcsp., f s ( t ) . )  Let N ( t )  
be the number of jobs in the queue (including tliat 
in service) at time t, and dcnote by t,, j = 0,1,2,  ..., 
the consecutive instants in tirnc at which N ( t )  jumps 
from 0 to 1, i.e., for all j = 0 , 1 , 2 ,  ..., N(t,) = 0 and 
N ( t f )  > 0. Dcfine a b u ~ y  cycle to bc tho ovolutioii 
of the proccss N ( t )  between two such corisccutivc in- 
stants, say, t, and t,+l. Note that t , ,]  = 0,1 ,2 ,  ..., 
constitute renewal points, and, therefore, busy cyclcs 
arc i.i.d. (independent and idciitically distributed.) 
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The length of a busy cycle is a r.v. T; for the 

nuniber of arrivals during a busy cycle is a r.v. N 
which, because of buffer overflow, is not necessar- 
ily equal to the nurnber of departures in the sanic 
busy cycle; for thc j - th  busy cycle it is denotcd by 
N,. Furthermore, denote by B, the total time in the 
j-th busy cycle during which the buffer is full, i.e., 
B, = J:Lt2-l I ( N ( t )  = k )  d t ,  where I ( . )  is the indi- 
cator function. Also, denote by 0, the total number 
of cells lost because of a buffer overflow during the 
j- th cycle. B, and 0, arc rcalizations of the random 
variables 13 and 0, respectively. It follows that the 
long-run (stcady-state) fraction of time the buffer is 
full, F, and cell loss probability, 0, are given by 

j-th busy cycle Tj = t, - t j - 1 , j  = l i 2 ,  .... The 

Let us consider the estimation of the steady-state 
full-buffer probability, 3, using the above ratio rep- 
resentation. It is more efficient to estimate E ( T )  
using standard simulation and E(B)  using impor- 
tance sampling. This approach is known as “mea- 
sure specific dynamic importance sampling” or MS- 
DIS (see Goyal et al. (1992).) Using importance sam- 
pling, we have E ( B )  = E f ( B )  = E,(DL), where f 
and g are the original and thc new probability mea- 
sures, respectively, and L is the likelihood ratio. De- 
note by dg(w) the probability of a sample path w 
according to the new probability measure g. (Simi- 
larly, @(w)  is the probability of a sample path w ac- 
cording to the original probability rncasurc f.) Then 
L ( w )  = df(w)/dy(w) is the likelihood ratio associ- 
ated with a sample path w ;  it can bc computed easily 
during the simulation. For example, let tX,, (resp., 

i = 1 , 2 ,  ..., N,, be the cell arrival (resp., depar- 
ture) instants in the j- th busy cycle. Furthermore, 
let g>,,(t) (resp., g$,,(t)) be the new i-th inter-arrival 
( rap. ,  service) time density used to sirnulate the sys- 
tern with importance sampling. The likelihood ratio, 
L,, associated with thc j-tli busy cycle, takes the form 

Note that t::’ = ti,,+1 is the instant at  which 
the j-th busy cycle ends and the j + 1-th busy cy- 
cle begins. Thus, L, can bc computed recursively at 
arrival and dcparturc cvents during the simulation. 

Now, let nu be the number of independent %i- 
ased” (using irnportancc sampling) busy cyclcs used 

to obtain estimates for the mean and the variaricc of 
the r.v. BL. These estimates are given by 

nB no 

f i l l  = B,L,/nu, 6; = (BJL,  - bu)2/(‘Lu--1). 
j=1 ,=1 

Let 7 ~ 7 -  be thc number of independent “riormal” (us- 
ing standard simulation) busy cycles used to obtain 
estimates for the mean and the variance of thc r.v. 
T. These estimates are givcn by 

nT nz- 

3=1 3=1 

i l ~  = T,/nT, 6$ = (T’ - , & T ) ~ / ( T L T  - 1). 

Asymptotically unbiased estimate of 3 is givcn by 

.. PLi F =  -. 
fiT 

The rclative half-width (in percentage) of the 99% 
confidence interval for the above estimator is given 
by 2.56 (3~/$) x 100, where 

In thc following we consider the optimal change of 
memure (importance sampling distribution to effi- 

be the moment generating function of the inter-arrival 
times. Define f ; ( t )  = ee t fA ( t ) / .FA(0 ) ;  this is an- 
other pdf obtained by exponentially tilting (twisting) 
thz pdf f ~ ( t )  at a parameter 0. Similarly, Fs(O) = 
.Ltz0 eo t f s ( t )d t  is the moment generating function of 
the service times, and fg(t) = e“fS(t ) /Fs(Q) is the 
corresponding exponentially tilted pdf. 

Using heuristic arguments based on the theory of 
large deviations (Bucklew 1990), Parekh arid Walrarid 
(1989) proposed an importance sampling distribution 
to efficiently estimate thc probability of buffer ovcr 
flow in a GI/Gl/ l /k  queue. In Sadowsky (1991), thit; 
distribution was proved to be the unique asyinptoti- 
cally (as IC -+ CQ) optimal change of mcasurc. Lct 0” 
be the solution of the equation 

ciently estimate E ( B ) .  Let FA(B) = Jtzq e 1 t f A ( t ) d t  

F A ( - o * ) F S ( O * )  = 1. (4) 
Then the optimal change of nieasurc is obtained by 
siniulating the Gl/GI/ l /k  queue with the exponen- 
tially tilted densities g A ( t )  = fiQ*(t) and gs(t) = 
fg’ ( t ) .  Importance sampling is “turiicd 0x1” at tlic 
start of each busy cycle, and is “turned off’’ at the 
occurrcnce of the rare event. The rnomcrit gciicrat- 
ing functions for the new (optimal) inter-arrival arid 
service timcs arc given by 
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Consider the Fd/M/I/k queue with its arrival rate 
X rnuch smaller than its service rate p (i.e., X << p ) ,  so 
that a full buffer is a rare event. FA(-8) = X/(X+8) 
and F S ( 8 )  = p / (  p - e) ,  for 8 < p. Solving the cqua- 
tion FA(-8*) Fs(O*) = 1 for 8*,  we get 8* = p - A. 
It follows that GA(O) = p / ( p  - 8) a d  Gs(8) = 
A/ (X-  e) ,  i.e., optimally, the M/M/l/k queue is sim- 
ulated with arrival rate p and service rate A. This 
change of measure accelerates the arrival process rcl- 
ativc to the service process, thus increasing the prob- 
ability of a full buffer in tlic simulated system. 

hi section 3.2!, we determine the optimal irnpor- 
tancc sampling distribution (as outlined above) and 
use it to estimate very small full-buffer probabilities 
in GI/D/l /k  queueing models of the LB algorithm. 

2.2 Rare Empty-Buffer Event 

Consider the GI/GI/ l /k  queue, with its arrival 
“rate” much higher than its service “rate.” Note that 
the queue is always stable because the buffer is fi- 
nite, however, reaching the cmpty-buffer state is a 
rare event. It follows that busy cycles (as defined in 
Section 2.1) arc‘ extremely long, and it is not practi- 
cal to use them as individual samples in a rcgenera- 
tive simulation. Therefore, we need to define other, 
more frequent, cycles to use in our importance sam- 
pling simulatiom. Consider, for example, the conscc- 
utive points in time i,,j = 0, I, 2, ..., at which an 
arrival causes the buffer to be full or Fnds it already 
full. That is, for all j = 0,1,2, ..., t, is an arrival 
instant such that N ( i T )  = k. Define a full-bufer cy- 
cle to be the evolution of the procys N ( t )  between 
two such consecutive instants, say, t ,  and t,+l. Note 
that, in gcIicriJ, i,, j = 0,1,2,  ..., are not renewal 
points (bccausc of the age of the current service), and, 
therefore, these full-buffer cycles arc neither rcgener- 
ative nor independent. A methodology to overcome 
this complication has been described in Nicola et al. 
(1993). However, in this paper we restrict our discus- 
sion to situations where regenerative full-buffer cycles 
caii be idcntificd at some (but not necessarily all) ij 
instants. For example, when the service time dis- 
tribution is of Phase type, a regenerative full-buffer 
cycle is identified upon an arrival causing a re-entry 
to the full-buffer state, while the current service is 
in a particular memorylcss state. More formally, let 
A( t )  and S( t )  denote the state of the current inter- 
arrival and thic current service (if any) at time t ,  re- 
spectively. Dcnotc by t , , j  = 0,1,2, ..., the consecu- 
tive instants at which the process { N ( t ) ,  A ( t ) ,  S ( t ) }  
enters the same (regenerative) full-buffer state, i.e., 
begins a rcgcricrativc full-buffer cycle. These regen- 
erative cycles arc i.i.d., which we, simply, refer to as 
full-bufler cycles. The length of the j-th full-buffer 
cycle is X, = t ,  - t,-l,j = 1,2,  ... : a realization of a 
r.v. X .  Furtlicrrnorc, denote by Yj the total time in 

the j-th busy cycle during which the buffer is cnipty, 
i.e., % = ~ i z ~ ~ - ~  I ( N ( ~ )  = 0) ctt, wlicrc I ( . )  is tlic 
indicator function. Y, is a realization of a r.v. Y. 
It follows that the long-run (steady-state) fraction of 
time the buffer is empty, E ,  is given by 

In the above equation, the quantity E ( X )  is easy to 
cstirriatc using standard simulation. However, csti- 
mating E ( Y )  is difficult, since an empty buffer before 
the end of a full-buffer cycle is a rare cvciit. Here, too, 
we use standard sirriulation to estimate E ( X )  and 
importancc sampling to estimate E ( Y )  = E / ( Y )  = 
E,(YL). An estimate of E and its 99% corifidciicc 
interval can be obtained as described in Scctioii 2.1. 

To the best of our knowledge, the problem of csti- 
mating the probability of a rare empty-buffer cvciit 
using importance sampling has not been considered 
before. In the following we give a heuristic change of 
measure to efficiently estimate E ( Y ) .  This change of 
measure is, in a way, “dual” to that given in Scctioii 
2.1 to estimate the probability of a rare full-buffer 
event. Following the same notation as in Section 2.1, 
let O* be tlic solution of the equation 

FA(e*)Fs(-e*) = 1. (7) 
Our “heuristic” change of measure is to simulate the 
GI /GI / l /k  queue with the exponentially tilted den- 
sities yn(t) = fr ( t )  and gs(t)  = &’* ( t ) .  Importancc 
sampling is “turned on” at the beginning of each full- 
buffer cycle, and is “turned off” at either the occur- 
rence of the rare event or the start of the next cycle. 
The moment generating functions for the new inter- 
arrival and service times are given by 

Consider the M/M/l/k queue with its arrival rate 
X much higher than its service rate p (i.e., X >> p ) ,  so 
that an empty buffer is a rare event. According to the 
above heuristic, importance sampling involves simu- 
lating the M/M/l/k queue with arrival rate p arid 
service rate A. Here too, the arrival and service rates 
are interchanged. However, this is donc to accclcr- 
ate the service process relative to the arrival process, 
thus increasing the probability of an empty buffer in 
the simulated system. 

In section 3.3, we follow the above heuristic to dc- 
terminc an importance sampling distribution which 
wc use to estimatc very small crnpty-buffcr probabil- 
ities in D/GI / l /k  queueing models of the LB algo- 
rithm. Empirical results demoiist r at e t lie effect ivc- 
ness of our heuristic arid supports our conjecture of 
its asymptotic optimality (sec Sadowsky (1991).) 
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3 EXPERIMENTAL RESULTS and its moment generating functioii is givcii by 

In this section we use fast sirriulation methods dis- 
cussed in Sections 2.1 and 2.2 to evaluate two rnodzls 
of the LB algorithm. The empirical rcsults displayed 
here are limited to the estimation of thc steady-state 
probability of a full cell-delay buffer. Tlic probability 
of buffer overflow, as secn by arriving cells (i.e., cell 
loss), can be estimated simultaneously from the same 
sirnulation, but it is not included in our results. 

Tlic operation of the LB algorithm is described in 
Section 1, first by means of a counter, then by means 
of a token bank together with a cell-delay buffer. 
It should be noted that in the first (“counter”) irn- 
plernentation, cells arc either lost or transmitted in- 
stantly upon arrival, i.e., they do riot experience any 
delays. Furthermore, counter dccrcrncnt (correspond- 
ing to token gcncration) stops at level 0, and resumes 
only when a cell arrives, i.e., it is not totally indc- 
pendent of cell arrivals. On the other hand, in the 
second (“token bank”) implementation, cells may cx- 
perience delays if, upon arrival, there arc no tokens 
and the cell-delay buffer is not full. Also, the token 
generation process is totally independent of cell ar- 
rivals. Therefore, the “counter” and “token bank” 
implementations of the LB algorithm arc close but 
not identical, neither with respect to cell delays nor 
with respect to throughput and cell loss. 

3.1 The Cell Arrival Process 

Without loss of generality, we shall consider two cell 
arrival processes. The first is a Poisson proccss, for 
which numerical (non-simulation) results can be ob- 
tained; thus making it possible to validate our sta- 
tistical output from sirnulation. The second is a 
two-phase burst/silence process (see Rathgcb (1991)), 
which we will refer to as TPBS process. This ar- 
rival process has been uscd to model different typcs 
of sources, such as packctized voice (sec Hcffcs and 
Lucantoni (1986)) and iritcractivc data services, and, 
therefore, it is often used to compare various policing 
mechanisms. The number of cells per burst is gc- 
ometrically distributed with a parameter a, and the 
intcr-ccll tirnc during a burst is deterministic givcn by 
T .  Therefore, transitions from burst to silence occur 
with a probability cy, only at rnultiplcs of T. The dura- 
tion of the silence phase is exponentially distributed 
with a mean p-’. The peak cell arrival “rate” is 1 / ~ ,  
and the average cc11 arrival “rate” A = ( T + ~ / P ) - ’ .  It 
follows that the burstincss, b, of the TPBS source is 
given by b = ~ / X T  = 1 + a/pr. The pdf of the TPBS 
intcr-arrival tirnc is given by 

if t < T ,  

a ~ e - - P ( ~ - ~ ) ,  if t > T ,  
if t = r ,  (9) 

g ~ ( t )  = ,fr ( t )  is the corresponding expoiiciitially 
tilted pdf (with a tilting parameter 8.); its irioiiiciit 
generating function is givcn by Gn(8)  = FA(O + 
O*)/FA(Q*). It can be shown that the tilted pdf, s ~ ( t ) ,  
is also a TPBS process with thc same dctcrminis- 
tic burst inter-cell timc T ,  and with its paramctcrs, 
p* = p + e*, and a* = ap/@ + (1 - ru)8*). In Sec- 
tions 3.2 and 3.3, the appropriate tilting parariictcr 
e* is determined, and the tilted pdf, ,qA(t) ,  is uscd 
as the (new) intcr-arrival timc density for sirriulatiori 
with importancc sampling. 

3.2 GI/D/I/k: Queueing Model 

First we considcr the “counter” irnplcrricntatiori of the 
LB algorithm (see Section 1.) The operation of this 
algorithm corresponds to a single buffer of size kyl, 
whose content is incremented with cadi (accepted) 
cell arrival and is decremented periodically at the to- 
ken generation rate, l /d .  An arriving cell is lost if it 
finds a full buffer. Therefore, in this case, the LB 
algorithm can be modcled as a GI/D/l/kIs yucuc 
(see Rathgeb (1991)) in which a buffer overflow cor- 
responds to a cell loss. 

In this section we use importancc sariiplirig to cffi- 
ciently estimate the steady-state probability of a full 
buffer in the above GI/D/l /kT queueing rnodel. As 
outlined in Section 2.1, the optimal change of measure 
can be obtained by solving Equation (4) for 8” .  The 
corresponding (exponentially tilted) inter-arrival and 
service time densities can now be dctcrrriiricd from 
their generating functions as given in Equation (5). It 
follows that the optimal service times are also dcter- 
rninistic and identical to the original (ix., no change 
in the service process.) However, the arrival process 
does change, so as to increase the probability of tlic 
rare full-buffer event. Frater (1990) considered dc- 
terministic service and batch-Poisson arrival process. 
For Poisson arid TPBS cell arrival processes, Tables 1 
and 2 display point estimates of the full-buffer prob- 
ability (sec Equation (1)) and the relativc half-width 
(in percentage) of their 99% confidence intervals. 

First, we consider a Poisson arrival process with 
rate X = 0.75 cells per unit time. The new (opti- 
mal) arrival process is also Poisson, however, at ail 
increased rate A* = X+O*, where (from Equation (4)) 
e* > 0 is the non-trivial solution of X + 8* = X e d o ’ .  
The (deterministic) service time is set to d = 1 tiiiic 
unit, and we vary the buffer size ky,. In this case, wc 
are simulating an M/D/l/ky- queue, aiid, thercforc, 
we can validate our statistical output from siriiula- 
tiori with nurncrical results obtained froni aiialysis 
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(sec Cooper (1981).) In Table 1, we list fast simu- 
lation cstimates of the full-buffer probability, as well 
as numerical results from analysis. 25600 “biased” 
(with importance sampling) busy cycles wcrc used 
to get an estimate of the numerator E(13). Another 
25600 “norrnal~’ (with standard simulation) busy cy- 
cles were used to get an estimate of the denomina- 
tor E(T) .  Typically, “normal7’ busy cyclcs are much 
shorter than “biased” busy cycles, and, thcreforc, thc 
cffort to estimate E(T)  is much lcss than that to esti- 
mate E ( 4 ) .  Using the same total simulation effort (in 
real time), for only two entries (corresponding to rela- 
tively high full-buffer probabilities) it wzw possible to 
obtain meaningful results from standard simulation. 
Notc that fast simulation results are in good agree- 
merit with the niunierical results from analysis. Also, 
the relative accuracy is practically the same, rcgard- 
less of how small is the full-buffer probability being 
estimated. This verifies the asymptotic optimality of 
the change of measure used in importance sampling. 

For a TPBS arrival process with parameters @. 
a and r, the new (optimal) arrival process is also 
a “TPBS,” with the same r. However, the param- 
eters p’ and (a* are changed (as given in Section 
3.1), so as to appropriately accelerate the cell ar- 
rival process. From Equation (4), the optimal tilt- 
ing parameter 8* > 0 is the non-trivial solution of 
p + e* = (/3 -I- (1 - a)8*)e(d-+)0*. For the original 
arrival process, we fix a at 0.1, and vary @ and r to 
experiment with burstiness ( b )  and the average cell 
arrival “rate” (A). In Table 2, X is decreased in two 
ways; either by fixing @ and increasing r, or by fix- 
ing r and decreasing @. (Notc that, by decreasing 
either @ or 7, we are increasing thc burstiness, since 
b = 1 + a/(/%).) The (deterministic) service time, 
d, is set to 10 time units, and the buffer size, k ~ ,  
is sct to 150. Exact analysis of the TPBS/D/ l / kT  
queueing model under consideration is difficult be- 
cause of state dimensionality (scc R.athgeb (1991).) 
For each fast :simulation cntry in Tablc 2, 25600 “bi- 
ased” busy cycles wcrc used to get an estimatc of 
the numeratoir E(l3). Another 25600 “normal” busy 
cycles wcrc used to get an estirnatc of thc dcnomi- 
nator E(T) .  Using the same total simulation effort 
(in real time), for only two entries (corresponding to 
relatively hig ti full-buffer probabilities) we are able 
to compare with estimates from standard simulstion. 
For all entries in Tablc 2, fast sirriulatiori gives sta- 
ble cstimates and tight confidence iritcrvals; which is 
an indication of the effectiveness of the used impor- 
tance sampling method. As cxpectcd, the full-buffer 
probability dlccrcases as we decrease the average cell 
arrival “rate,” however, the effect of increasing thc 
burstiness is riot quite apparent in this experiment. 

3.3 D/GI/ l /k  Queueing Model 

In this section we consider the “token bank” implc- 
mentation of the LB algorithm (as described in Scc- 
tion l), in which therc is a token bank of capacity k y - ,  

as well as a cell-delay buffer of size k c .  For some ccll 
arrival processes (including TPBS), it can be shown 
that the operation of this algorithm (with respect 
to the steady-state throughput and cell loss) come- 
sponds to another with only a token bank of capacity 
k s  = k ~ t  + k c ,  but no cell-delay buffer. (For Marko- 
vian Arrival Processes (MAP), this has been estab- 
lished formally by Berger (1991) .) In this case, the LI3 
algorithm can be modeled by a D/GI/l /ks queue in 
which the server (independently from the arrival pro- 
cess) continues to service virtual customers, also wheii 
the system is empty. Only at virtual scrvicc epochs, 
the service of an actual customer, if any, is completed. 
In other words, it operates as a standard D/GI / l /ks  
queue, except that an arrival to an cinpty system has 
a scrvice time which is identical to the time until the 
next virtual service epoch. In this model, the ar- 
rival process corresponds to the (deterministic) token 
generation process and the service time corresponds 
to the cell inter-arrival time. Notc that, an empty 
buffer in this model corresponds to a full ccll-delay 
buffer in the LB algorithm. As outlined in Section 
2.2, the proposed change of measure is obtained by 
solving Equation (7) for O * .  The corresponding (ex- 
ponentially tilted) inter-arrival and service time den- 
sitics can now be determined from their generating 
functions as given in Equation (8). The new arrival 
(token generation) process is also periodic (determin- 
istic) at the same “rate” l /d.  However, the service 
(cell arrivals) process does change, so as to acccler- 
ate the occurrence of the rare empty-buffer cvcnt. For 
Poisson and TPBS cell arrival processes, Tables 3 and 
4 display point estimates of the empty-buffer proba- 
bility (see Equation ( 6 ) )  and the relative half-width 
(in percentage) of their 99% confidence interval. 

First, we consider an exponential service time (cor- 
responding to a Poisson cell arrival process) with rate 
p = 0.75 cells per unit time. The new service tirrics 
arc also cxponential, however, at an increased rate 
p* = p + 8*, where (from Equation (7)) O* > 0 is 
the non-trivial solution of p + 8* = ped’*. The inter- 
arrival (or token generation) pcriod is sct to d = 1 
time unit, and we vary the aggregate buffer size k s .  
In this case, we arc simulating an D/M/l /ks  queue, 
and, therefore, wc can validate our statistical output 
from simulation with numerical results obtairicd from 
analysis (see Hokstad (1975).) In Table 3, we list fast 
simulation estimates of the crnpty-buffer probability. 
as well as numerical rcsults from analysis. 102400 
“biased” full-buffer cycles (as defined in Section 2.2) 
wcre used to get an estimate of the riumcrator E ( Y ) .  
Another 25600 “normal” full-buffer cycles wcrc uscd 
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to get an estimate of the dcnorriiriator E ( X ) .  Typ- 
ically, ‘‘normal” full-buffer cycles arc much shorter 
than “biased” full-buffer cycles, and, therefore, the 
effort to estimate E ( X )  is much less than that to CS- 

timate E ( Y ) .  For each table entry, the same total 
simulation effort (in real time) is used to obtain a 
standard siniulation estimate. For only two entries 
(corresponding to relatively high cmpty-buffer prob- 
abilities) it was possible to obtain meaningful results 
from standard simulation. Note that fast simulation 
results arc in good agreement with the numerical re- 
sults from analysis. Also, the relative accuracy is 
practically the same, regardless of how small is the 
empty-buffer probability being estimated. This sup- 
ports our clairn of asymptotic optimality for the pro- 
posed change of measure. 

For a TPBS service (corresponding to cell arrival) 
process with parameters ,!3, a and 7, the new ser- 
vice process is also a “TPBS,” with the same T. 

However, the parameters p* and a* are changed (as 
given in Section 3.1), so as to appropriately accel- 
eratc the service process. From Equation (7), the 
tilting parameter 6* > 0 is the non-trivial solution 
of p + 6* = ( p  + (1 - ~ ) 6 * ) e ( ~ - ~ ) ’ ” .  For the orig- 
inal service process, we fix Q at 0.1, and, alterna- 
tively, vary the average cell arrival “rate” (A)  and 
the burstiness (b ) .  For each entry in Table 4, given A 
and b, other parameters, namely, 7 and ,B can be de- 
termined uniquely (note that T can be assigned only 
integer values.) The inter-arrival time (correspond- 
ing to the token generation period), d ,  is set to 20 
time units, and the buffer size, ICs, is set to 150. For 
each fast simulation entry in Table 4, 204800 “bi- 
ased” full-buffer cycles were used to get an estimate 
of the numerator E ( Y ) .  Another 204800 “norrnal” 
full-buffer cycles were used to get an estimate of the 
denominator E ( X ) .  Using the same total simulation 
effort (in real time), for a few entries (correspond- 
ing to relativcly high full-buffer probabilities) we are 
able to compare with estimates from standard sim- 
ulation. For all entries in Table 4, fast sirriulatiori 
results give stable estimates arid tight confidence in- 
tervals, which again demonstrates the effectiveness of 
our importance sampling method. As expected, the 
probability of a full ccll-delay buffer increases with A. 
Generally, it also increases with b, however, it appears 
much less sensitive to burstirless at higher average cell 
arrival “rates.” The exact analysis for the standard 
D/GI/ l /ks  queue is perhaps feasible for some scr- 
vicc processes. However, including the non-standard 
service feature of our particular model of the LB al- 
gorithm makes it considerably more difficult. Here, 
iniportancc sampling is very useful, as it makes sini- 
ulation a practical evaluation altcrnativc. 

4 CONCLUSIONS 

In this paper we have proposed an importance sarri- 
pling change of rrieasure to efficiently cvtirriate tlic 
probability of a rare empty-buffer event in an asyinp- 
totically unstable GI/GI/l/k queue. This cliarigc 
of measure is, im a way, “dual” to that proposed by 
Parekh and Walrand (1989) to estimate the proba- 
bility of a rare buffer overflow event in an a s p p  
totically stable queue. The problem is motivated by 
a queueing model (Berger 1991) in which the rare 
empty-buffer event corresponds to a full ccll-delay 
buffer (which is closely related to cell loss) in the 
LB algorithm. Experimental results dernonstratc tlic 
asymptotic efficiency of our heuristic, however, this 
has not yet been established formally. 
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