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ABSTRACT

In this paper we use fast simulation methods, based
on importance sampling, to efficiently estimate cell
loss probability in queueing models of the Leaky
Bucket algorithm. One of these models was intro-
duced by Berger (1991), in which the rare event of
a cell loss is related to the rare event of an empty
finite buffer in an “overloaded” queue. In particular,
we propose a heuristic change of measure for impor-
tance sampling to efficiently estimate the probability
of the rare empty-buffer event in an asymptotically
unstable GI/GI/1/k queue. This change of measure
is, in a way, “dual” to that proposed by Parekh and
Walrand (1989) to estimate the probability of a rare
buffer overflow event. We present empirical results
to demonstrate the effectiveness of our fast simulation
method. Since we have not yet obtained a mathemat-
ical proof, we can only conjecture that our heuristic
is asymptotically optimal, as k& — oo.

1 INTRODUCTION

In an Asynchronous Transfer Mode (ATM) network,
data is transported in fixed-size cells. An ATM con-
nection is established with an admission contract
which specifies the traffic characteristics of the source
and the quality of service (QOS) requirement to be
guarantecd by the network. In order for the network
to ensure that the admission contract is not violated,
the usage parameter control (UPC) procedure is in-
voked to monitor the actual traffic and to police the
excess traffic violating the contract.

The Leaky Bucket (LB) algorithm is a popular
UPC procedure and can easily be implemented with
counters {sec Turner (1986).) Each time a cell ar-
rives, the counter is incremented by onc. As long as
the counter has a positive value, it is decrcmented
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at fixed intervals, d. When the cell arrival “rate”
exceeds the periodic decrement “rate,” the counter
value will increase. If the counter reaches a pre-
specified limit, say, kr, then the source is considered
to have exceeded its admission contract, and sub-
scquent cells are discarded (or marked for policing)
until the counter value falls below the limit again.
The operation of this LB algorithm can be modeled
as a GI/D/1/ky queue, in which the service time is
set identical to the decrement interval, d. For a two-
phase burst/silence source model (see Section 3.1),
the stationary cell loss probability can be obtained
by a numerical method, whose complexity grows in
proportion to the value of ky (Rathgeb 1991.)

The concept of the LB algorithm is sometimes de-
scribed by means of control tokens and a cell-delay
buffer. Tokens are generated at fixed intcrvals (cor-
responding to the counter decrement interval intro-
duced above) and are stored in a token bank (buffer)
with a finite capacity kpr. A token which arrives to
find the token bank full is lost. If the token bank
is not empty, then an arriving cell is transmitted in-
stantly and removes one token from the bank. If the
token bank is empty, then an arriving cell is either
queued in a cell-delay buffer or lost, if this buffer has
reached it capacity k¢. For the LB algorithm with two
buffers and a certain class of arrival processes, it is
shown in Berger (1991) that the steady-state through-
put and cell loss depend only on the sum of the token
and cell-delay buffer capacities. In other words, with
respect to throughput and cell loss, the LB algorithm
with two buffers is equivalent to another, with only a
token buffer of size of ks = ko +kc, and no cell-dclay
buffer. Therefore, the LB algorithm can be modeled
as a D/GI/1/ks queue, in which the server operates
in a slightly non-standard manner (scc Scction 3.3).
In this model, the arrival process corresponds to the
token generation process and the service process cor-
responds to the cell arrival process. For a Markovian
arrival process (MAP) of cells, Berger (1991) con-
siders the analysis of an cmbedded Markov renewal
process to determine the probability that a token is
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blocked, which is directly related to the cell loss prob-
ability. The main disadvantage of this approach is
that a relatively small numerical crror in the evalua-
tion of the (high) token blocking probability leads to a
significant relative error in the evaluation of the (low)
cell loss probability. We note that the rare cell loss
cvent in the operation of the LB algorithm is directly
related to the rare empty-buffer event in Berger’s
model. This is a key observation, since the problem
of estimating the cell loss probability in the LB algo-
rithm can be solved if we have a method to estimate
the probability of an empty buffer in an “overloaded”
D/GI/1/ks queue. Informally, by “overloaded” we
mean that the arrival “rate” is higher than the ser-
vice “rate,” in which case the queue is asymptotically
(as the buffer size tends to infinity) unstable.

In order to avoid restrictions necessary for analytic
tractability and/or numerical feasibility, simulation is
often preferred for the cvaluation of realistic models
of the LB algorithm. However, accurate estimation
of the cell loss probability requires obscrving numer-
ous cell loss events. But, if the cell loss probability
is 1072, then each cell loss event takes place approx-
imatecly once in 10° cells. Observing a sufficiently
large number of cell loss events will take extremely
long simulation time.

Importance sampling (Hammersley and Hand-
scomb 1964) has been used effectively to achieve
significant speed ups in simulations involving rare
events, such as failure in a reliable computer system
or cell loss in an ATM communication network. See
Nicola et al. (1993) for a review of techniques for fast
simulation of highly dependable systems, and Hei-
delberger (1993) for a survey of efficient simulation
methods to estimate buffer overflow probabilities in
communication systems. The basic idea of impor-
tance sampling is to simulate the system under a dif-
ferent probability measure (i.e., with different under-
lying probability distributions), so as to increase the
probability of typical sample paths involving the rare
event of interest. For each sample path (observation)
during the simulation, the measure being cstimated
is multiplied by a correction factor, called the like-
lihood ratio, to obtain an unbiased cstimate of the
measur¢ in the original system. Asymptotically opti-
mal change of measures (to use in importance sam-
pling) have been found to cstimate small probabilities
of buffer overflow in relatively simple queueing models
(sce, Parekh and Walrand (1989), Sadowsky (1991),
Chang ct al. (1993) and others.) In this paper, we use
these change of measures to estimate very small full-
buffer probabilitics in GI/D/1/k queueing models of
the LB algorithm; this is motivated by the model in
Rathgeb (1991). We also propose a change of measure
to cfficiently estimate very small empty-buffer proba-
bilities in asymptotically unstable D/GI/1/k qucucs;
this is motivated by the modcl in Berger (1991), as

described above. This change of measure is, in a
way, “dual” to that proposed by Parckh and Walrand
(1989). We experiment with importance sampling
methods in simulations of queueing models of the LB
algorithm. Two cell arrival processes are considered,
namely, a Poisson process (mainly for validation pur-
poses) and a more realistic two-phase burst/silence
process (sce Scction 3.1). Empirical results demon-
strate the effectiveness of our method to estimate very
small empty-buffer (and cell loss) probabilities. Since
we have not yet formally established its asymptotic
optimality, this can only be conjectured.

The rest of this paper is organized as follows. In
Section 2, we consider change of measures used in im-
portance sampling to speed up simulations of simple
queues; both, rare full-buffer and rarc cmpty-buffer
events are considered. Experiments with these change
of mcasures to simulate queueing models of the LB
algorithm are presented in Section 3. Conclusions arc
given in Section 4.

2 FAST SIMULATION OF
QUEUES

SIMPLE

In this section we consider two types of rarc cvents
in a simple queue with a finite buffer. Qur interest
in these rare events is motivated by models of the
LB algorithm described in Section 1. The first is the
Sfull-buffer event, when the cell arrival “rate” is much
smaller than the service “rate”. Efficient simulation
involving a rare full-buffer event has been consid-
cred by many (sce, for example, Parekh and Walrand
(1989) and Sadowsky (1991).) Amnother rare cvent of
interest is the empty-buffer event, when the arrival
“rate” is much higher than the service “rate.” (Note
that the queue is always stable because of its finite
buffer.) To the best of our knowledge, efficient simu-
lation involving the latter rare event using importance
sampling has not been considered previously.

2.1 Rare Full-Buffer Event

Consider an GI/GI/1/k queue, in which the arrival
“rate” is much smaller than the service “rate.” There-
fore, buffer overflow is a rarc event. The probability
density function (pdf) of the inter-arrival (resp., scr-
vice) time is given by fa(t) (resp., fs(t).) Let N(3)
be the number of jobs in the queue (including that
in service) at time t, and denote by t;,7 = 0,1,2, ..,
the consecutive instants in time at which N(¢) jumps
from O to 1, i.e., for all j = 0,1,2,..., N(¢;) = 0 and
N(t]) > 0. Define a busy cycle to be the evolution
of the process N(t) between two such consecutive in-
stants, say, t; and t;4,. Note that ¢;,7 = 0,1,2,...,
constitute renewal points, and, therefore, busy cycles
arc i.i.d. (independent and identically distributed.)
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The length of a busy cycle is a r.v. T for the
J-th busy cycle Tj = ¢; — t;—1,j = 1,2,.... The
number of arrivals during a busy cycle is a r.v. N
which, because of buffer overflow, is not necessar-
ily equal to the number of departures in the same
busy cycle; for the j-th busy cycle it is denoted by
N;. Furthermore, denote by B; the total time in the
j-th busy cycle during which the buffer is full, i.e.,
Bj = [,2,  I(N(t) = k) dt, where I(.) is the indi-
cator function. Also, denote by O; the total number
of cells lost because of a buffer overfiow during the
J-th cycle. B; and Oj are realizations of the random
variables B and O, respectively. It follows that the
long-run (steady-state) fraction of time the buffer is
full, F, and cell loss probability, O, are given by

_E(B)

F =5y (1)
_ E0)
= 50 2)

Let us consider the estimation of the steady-state
full-buffer probability, F, using the above ratio rep-
resentation. It is more efficient to estimate E(T)
using standard simulation and F(B) using impor-
tance sampling. This approach is known as “mea-
sure specific dynamic importance sampling” or MS-
DIS (see Goyal et al. (1992).) Using importance sam-
pling, we have E(B) = E¢(B) = E,(BL), where f
and g are the original and the new probability mea-
sures, respectively, and L is the likelihood ratio. De-
note by dg(w) the probability of a sample path w
according to the new probability measure g. (Simi-
larly, df (w) is the probability of a sample path w ac-
cording to the original probability measure f.) Then
L{w) = df(w)/dg(w) is the likelihood ratio associ-
ated with a sample path w; it can be computed easily
during the simulation. For example, let tf,wr (resp.,
tis,j)v t=1,2,...,N;, be the cell arrival (resp., depar-
ture) instants in the j-th busy cycle. Furthermore,
let g4 () (resp., g& ;(t)) be the new i-th inter-arrival
(resp., service) time density used to simulate the sys-
tem with importance sampling. The likelihood ratio,
L;, associated with the j-th busy cycle, takes the form

fI altag = thy) | Is(ts; —ta,)
i
i1 9 (8
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Note that tN =g A,j+1 18 the instant at which

the j-th busy cycle Lnds and the j + I-th busy cy-
cle begins. Thus, L; can be computed recursively at
arrival and dcparturc events during the simulation.
Now, let ny be the number of independent “bi-
ased” (using importance sampling) busy cycles used

to obtain estimates for the mean and the variance of
the r.v. BL, These estimates are given by

ng np
ﬂB = Z Bij/ng, &QB = Z (Bij - ﬁu)z/(nu-—l).

j=1 =1

Let ng be the number of independent “normal” (us-
ing standard simulation) busy cycles used to obtain
cstimates for the mean and the variance of the r.v.
T. These estimates are given by

=Y Tyjne, oh = 30 (T = )/ (e = 1).

j=1 j=

Asymptotically unbiased estimate of F is given by

F=bo
pr
The relative half-width (in percentage) of the 99%
confidence interval for the above estimator is given
by 2.56 (6/F) x 100, where

2 _ (0% 220\ o
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In the following we consider the optimal change of
measure (importance sampling distributiong to effi-
ciently estimate E(B). Let Fx(f) = [7, ¢ fa(t)dt
be the moment generating function of the inter-arrival
times. Define f4(t) = e%fa(t)/Fa(6); this is an-
other pdf obtained by exponentially tilting (twisting)
the pdf fa(t) at a parameter 6. Similarly, Fg(8) =
};_0 % fs(t)dt is the moment generating function of
the service times, and fg(t) = €% fg(t)/Fs(8) is the
corresponding exponentially tilted pdf.

Using heuristic arguments based on the theory of
large deviations (Bucklew 1990), Parekh and Walrand
(1989) proposed an importance sampling distribution
to efficiently estimate the probability of buffer over-
flow in a GI/GI/1/k queue. In Sadowsky (1991), this
distribution was proved to be the unique asymptoti-
cally (as k — co) optimal change of measurc. Let 6
be the solution of the equation

Fa(-0%) Fs(6") = 1. (4)
Then the optimal change of measurc is obtained by
simulating the GI/GI/1/k queue with the exponen-
tially tilted densities ga(t) = f3;7 (t) and gs(t) =
fg' (¢). Importance sampling is “turned on” at the
start of cach busy cycle, and is “turned off” at the
occurrence of the rare event. The moment gencerat-
ing functions for the new (optimal) inter-arrival and
service times arc given by

Ga(8) = _____F;/E‘Z_“B")) Gs(oy = T30+ ) b}ﬁf (;i?*” (5)
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Consider the M/M/1/k queuc with its arrival rate
A much smaller than its scrvice rate p (i.e., A <€ p), so
that a full buffer is a rare cvent. Fa(—0) = A/(A+6)
and Fg(0) = p/(p — 0), for 6 < p. Solving the equa-
tion Fa(—6*) Fg(6*) = 1 for 6%, we get 0* = p— A
It follows that G4(0) = p/(p — 6) and Gs(8) =
A/(A=80), i.c., optimally, the M/M/1/k queue is sim-
ulated with arrival rate g and service rate A. This
change of measure accelerates the arrival process rel-
ative to the service process, thus increasing the prob-
ability of a full buffer in the simulated system.

In scction 3.2, we determine the optimal impor-
tance sampling distribution (as outlined above) and
use it to estimate very small full-buffer probabilities
in GI/D/1/k queueing models of the LB algorithm.

2.2 Rare Empty-Buffer Event

Consider the GI/GI/1/k queue, with its arrival
“rate” much higher than its scrvice “rate.” Note that
the queue is always stable because the buffer is fi-
nite, however, reaching the empty-buffer state is a
rare event. It follows that busy cycles (as defined in
Section 2.1) are extremely long, and it is not practi-
cal to use them as individual samples in a regenera-
tive simulation. Therefore, we need to define other,
more frequent, cycles to use in our importance sam-
pling simulation. Consider, for example, the consec-
utive points in time fj,j = 0,1,2,...,, at which an
arrival causes the buffer to be full or finds it already
full. That is, for all j = 0,1,2,..., {; is an arrival
instant such that N (f+) = k. Define a full-buffer cy-
cle to be the evolution of the process N(¢) between
two such consccutive instants, say, t and t1+1 Note
that, in general, tJ, j = 0,1,2,..., are not rencwal
points (because of the age of the current service), and,
therefore, these full-buffer cycles are neither regener-
ative nor independent. A methodology to overcome
this complication has been described in Nicola et al.
(1993). However, in this paper we restrict our discus-
sion to situations where regenerative full-buffer cycles
can be identified at some (but not necessarily all) ¢
instants. For example, when the service time dis-
tribution is of Phase type, a regenerative full-buffer
cycle is identified upon an arrival causing a re-entry
to the full-buffer state, while the current scrvice is
in a particular memoryless state. More formally, let
A(t) and S(t) denote the state of the current inter-
arrival and the current service (if any) at time ¢, re-
spectively. Denote by t;,7 = 0,1,2,..., the consecu-
tive instants at which the process {N(t), A(t), S(t)}
enters the same (regenerative) full-buffer state, i.e.,
begins a regencerative full-buffer cycle. These regen-
erative cycles are i.i.d., which we, simply, refer to as
full-buffer cycles. The length of the j-th full-buffer
cycle is X; = t; —t;-1,7 = 1,2,...; a rcalization of a
r.v. X. Furthermore, denote by Y; the total time in

the j-th busy cycle during, which the buffer is ciupty,
ie, Y; = fz~c I(N(t) = 0) dt, where I(.) is the
indicator functlon Y; is a rcalization of a r.v. Y.
It follows that the long—run (steady-state) fraction of
time the buffer is empty, £, is given by

E(Y) (©)
E(X)
In the above equation, the quantity E(X) is casy to
estimatc using standard simulation. Howcver, csti-
mating E(Y) is difficult, since an empty buffer before
the end of a full-buffer cycle is a rare event. Here, too,
we use standard simulation to estimate E(X) and
importance sampling to estimate E(Y) = Ef(Y) =
E,(YL). An estimate £ of € and its 99% confidence
interval can be obtained as described in Section 2.1.
To the best of our knowledge, the problem of csti-
mating the probability of a rare empty-buffcr event
using importance sampling has not been considered
before. In the following we give a heuristic change of
measure to efficiently estimate E(Y). This change of
measure is, in a way, “dual” to that given in Section
2.1 to estimate the probability of a rarc full-buffer
event. Following the same notation as in Section 2.1,
let 6* be the solution of the equation

£ =

Fa(0*) Fs(—6*) = 1. (7
Our “heuristic” change of measure is to simulate the
GI/GI/1/k queue with the exponentially tilted den-
sities ga(t) = f4 (t) and gs(t) = fs_o‘(t). Importance
sampling is “turned on” at the beginning of cach full-
buffer cycle, and is “turned off” at either the occur-
rence of the rare event or the start of the next cycle.
The moment generating functions for the new inter-
arrival and service times are given by

Ga(0) = féléf(};i;_) Gs(6) = %{-)—) ®)

Consider the M/M/1/k queue with its arrival rate
A much higher than its service rate p (i.e., A > p), so
that an empty buffer is a rare event. According to the
above heuristic, importance sampling involves simu-
lating the M/M/1/k queue with arrival rate p and
service rate A. Here too, the arrival and service rates
are interchanged. However, this is done to acceler-
ate the service process relative to the arrival process,
thus increasing the probability of an cmpty buffer in
the simulated system.

In scction 3.3, we follow the above heuristic to de-
termine an importance sampling distribution which
we use to estimate very small cmpty-buffer probabil-
ities in D/GI/1/k queueing models of the LB algo-
rithm. Empirical results demonstrate the cffective-
ness of our heuristic and supports our conjecturc of
its asymptotic optimality (sce Sadowsky (1991).)
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3 EXPERIMENTAL RESULTS

In this section we use fast simulation methods dis-
cussed in Sections 2.1 and 2.2 to evaluate two modcels
of the LB algorithm. The empirical results displayed
here are limited to the estimation of the steady-state
probability of a full cell-delay buffer. The probability
of buffer overflow, as seen by arriving cells (i.c., cell
loss), can be estimated simultaneously from the same
simnulation, but it is not included in our results.

The operation of the LB algorithm is described in
Section 1, first by means of a counter, then by means
of a token bank together with a cell-delay buffer.
It should be noted that in the first (“counter”) im-
plementation, cells are either lost or transmitted in-
stantly upon arrival, i.e., they do not experience any
delays. Furthermore, counter decrement (correspond-
ing to token generation) stops at level 0, and resumes
only when a cell arrives, i.c., it is not totally inde-
pendent of cell arrivals. On the other hand, in the
second (“token bank”) implementation, cells may ex-
perience delays if, upon arrival, there are no tokens
and the cell-delay buffer is not full. Also, the token
generation process is totally independent of cell ar-
rivals. Therefore, the “counter” and “token bank”
implementations of the LB algorithm are close but
not identical, neither with respect to cell delays nor
with respect to throughput and cell loss.

3.1 The Cell Arrival Process

Without loss of generality, we shall consider two cell
arrival processes. The first is a Poisson process, for
which numerical (non-simulation) results can be ob-
tained; thus making it possible to validate our sta-
tistical output from simulation. The seccond is a
two-phase burst /silence process (see Rathgeb (1991)),
which we will refer to as TPBS process. This ar-
rival process has been used to model different types
of sources, such as packetized voice (sec Heffes and
Lucantoni (1986)) and interactive data scrvices, and,
therefore, it is often used to compare various policing
mechanisms. The number of cells per burst is ge-
ometrically distributed with a parameter «, and the
inter-cell time during a burst is deterministic given by
7. Therefore, transitions from burst to silence occur
with a probability «, only at multiples of 7. The dura-
tion of the silence phase is exponentially distributed
with a mean §7!. The peak cell arrival “rate” is 1/7,
and the average cell arrival “rate” A = (7+a/8)" . It
follows that the burstiness, b, of the TPBS source is
given by b = 1/A7 = 14 «/B7. The pdf of the TPBS
inter-arrival time is given by

0, if t<T,
fat) ={ 1-a, if t=m, (9)
aBe BT i ¢ > 1

and its moment generating function is given by

Fa@) = [(1-a) +aL—|. (0
g6

ga(t) = f4 (t) is the corresponding cxponentially
tilted pdf (with a tilting parameter 6*); its moment
generating function is given by Ga(f) = Fa(6 +
6*)/F2(6%). It can be shown that the tilted pdf, ga(¢),
is also a TPBS process with the same determinis-
tic burst inter-cell time 7, and with its parameters,
B* =B+ 6%, and o* = af/(f+ (1 - a)8*). In Scc-
tions 3.2 and 3.3, the appropriate tilting paramcter
§* is determined, and the tilted pdf, ga(t), is used
as the (new) inter-arrival time density for simulation
with importance sampling.

3.2 GI/D/1/k Queueing Model

First we consider the “counter” implementation of the
LB algorithm (sce Section 1.) The operation of this
algorithm corresponds to a single buffer of size kv,
whose content is incremented with each (accepted)
cell arrival and is decremented periodically at the to-
ken generation rate, 1/d. An arriving cell is lost if it
finds a full buffer. Therefore, in this case, the LB
algorithm can be modeled as a GI/D/1/ky queue
(see Rathgeb (1991)) in which a buffer overflow cor-
responds to a cell loss.

In this section we use importance sampling to cffi-
ciently estimate the steady-state probability of a full
buffer in the above GI/D/1/ky queucing model. As
outlined in Section 2.1, the optimal change of measurc
can be obtained by solving Equation (4) for 6*. The
corresponding (exponentially tilted) inter-arrival and
service time densities can now bc determined from
their generating functions as given in Equation (5). It
follows that the optimal service times are also deter-
ministic and identical to the original (i.c., no change
in the service process.) However, the arrival process
does change, so as to increase the probability of the
rare full-buffer event. Frater (1990) considered de-
terministic service and batch-Poisson arrival process.
For Poisson and TPBS cell arrival processes, Tables 1
and 2 display point estimates of the full-buffer prob-
ability (sec Equation (1)) and the relative half-width
(in percentage) of their 99% confidence intcrvals.

First, we consider a Poisson arrival process with
rate A = 0.75 cells per unit time. The new (opti-
mal) arrival process is also Poisson, however, at an
increased rate A* = A+6*, where (from Equation (4))
6* > 0 is the non-trivial solution of A 4 6* = Xed?",
The (deterministic) service time is set to d = 1 time
unit, and we vary the buffer size ky. In this case, we
are simulating an M/D/1/kp queue, and, thercfore,
wc can validate our statistical output from simula-
tion with numerical results obtained from analysis
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(sec Cooper (1981).) In Table 1, we list fast simu-
lation estimates of the full-buffer probability, as well
as numerical results from analysis. 25600 “biased”
(with importance sampling) busy cycles were used
to get an estimate of the numerator E(B). Another
25600 “normal” (with standard simulation) busy cy-
cles were used to get an estimate of the denomina-
tor E(T). Typically, “normal” busy cycles are much
shorter than “biased” busy cycles, and, therefore, the
effort to cstimate E(T) is much less than that to esti-
mate E(B). Using the same total simulation effort (in
real time), for only two entries (corresponding to rela-
tively high full-buffer probabilities) it was possible to
obtain meaningful results from standard simulation.
Note that fast simulation rcsults are in good agree-
ment with the numerical results from analysis. Also,
the relative accuracy is practically the same, regard-
less of how small is the full-buffer probability being
estimated. This verifies the asymptotic optimality of
the change of measure used in importance sampling.

For a TPBS arrival process with parameters S,
a and 7, the new (optimal) arrival process is also
a “TPBS,” with the same 7. However, the param-
eters 0* and o are changed (as given in Section
3.1), so as to appropriately accelerate the cell ar-
rival process. From Equation (4), the optimal tilt-
ing parameter ¢* > 0 is the non-trivial solution of
B+6* = (B+ (1 - a)§*)eld 7, For the original
arrival process, we fix « at 0.1, and vary § and 7 to
experiment with burstiness (b) and the average cell
arrival “rate” (A). In Table 2, A is decreased in two
ways; either by fixing § and increasing 7, or by fix-
ing 7 and decreasing 3. (Note that, by decrcasing
either 8 or T, we are increasing the burstiness, since
b = 1+ a/(07).) The (deterministic) service time,
d, is set to 10 time units, and the buffer size, kp,
is set to 150. Exact analysis of the TPBS/D/1/kr
queueing model under consideration is difficult be-
cause of state dimensionality (sce Rathgeb (1991).)
For each fast simulation entry in Table 2, 25600 “bi-
ased” busy cycles were used to get an estimate of
the numerator E(B). Another 25600 “normal” busy
cycles were used to get an estimate of the denomi-
nator E(T). Using the same total simulation effort
(in real time), for only two entries (corresponding to
relatively high full-buffer probabilities) we are able
to compare with estimates from standard simulation.
For all entries in Table 2, fast simulation gives sta-
ble estimates and tight confidence intervals; which is
an indication of the cffectiveness of the used impor-
tance sampling method. As expected, the full-buffer
probability decrcases as we decrcase the average cell
arrival “rate,” howcver, the cffect of increasing the
burstiness is not quitec apparent in this experiment.

3.3 D/GI/1/k Queueing Model

In this section we consider the “token bank” imple-
mentation of the LB algorithm (as described in Scc-
tion 1), in which there is a token bank of capacity kq,
as well as a cell-delay buffer of size k¢. For some cell
arrival processes (including TPBS), it can be shown
that the operation of this algorithm (with respect
to the steady-state throughput and cell loss) corre-
sponds to another with only a token bank of capacity
ks = kr + kc, but no cell-delay buffer. (For Marko-
vian Arrival Processes (MAP), this has been cstab-
lished formally by Berger (1991).) In this case, the LB
algorithm can be modeled by a D/GI/1/kg queuc in
which the server (independently from the arrival pro-
cess) continues to service virtual customers, also when
the system is empty. Only at virtual service epochs,
the service of an actual customer, if any, is completed.
In other words, it operates as a standard D/GI/1/ks
queue, except that an arrival to an einpty system has
a service time which is identical to the time until the
next virtual service epoch. In this model, the ar-
rival process corresponds to the (deterministic) token
generation process and the service time corresponds
to the cell inter-arrival time. Notc that, an empty
buffer in this model corresponds to a full cell-delay
buffer in the LB algorithm. As outlined in Section
2.2, the proposed change of measure is obtained by
solving Equation (7) for 8*. The corresponding (ex-
ponentially tilted) inter-arrival and service time den-
sitics can now be determined from their generating
functions as given in Equation (8). The new arrival
(token generation) process is also periodic (determin-
istic) at the same “rate” 1/d. However, the service
(cell arrivals) process does change, so as to acceler-
ate the occurrence of the rare empty-buffer event. For
Poisson and TPBS cell arrival processes, Tables 3 and
4 display point estimates of the empty-buffer proba-
bility (see Equation (6)) and the relative half-width
(in percentage) of their 99% confidence interval.
First, we consider an exponential service time (cor-
responding to a Poisson cell arrival process) with rate
i = 0.75 cells per unit time. The new service times
arc also exponential, however, at an increased rate
p* = p+ 6%, where (from Equation (7)) ¢* > 0 is
the non-trivial solution of p + 6* = e, The inter-
arrival (or token generation) period is set to d =1
time unit, and we vary the aggregate buffer size kg.
In this case, we arc simulating an D/M/1/ks queue,
and, therefore, we can validate our statistical output
from simulation with numerical results obtained from
analysis (sec Hokstad (1975).) In Table 3, we list fast
sitnulation estimates of the empty-buffer probability,
as well as numerical results from analysis. 102400
“biased” full-buffer cycles (as defined in Section 2.2)
were used to get an estimate of the numerator E(Y).
Another 25600 “normal” full-buffer cycles were used
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to get an estimate of the denominator E(X). Typ-
ically, “normal” full-buffer cycles arc much shorter
than “biased” full-buffer cycles, and, thercfore, the
effort to estimate F(X) is much less than that to es-
timate E(Y). For each table entry, the same total
simulation cffort (in real time) is used to obtain a
standard simulation estimate. For only two entries
(corresponding to relatively high empty-buffer prob-
abilities) it was possible to obtain mecaningful rcsults
from standard simulation. Note that fast simulation
results are in good agrecment with the numerical re-
sults from analysis. Also, the relative accuracy is
practically the same, regardless of how small is the
empty-buffer probability being estimated. This sup-
ports our claim of asymptotic optimality for the pro-
posed change of measure.

For a TPBS service (corresponding to cell arrival)
process with parameters 3, « and 7, the new ser-
vice process is also a “TPBS,” with the same 7.
However, the parameters §* and o* are changed (as
given in Section 3.1), so as to appropriately accel-
erate the service process. From Equation (7), the
tilting parameter #* > 0 is the non-trivial solution
of B+ 6* = (B4 (1 — a)f*)el®77". For the orig-
inal service process, we fix « at 0.1, and, alterna-
tively, vary the average cell arrival “rate” (A) and
the burstiness (b). For cach entry in Table 4, given A
and b, other parameters, namely, 7 and § can be de-
termined uniquely (note that 7 can be assigned only
integer values.) The inter-arrival time (correspond-
ing to the token generation period), d, is set to 20
time units, and the buffer size, kg, is set to 150. For
each fast simulation entry in Table 4, 204800 “bi-
ased” full-buffer cycles were used to get an estimate
of the numerator E(Y). Another 204800 “normal®
full-buffer cycles were used to get an estimate of the
denominator E(X). Using the same total simulation
effort {in real time), for a few entries (correspond-
ing to relatively high full-buffer probabilities) we are
able to compare with estimates from standard sim-
ulation. For all entries in Table 4, fast simulation
results give stable estimates and tight confidence in-
tervals, which again demonstrates the cffectiveness of
our importance sampling method. As cxpected, the
probability of a full cell-delay buffer increases with A.
Gencrally, it also increases with b, however, it appears
much lcss sensitive to burstiness at higher average cell
arrival “ratcs.” The exact analysis for the standard
D/GI/1/kg queue is perhaps feasible for some ser-
vice processes. However, including the non-standard
service feature of our particular model of the LB al-
gorithm makes it considerably more difficult. Here,
importance sampling is very uscful, as it makes sim-
ulation a practical evaluation alternative.

4 CONCLUSIONS

In this paper we have proposed an importance sam-
pling change of measure to efficiently cstimate the
probability of a rare empty-buffer event in an asymp-
totically unstable GI/GI/1/k queue. This change
of measure is, in a way, “dual” to that proposed by
Parekh and Walrand (1989) to estimate the proba-
bility of a rare buffer overflow event in an asymp-
totically stable queue. The problem is motivated by
a queueing model (Berger 1991) in which the rare
empty-buffer event corresponds to a full cell-delay
buffer (which is closely related to cell Joss) in the
LB algorithm. Experimental results demonstrate the
asymptotic efficiency of our heuristic, however, this
has not yet been established formally.
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Table 1: Estimates of the Full-Buffer Probability in
an M/D/1/kr Queueing Model of the LB Algorithm

kT Std. Sim. Fast Sim. Anal.
10 | 1.54 x10=3 | 1.47 x10=% | 1.48 x10~3°
+ 13.55% + 3.72%
15 | 8.79 x10~% | 9.40 x10=5 | 9.40 x10°?
+ 47.62% + 3.72%
30 — 2.46 x10~% | 2.45 x10~%
+ 3.77%
45 6.39 x10~ 1% | 6.38 x10~ 12
+ 3.74%
60 — 1.66 x10~15 | 1.66 x10~ 1>
+ 3.80%

Tablc 2: Estimates of the Full-Buffer Probability in
a TPBS/D/1/kr Model of the LB Algorithm

T 8 =0.01 B =10.005 8 =0.001
1] Std. | 2.74 x10°% -
Sim. + 6.55%
1 | Fast | 2.80 x10~3 | 2.60 x107% | 1.63 x10~Y
Sim. + 7.43% + 2.73% + 1.97%
2 | Std. | 7.41 x10~* -
Sim. + 13.64%
2 | Fast | 7.86 x10~% | 4.83 x10=7 | 2.90 x10~10
Sim. + 5.81% + 2.65% + 2.09%
4 | Std. — -
Sim.
4] Fast | 3.08 x107% | 1.20 x1077 | 6.94 x10~ T3
Sim. + 3.14% + 2.48% +2.14% |

Table 3: Estimates of the Empty-Buffer Probability
ina D/M/1/ks Queueing Model of the LB Algorithm

kp Std. Sim. Fast Sim. Anal.
10 | 111 x10~3 | 1.12 x10~% | 1.14 x10—3
+ 8.92% + 3.19%
15 | 7.13 x10~% | 7.24 x10~° [ 7.23 x10~°
+ 28.95% + 3.24%
30 — 1.85 x10~8 | 1.88 x10~°
+3.27%
45 — 4.90 x10~T7 | 4.91 x10~12
+ 3.18%
60 —- 1.29 x10~15 | 1.28 x10~15
+ 3.27%

Table 4: Estimates of the Empty-Buffer Probability
in a D/TPBS/1/ks Model of the LB Algorithm

b A =.0139 A = .0208 A = 0417
6 | Std. - 7.76 x10~7
Sim. =+ 15.34%
6 [ Fast | 1.86 x10~1° [ 1.16 x10=7 [ 7.90 x10~%
Sim. + 2.08% + 2.83% + 6.67%
12 | Std. — = 9.68 x10—1
Sim. + 11.97%
12 [ Fast | 1.32 x10~9 [ 223 x10~7 { 9.90 x10~1
Sim. + 2.62% + 2.83% + 7.14%
24 | Std. - 8.71 x10—1
Sim. + 10.89%
24 | Fast [ 3.36 x10~% | 8.73 x10~" | 8.83 x10~7
Sim. + 2.84% + 3.42% + 7.36%




