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 Abstract
This paper presents a model-based approach to support
service creation. In this approach, services are assumed to
be created from (available) software components. The crea-
tion process may involve multiple design steps in which the
requested service is repeatedly decomposed into more
detailed functional parts, until these parts can be mapped
onto software components. A modelling language is used to
express and enable analysis of the resulting designs, in par-
ticular the behaviour aspects. Methods are needed to verify
the correctness of each design step. A technique called
behaviour refinement is introduced to assess the conform-
ance relation between an abstract behaviour and a more
concrete (detailed) behaviour. This technique is based on the
application of abstraction rules to determine the abstraction
of the concrete behaviour, such that the obtained abstraction
can be compared to the original abstract behaviour. The
application of this refinement technique throughout the cre-
ation process enforces the correctness of the created service.

1 Introduction

Currently, much research takes place on (software) archi-
tectures, methods and techniques that enable the fast intro-
duction of new telematics applications. For example,
middleware platforms and component models have been
developed to provide software abstractions to application
developers in order to facilitate the rapid introduction of
new applications. Middleware platforms enable the interac-
tion between distributed software components, abstracting
from the complexity and heterogeneity of the underlying
networks and operating systems. Component models facili-
tate the development and reuse of software components pro-
viding generic pieces of functionality, enabling applications
to be built from deployable building blocks that can be con-
sidered at high abstraction levels ([8]).

Assuming the availability of middleware platforms, com-
ponent models and libraries, the development of new appli-
cations is reduced to composing software components in
such a way that the requested functionality is provided.

However, the following problems still have to be solved:
1. how to find a proper (de-)composition of components,

making optimal re-use of available software components;
2. how to determine that the chosen composition of compo-

nents is correct, i.e., provides the requested functionality.
Re-use of components may speed up the development

process of new applications. Re-use of components is, how-
ever, not straightforward. A decomposition of the requested
application into available components may be difficult to
find (if possible at all), or alternative decompositions may
exist. Therefore, guidelines are needed for the decomposi-
tion of applications into components as well as techniques to
support the selection and search of components.

Correctness is important for all applications (but for
some more than for others). Techniques are needed to assess
the correctness of components and their cooperation. Exam-
ples of such techniques are simulation and model checking,
which are applied at design time, and testing of pre- and
post-conditions on operations, which is applied at run-time. 

The process of creating a new service that is provided by
an application composed from software components is
called service creation furtheron. As a result of this process,
software components may be specified that are not available
yet. The implementation of such software components falls
outside the scope of the service creation process.

The objective of this paper is to present a model-based
approach to service creation. This approach involves tech-
niques to model and analyse software components and their
compositions. In particular, we focus on a technique to
assess the conformance between the requested service and
its implementation consisting of a composition of software
components. This technique provides a solution to the sec-
ond problem mentioned above.

The remainder of this paper is structured as follows: sec-
tion 2 describes the service creation process and motivates
our modelling approach, section 3 discusses techniques to
model software components, section 4 describes a technique
to perform conformance assessment, section 5 applies the
techniques to an example, section 6 discusses abstraction
from communication aspects between components, and sec-
tion 7 presents some conclusions.



2 Service creation process

A service is defined as the external behaviour of a sys-
tem. Examples of systems in the context of this paper are a
distributed computing system, a telematics application and
a software component. The external behaviour of such sys-
tems consists of the functions provided by these systems to
their environment (users), and the relationships between
these functions. Furthermore, non-functional aspects, e.g.,
performance aspects, may be included, such as timing and
reliability. A service abstracts from how the external behav-
iour is provided, i.e., abstracts from any internal system
aspects.

The following major milestones are distinguished in the
service creation process:
1. Specification of the requested service;
2. Design of the requested service using (available) soft-

ware components;
3. Verification of the design against the specification;
4. Assembly and packaging of the software components into

a single, compound software component;
5. Testing the new software component;
6. Deployment.

Role of modelling. Our model-based approach focuses on
the first three steps. Figure 1 depicts these steps, and their
relationships. The service creation process starts with a
specification of the service, derived from the user require-
ments. Techniques supporting requirements analysis, such
as use cases, can be used in this step, but are not considered
in this paper.

We assume that the requested service has to be provided
by a (compound) software component. Initially, this compo-
nent is considered as a whole. Furthermore, we assume that
no component is available that provides a service similar to
the requested service. Otherwise, the service creation proc-

ess would be reduced to some minor customization steps.
In the design step, the requested component is decom-

posed, possibly repeatedly, into multiple related functional
parts, until a mapping of these functional parts onto existing
or implementable software components is possible. In case
component reuse is possible for a large part of the design,
the time duration of this step is mainly determined by avail-
able knowledge to find these components and the skills to
incorporate them effectively in the design. Modelling helps
here in two ways: (i) the identification and search for com-
ponents can be based on models representing the relevant
characteristics of components, and (ii) the modelling of
compositions of components allows one to assess whether a
composition provides the requested service. Section 3
presents techniques to model components from a service
perspective and from the perspective of a composition of
functional parts.

Role of conformance assessment. The use of a model-
based approach allows various types of verification and test-
ing. This paper focuses on verifying the conformance rela-
tionship between different models of a system at related
abstraction levels. Section 4 presents a technique to assess
whether an internal model of some system correctly imple-
ments an external model of the same system. This technique
can be applied after each design step. In case conformance
assessment fails for some design step, this step has to be
reconsidered, making service creation an iterative process.

Gap between design and deployment. Given a design
of the requested service in terms of a set of software compo-
nents, and their relationships, its packaging into a new com-
pound component can be largely automated. Only in case
some of the required components are not available, software
development is needed. However, the service specification
of such a component can be used to derive, e.g., IDL speci-
fications or message sequences to help the component
developer. Furthermore, some code or scripts to link compo-
nents may have to be written manually, depending on the
complexity of the relationships between components.

A model-based approach also supports testing. For
example, tests can be derived automatically from the model
of some component, and be compared with executions of
this component in operation.

Modelling language and environment. A single mod-
elling language, called Amber, is used. For an explanation
of the architectural concepts underlying this language, we
refer to [6] and [5]. The language is embedded in an inte-
grated tool environment, called Testbed Studio1, supporting
the representation of models, some analysis techniques and
documentation [3]. 

Figure 1: Specification, design and verification
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3 Modelling

An Amber model of some system consists of two sub-
models: an entity model and a behaviour model.

3.1 Entity model

The entity model represents which system parts are con-
sidered, and how they are interconnected. Two concepts are
used here: entity and interaction point. An entity represents
a system (part) that performs some function or behaviour.
For example, a component can be modelled as an entity. An
interaction point represents some mechanism through
which an entity can interact with other entities. For exam-
ple, a (remote) procedure call mechanism and an Object
Request Broker (ORB) can be modelled as an interaction
point.

From the external perspective, a system is modelled by a
single entity, having one or more interaction points. Figure
2(i) depicts the entity model of a component, called C, hav-
ing two interaction points, called IP1 and IP2, from an
external perspective. An entity is graphically expressed by a
rectangle with cut-off corners. An interaction point is graph-
ically expressed by an ellipsis that overlaps with the entities
that share the interaction point. In this case, the environment
of the component is not modelled.

From the internal perspective, a system is modelled as a
composition of functional parts. For example, these parts
may represent objects or sub-components. Figure 2(ii)
depicts an entity model of component C from an internal
perspective. Component C is composed of three functional
parts C1, C2 and C3, such that parts C1 and C3 and parts C2
and C3 can interact directly via interaction points IP3 and
IP4, respectively, and parts C1 and C2 implement the inter-
faces at interaction points IP1 and IP2, respectively.

3.2 Behaviour model

The behaviour model represents the behaviour, or func-

tionality, of each entity in the corresponding entity model.
Three concepts are used: action, interaction and causality
relation. An action represents some unit of activity per-
formed by a single entity. For example, the presentation of
an HTML page by a Web browser can be modelled as an
action. An interaction represents a common activity per-
formed by two (or more) entities. For example, a method
invocation can be modelled as an interaction between the
invoking object and invoked object. Information, time and
location attributes can be added to an (inter)action, in order
to model the result established in some activity, the time
moment at which this result is available, and the location
where the result is available, respectively.

An (inter)action occurrence represents the successful
completion of an activity. In case an (inter)action occurs, the
same result is established and made available at the same
time moment and at the same location for all entities
involved in the activity, otherwise no result is established
and no entity can refer to any intermediate results of the
activity. An (inter)action abstracts from how an activity
result is established. In order to model the latter, the activity
should be decomposed into sub-activities, such that they can
be modelled by distinct (inter)actions.

Figure 3(i) and (ii) depict an action a and an interaction
a, respectively. An action is graphically expressed as a circle
(or ellipsis). An interaction is graphically expressed as a
segmented circle (or ellipsis), which reflects that multiple
entities contribute to the interaction. Interaction names are
underlined in order to distinguish them from action names.
The information (ι), time (τ) and location (λ) attributes are
represented within a textbox attached to the (inter)action1.
Constraints can be defined on the possible outcomes of the
values of ι, τ and λ (after the symbol ‘|’). In case of an inter-
action, each involved entity can define its constraints, such
that the values of ι, τ and λ must satisfy all constraints, oth-
erwise the interaction can not happen. In case multiple val-
ues are possible for some attribute, a non-deterministic
choice between these values is assumed. In this example,
interaction a is a decomposition (refinement) of action a,
allowing the same attribute values to be established.

A causality relation is associated with each (inter)action,
modelling the conditions for this (inter)action to happen.1Currently, Testbed Studio supports a simplified version of Amber, 

using a specialized syntax, tailored to model business processes. 
Amber itself is more generic, supporting the modelling of distributed 
systems, of which business processes are considered a specific case.

Figure 2: Entity model of a component
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Figure 3: Action and interaction
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Three basic conditions for the occurrence of some action a
are identified:
• b → a; action b must happen before action a;
• ¬b → a; action b must not happen before nor simultane-

ously with action a;
• =b → a; action b must happen simultaneously with a. 

The and- (∧) and or-operator (∨) can be used to model
more complex causality conditions. For example, b ∨ ¬c →
a represents that action a can happen after action b has hap-
pened or as long as action c has not happened yet. Further-
more, a probability attribute can be added to each sufficient
condition to model the probability the (inter)action happens
when this condition is satisfied.

The causality relation concept allows the modelling of
many different relationships between actions. It is often
more convenient to express these relationships directly,
instead as a composition of causality relations of the indi-
vidual actions. Figure 4 depicts the graphical expressions of
some common relationships between two or three actions.
The ∧- and ∨-operator are graphically expressed by the sym-
bols  and , respectively.

A full explanation of the Amber language is beyond the
scope of this paper. However, sufficient explanation is
added to the examples below to enable one to follow the line
of reasoning without elaborate knowledge of Amber.

External behaviour. The external behaviour of a system
defines the interactions with the system’s environment, and
their relationships. In case of a component, the interactions
are the operations that can be invoked on this component
and the operations that can be invoked by this component on
other components. 

Operations. An operation is a function provided by some
component that can be invoked by other components. Two
types of operations are distinguished: an interrogation,
which returns a result to the invoking component, and an
announcement, which does not return a result to the invok-
ing component.

Figure 5(i) depicts the modelling of an announcement as
a single interaction, called inv, between two components.
The rounded rectangles, called C1 and C2, represent the

behaviours of the invoking and invoked component, respec-
tively. An arrow pointing to an (inter)action that is not con-
nected to any other (inter)action, represents that the
(inter)action is allowed to occur from the beginning of the
behaviour.

Figure 5(ii) depicts the modelling of an interrogation as
the sequential composition of two interactions inv and ret,
modelling the invocation and the return of the result of the
operation, respectively. In this case, the causality between
inv and ret is made the responsibility of C2. Similar to Fig-
ure 5(i), the information attribute can be used to model the
information values passed in the inv interaction and the
result returned in the ret interaction. In addition, value and
type constraints can be defined on the operation parameters.

Interfaces. The operations invoked by/on a component are
generally structured into interfaces. An interface can be
modelled as a sub-behaviour of a component’s behaviour,
defining a subset of the operations and their relationships.
Furthermore, one can define a distinct interaction point for
each interface in the entity model.

Internal behaviour. The internal behaviour of a compo-
nent can be modelled in the following ways:
1. by adding internal (inter)actions, and their relationships,

to the external behaviour description;
2. as a composition of the external behaviours of the func-

tional parts in which the component is decomposed;
3. a combination of both.

Figure 6(i) depicts an example of the first option. The
external behaviour of component C2 in Figure 5 is refined
with two actions c and d modeling two internal sub-activi-
ties in which (part of) the result is established that is
returned in interaction ret. 

Figure 6(ii) depicts an example of the second option.
Behaviour C2 in Figure 5 is decomposed into a behaviour S
responsible for accepting an invocation and returning a
result, and a behaviour DB performing, e.g., some database
function used by S to produce the operation result. Behav-
iours S and DB can be assigned to different components.

Component bindings. So far we have assumed that com-
ponents can interact directly, such that the mechanisms sup-
porting the binding between components, such as an ORB,
do not have to be modelled explicitly. Section 6 shows that

Figure 4: Common action relations
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this abstraction is only correct if the ORB is reliable; other-
wise ORB unreliability should be modelled explicitly.

Performance aspects. Time and probability attributes
can be used to model performance aspects. Figure 7 depicts
an example in which a maximal response time and a maxi-
mal failure probability is imposed on an operation. For con-
venience, the operation invocation and operation return are
modelled as actions, abstracting from the entities involved.
The time constraint τret = τinv + 5 defines that interaction ret
must occur within 5 time units after the time moment (τinv)
at which interaction inv has occurred. The probability con-
straint πret/inv ≥ 0.9 defines the conditional probability that
interaction ret occurs after interaction inv has occurred; in
this case, given 100 behaviour executions in which interac-
tion inv occurs, interaction ret must occur on the average in
at least 90 of these executions. The next section presents an
alternative model of an interrogation that returns an excep-
tion in case of failure.

4 Conformance assessment

In the course of a design process, abstract designs have
to be replaced by more concrete designs. An abstract design
prescribes what should be implemented, whereas a concrete
design prescribes how this abstract design should be imple-
mented. The notions of abstract design and concrete design
are relative, since a more concrete design can be considered
as an abstract design in a next design step.

For example, in Figure 1 the external specification of
some component can be considered an abstract design,
which prescribes what service should be provided by this
component. The internal specification of some component
as a composition of functional parts can be considered a
concrete design, which prescribes how the service is pro-
vided. The external and internal perspective can be applied

recursively to the functional parts, illustrating the relative
notion of abstract and concrete design. 

This section presents a technique to enforce the correct
replacement of an abstract behaviour by a concrete behav-
iour, called behaviour refinement. We focus on behaviour,
since it comprises most of the complexity of a design.

Behaviour refinement. The objective of behaviour
refinement is to replace an abstract behaviour by a more
concrete behaviour that conforms to this abstract behaviour.
Figure 8 depicts an example of behaviour refinement.
Behaviours B1 and B2 model an interrogation, such that B2
is a refinement of B1. Action prc models the processing of
the invocation, action tio models a time-out that happens
when the processing can not be finished in time. Action exc
represents the generation of an exception after a time-out
occurs. Both B1 and B2 are refinements of the original
model of an interrogation presented in Figure 5(ii); this is
explained later on. Attribute type definitions have been
omitted for brevity.

Actions of abstract behaviours are called abstract actions
and actions of concrete behaviours are called concrete
actions. We assume that the occurrence of each abstract
action corresponds to the occurrence of one or more con-
crete actions. This assumption makes it possible to compare
the abstract behaviour with the concrete behaviour, by com-
paring the abstract actions with their corresponding con-
crete actions. This comparison is needed in order to assess
whether the concrete behaviour conforms to the abstract
behaviour.

Concrete actions that correspond to abstract actions are
called reference actions, since they are considered as refer-
ence points in the concrete behaviour for assessing con-
formance. Concrete actions that are not reference actions
are called inserted actions, since they are inserted during
behaviour refinement. For example, in Figure 8 actions inv’
and ret’ are abstract actions and actions inv, tio, prc, exc and
ret are concrete actions. Actions inv and ret are reference
actions that correspond to abstract actions inv’ and ret’.
Actions tio, prc and exc are inserted actions. Abstract
actions are denoted by the action identifiers of their corre-
sponding reference actions appended with a prime.

Figure 6: Adding internal behaviour
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A conformance relation defines which concrete behav-
iours are valid refinements, or implementations, of the
abstract behaviour. This conformance relation should guar-
antee that what is prescribed in the abstract behaviour is pre-
served by the concrete behaviour. The following
requirements for conformance are identified:
1. preservation of action relations: the structure of relations

between abstract actions is preserved by the structure of
relations between their corresponding concrete actions;

2. preservation of attribute values: attribute values of ab-
stract actions are preserved by the attributes of their cor-
responding concrete actions;

3. preservation of attribute value relations: relations be-
tween attribute values of abstract actions are preserved
by the relations between the attributes of the correspond-
ing concrete actions.
For example, in Figure 8 the ordering relation between

abstract actions inv’ and ret’ is preserved by the conjunction
of the ordering relation between concrete actions inv and prc
and the ordering relation between concrete actions prc and
ret. The choice relation between abstract actions ret’ and exc’
is preserved by the choice relation between concrete actions
tio and prc. The information reference relation ιret’ = f(ιinv’)
between abstract actions inv’ and ret’ is preserved by the
conjunction of information reference relation ιprc = g(ιinv)
between concrete actions prc and inv and information refer-
ence relation ιret = g(ιprc) between concrete actions ret and
prc, assuming f = g⋅h.

Basic types of refinement. Two basic types of behaviour
refinement are distinguished:
• causality refinement, which consists of replacing causal-

ity relations between abstract actions by causality rela-
tions involving their corresponding concrete actions and
some inserted actions;

• action refinement, which consists of replacing an abstract
action by a concrete activity involving multiple concrete
actions and their causality relations.
Instances of behaviour refinement may consist of one of

these basic types of refinement or a combination of both.
The essential difference between causality refinement and
action refinement is the way attributes of abstract actions
are distributed over the attributes of concrete actions. This
difference is reflected in distinct specializations of the pres-
ervation of attribute values conformance requirement, one
for each basic type of behaviour refinement.

Causality refinement allows one to model the relations
between abstract actions in more detail through the intro-
duction of inserted actions. Inserted actions model addi-
tional activities in the concrete behaviour that were not
relevant during the definition of the abstract behaviour. An
essential characteristic of causality refinement is that the
attributes of an abstract action are preserved by the

attributes of a single concrete action. Therefore, each
abstract action corresponds to a single reference action.

Action refinement allows one to model an activity that is
represented by a single abstract action in more detail. The
activity is decomposed into multiple related sub-activities
that are represented by concrete actions and their causality
relations. An essential characteristic of action refinement is
that at least one of the attributes of the abstract action is dis-
tributed over the attributes of multiple concrete actions in
the activity.

Figure 9 depicts an example of action refinement and
causality refinement. Abstract action rsl’’ (result) can estab-
lish two possible information values: f(ιinv’’) and “exc”,
where “exc” represents the occurrence of an exception in
terms of data. This action is refined into a choice between
concrete (final) actions ret’ and exc’, such that ret’ estab-
lishes the information value f(ιinv’) and exc’ represents the
occurrence of an exception. The refinement of rsl’’ is an
example of action refinement, since the possible results of
rsl’’ are modelled as two different final actions.

The ordering relation between abstract actions ret’’ and
inv’’ is defined such that ret’’ may not occur in some behav-
iour executions after inv’’ has occurred. This uncertainty is
made explicit in the concrete behaviour by the occurrence of
inserted action exc’, since according to our causality rela-
tions semantics, either ret’ or exc’ must occur after inv’ has
occurred. Furthermore, only the ordering relation is refined,
since concrete action ret’ corresponds to abstract action ret’’,
characterizing a causality refinement.

Use of abstraction. An abstract behaviour can be
replaced by many alternative concrete behaviours. Depend-
ing on the choice of a concrete behaviour, different concrete
actions and their causality relations are added to the abstract
behaviour. Since this choice is determined by specific
design objectives, behaviour refinement can not be auto-
mated in its totality.

When abstracting from certain concrete actions and their
causality relations, the abstraction of this concrete behav-
iour is completely determined by the remaining concrete
actions and their causality relations. In these circumstances,
the abstraction of a concrete behaviour is unique. Rules can

Figure 9: Types of behaviour refinement
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be provided to calculate this abstraction. These rules can, in
principle, be automated.

The uniqueness of an abstraction allows one to assess the
conformance between an abstract behaviour and a concrete
behaviour, by comparing the abstraction of the concrete
behaviour with the original abstract behaviour. Therefore,
we distinguish the following subsequent design activities in
an instance of behaviour refinement:
1. delimitation of the abstract behaviour: we only consider

the refinement of behaviours that are influenced by a fi-
nite number of abstract actions. For example, in case of
recursive behaviours one should identify the finite be-
haviour parts that are (infinitely) repeated;

2. refinement of the abstract behaviour into a concrete be-
haviour: in this activity we determine how the abstract
behaviour is implemented by the concrete behaviour;

3. determination of the abstraction of the concrete behav-
iour: a method to perform this activity is outlined below;

4. comparison of the abstraction of the concrete behaviour
with the original abstract behaviour: both behaviours
should comply to a certain correctness relation, e.g., an
equivalence relation. If this is not the case, the concrete
behaviour is not considered a correct implementation of
the abstract behaviour. In this case the designer must re-
turn to design activity 2.

Abstraction method. The following steps define a
method to determine the abstraction of a concrete behav-
iour:
1. identify reference actions and inserted actions in the

concrete behaviour: particularly, identified reference ac-
tions have to be considered as: 
• (single) reference actions, which are obtained when

causality refinement has been applied; or
• groups of reference actions, which are formed by

grouping the final actions of each activity that is
obtained when action refinement has been applied;

2. abstract from inserted actions: a complete method has
been developed, consisting of concrete steps and rules
that have to be followed to abstract from a single inserted
action. This method only needs to consider the direct
causality context of an inserted action i, consisting of i it-
self and the actions to which i is directly related. The ab-
straction of multiple inserted actions can be performed
by consecutively abstracting from each single inserted
action in any order. For example, independent of the or-
der in which actions prc and tio in Figure 8 are abstracted
from, the same abstract behaviour is obtained;

3. replace each group of reference actions by an abstract
action: a complete method has been developed to ab-
stract from an activity that replaces an abstract action and
makes its attribute values available through the occur-
rence of one or more of its final actions. These final ac-

tions are the reference actions that correspond to the ab-
stract action. The method distinguishes between the cas-
es of a single final action, a conjunction of final actions,
a disjunction of final actions (e.g., see Figure 9), or a
combination of these. Rules are developed to obtain the
causality relation and attribute definitions of the abstract
action by integrating the causality conditions and at-
tribute definitions of the final actions.
We refer to [5] and [7] for an explanation of the abstrac-

tion methods mentioned above.

5 Example: shared white board

Specification. Figure 10 depicts a simplified service spec-
ification of a shared white board application. A draw opera-
tion (d’’) can be requested by one of the participants, which
is followed by either a rejection (r’’) indicated to this partic-
ipant or an update (u’’) of the white board indicated to all
participants. Action d’’ has two information (sub-)attributes
ι1d’’ : S and ι2d’’ : O, where data types S and O represent the
status of the shared white board and an operation to be per-
formed on this status, respectively. The information
attribute constraint ιr’’ = ι1d’’ of action r’’ represents that the
status remains unchanged in case of a rejection. The infor-
mation attribute constraint ιu’’ = ι2d’’(ι1d’’) of action u’’ repre-
sents that operation ι2d’’ is applied to the shared white board
status. 

A new draw action can only occur after action r’’ or
action u’’ has occurred. Recursion is expressed by drawing
a new instance of behaviour Swb’’. An entry point (symbol

) is used to link the new behaviour instance to the remain-
der of the behaviour, such that the causality condition for a
new instance of action d’’, called d’’+, is: u’’ ∨ r’’ → d’’+. Fur-
thermore, a parameter q : S is associated with the entry point
to pass the information value established in u’’ or r’’ to the
new instance of d’’. Parameter q passes the value ιu’’ in case
u’’ occurs, and passes the value ιr’’ in case r’’ occurs.

Design. Figure 11 depicts a decomposition of the shared
white board service into three parts:
• a client C, which requests server S to perform a draw

operation, which is followed either by a rejection or by a
notification that the operation is processed (interaction
n). After a notification, an update of the shared white

Figure 10: Requested service
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board status is retrieved from database D. A new draw
operation can be requested after a rejection or after an
update has occurred;

• a server S, which handles draw operations. A draw
request is followed either by a rejection to the originator
of the request or by the processing of the draw operation
(action p) and a notification to all participants that the
new shared white board status can be retrieved from
database D. Suppose that the designer inadvertently
allows action p and interaction n to be performed in par-
allel. When action p is finished, the new shared white
board status is stored into database D (interaction s). A
new draw request can be handled after interaction r or
after both interactions n and s have occurred;

• a database D, which repeatedly either stores a new shared
white board status or returns the currently stored status. 
The complete status of the shared white board is main-

tained in the clients, and is passed via each draw and update
operation. For the purpose of this example, the design only
considers a single client.

Verification. Figure 12 depicts the behaviour of the shared
white board design of Figure 11, called Swb, while abstract-
ing from the parts involved. The causality conditions of
actions d, r, n, u and s are derived from interactions d, r, n,
u and s, respectively, by calculating the conjunction of the
causality conditions of the interaction parts in Figure 11. For
example, the causality condition of a new instance of action
d is equal to the conjunction of condition (n ∧ s) ∨ r defined
in behaviour S and condition u ∨ r in behaviour C, which
renders condition (n ∧ s ∧ u) ∨ (n ∧ s ∧ r) ∨ (u ∧ r) ∨ r. This
condition can be simplified to (s ∧ u) ∨ r, since the occur-
rence of u implies the occurrence of n and the occurrence of
r conflicts with the occurrences of n, s and u. The interleav-
ing relation between actions s and u is defined by behaviour
D, which allows store and update operations to be per-
formed in arbitrary order. Due to this interleaving relation,

the information attribute of action u either refers via actions
n and d to the old white board status (value ι1d) in case u
occurs before s, or refers to the processed white board status
(value ιs = ιp = ι2d(ι1d)) in case s occurs before u.

Figure 13 depicts the abstraction of behaviour Swb,
called Swb’. Concrete actions d, u and r are the reference
actions corresponding to abstract actions d’, u’ and r’,
respectively. Actions p, n and s are inserted actions, which
can be abstracted from in any order. Observe that the
abstraction preserves the action relations and the informa-
tion value relations between the reference actions.

Behaviour Swb’ is not equivalent to the requested service
Swb’’ in Figure 10. Action u’ can establish information value
ι1d’, representing the loss of the preceding draw operation.
This loss is caused by the parallel execution of action p and
interaction n in server S (see Figure 11), allowing client C to
update its shared white board status before the new status is
stored. Consequently, concrete behaviour Swb does not con-
form to abstract behaviour Swb'', assuming behaviour
equivalence as correctness relation. 

This example shows that it is important to model the rela-
tionships between operations in order to analyse the behav-
iour of (compositions of) software components. Current
Interface Description Languages (IDLs) do not support this
requirement.

6 Abstracting from communication

Until now we have modelled operation invocations and
returns as atomic interactions. This section discusses this
modelling choice, by determining the conditions which
guarantee that this abstract representation of invocations

Figure 11: Design of shared white board
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and responses correctly models the communication support
offered by an ORB.

Figure 14 depicts the abstraction/refinement relationship
between the abstract model of an operation invocation used
so far, and a more concrete model in which the behaviour
responsible for supporting the communication between
components, in this case an ORB, is explicitly represented.
In Figure 14, ireq models the request to the ORB to deliver
an operation invocation, and iind models the actual delivery
of the invocation. Abstract action inv’ corresponds to con-
crete action iind, such that inv’ occurs if and only if iind
occurs.

Since the interaction inv’ between components C1’ and
C2’ in Figure 14 either occurs for both components or does
not occur at all, it is fair to say that after ireq happens iind has
to happen in the more concrete model. This implies that this
modelling choice is only accurate if the ORB supports reli-
able communication. Furthermore, the behaviour of C2
should be defined such that iind is not disabled after ireq hap-
pens (disabling would cause the interaction to happen only
at the C1 side, and consequently only at the C1’ side). 

Further research is necessary to precisely determine the
conditions that make this abstraction choice accurate. Since
our modelling language supports alternative modelling
choices, the reader can infer that whenever the conditions
mentioned above are not satisfied, the abstraction/refine-
ment relation on top of Figure 14 does not hold and the dis-
tribution aspect of an operation invocation has to be
explicitly modelled by two separate interactions.

7 Conclusions and discussion

The approach presented in the paper results from collab-
oration between two Dutch research projects: Amidst [1]
and Friends [4]. A common goal of these projects is to
develop a middleware platform supporting (on-line) crea-
tion of services by composing (assembling) software com-
ponents. The Friends project builds on an existing
deployment and usage platform, which is based on the
TINA architecture and on the DSC component model [2],
[9]. The Amidst project develops component middleware

solutions that should support flexible QoS provisioning and
are largely based on OMG standards. The model-based
approach presented in this paper is general, in the sense that
it is independent of the middleware platform and component
model being used.

The model-based part of service creation in Friends and
Amidst will be supported by Testbed Studio. Current
research focuses on improving and extending support for
the modelling and analysis of compositions of software
components. A possible extension is the conformance
assessment technique presented here. This technique has
been completely defined in [5], including its formal seman-
tics. In order to demonstrate its practical use, future work
will concentrate on the elaboration of case studies and the
development of tools to support the technique. 
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