
SSH Compromise Detection
using NetFlow/IPFIX

Rick Hofstede, Luuk Hendriks

–Ponemon 2014 SSH Security Vulnerability Report

“51 percent of respondents admitted that their
organizations have already been impacted by an

SSH key-related compromise in the last 24 months.”

2

SSH Compromise Detection
using NetFlow/IPFIX

Rick Hofstede, Luuk Hendriks

SSH attacks

4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

pp
f

Time (s)

(b)

Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

SSH attacks

4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

Start

Brute-force CompromiseScan

End

SSH attacks

• SSH intrusion detection on end hosts is hardly
scalable

• Network-based approaches exist, but only inform
security operators about the presence of attacks

5

We perform compromise detection.

We perform compromise detection.

All flow-based.

SSH attacks

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

pp
f

Time (s)

(b)

Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

SSH attacks

8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

pp
f

Time (s)

(b)

Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

A bit of history…

9

A bit of history…

• SSHCure 1.0 (June ’12):

• Purely deviation-based compromise detection

• SSHCure 2.0 (May ’13):

• Notifications, database maintenance,
performance profiling, …

9

A bit of history…

• SSHCure 1.0 (June ’12):

• Purely deviation-based compromise detection

• SSHCure 2.0 (May ’13):

• Notifications, database maintenance,
performance profiling, …

9

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

pp
f

Time (s)

(b)

Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

A bit of history…

• SSHCure 1.0 (June ’12):

• Purely deviation-based compromise detection

• SSHCure 2.0 (May ’13):

• Notifications, database maintenance,
performance profiling, …

9

Recent/upcoming releases

10

Recent/upcoming releases

• SSHCure 2.4 (July ’14):

• New compromise detection algorithm (CCR
paper release), based on ‘action upon
compromise’

• SSHCure 3.0 (January ’14):

• New frontend, ingress vs. egress attacks

10

Recent/upcoming releases

• SSHCure 2.4 (July ’14):

• New compromise detection algorithm (CCR
paper release), based on ‘action upon
compromise’

• SSHCure 3.0 (January ’14):

• New frontend, ingress vs. egress attacks

10

Time

Flow data chunk

Target 1

Target n

(a) Maintain connection, continue
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(b) Maintain connection, continue
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(c) Instant logout, continue dictionary

Time

Flow data chunk

Target 1

Target n

(d) Maintain connection, abort
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(e) Maintain connection, abort
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(f) Instant logout, abort dictionary

Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014

SSH Compromise Detection using NetFlow/IPFIX.
In: ACM SIGCOMM Computer Communication Review, October 2014

Recent/upcoming releases

• SSHCure 2.4 (July ’14):

• New compromise detection algorithm (CCR
paper release), based on ‘action upon
compromise’

• SSHCure 3.0 (January ’14):

• New frontend, ingress vs. egress attacks

10

Time

Flow data chunk

Target 1

Target n

(a) Maintain connection, continue
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(b) Maintain connection, continue
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(c) Instant logout, continue dictionary

Time

Flow data chunk

Target 1

Target n

(d) Maintain connection, abort
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(e) Maintain connection, abort
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(f) Instant logout, abort dictionary

Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014

Time

Flow data chunk

Target 1

Target n

(a) Maintain connection, continue
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(b) Maintain connection, continue
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(c) Instant logout, continue dictionary

Time

Flow data chunk

Target 1

Target n

(d) Maintain connection, abort
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(e) Maintain connection, abort
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(f) Instant logout, abort dictionary

Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014

SSH Compromise Detection using NetFlow/IPFIX.
In: ACM SIGCOMM Computer Communication Review, October 2014

Recent/upcoming releases

• SSHCure 2.4 (July ’14):

• New compromise detection algorithm (CCR
paper release), based on ‘action upon
compromise’

• SSHCure 3.0 (January ’14):

• New frontend, ingress vs. egress attacks

10

Time

Flow data chunk

Target 1

Target n

(a) Maintain connection, continue
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(b) Maintain connection, continue
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(c) Instant logout, continue dictionary

Time

Flow data chunk

Target 1

Target n

(d) Maintain connection, abort
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(e) Maintain connection, abort
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(f) Instant logout, abort dictionary

Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014

SSH Compromise Detection using NetFlow/IPFIX.
In: ACM SIGCOMM Computer Communication Review, October 2014

Recent/upcoming releases

• SSHCure 2.4 (July ’14):

• New compromise detection algorithm (CCR
paper release), based on ‘action upon
compromise’

• SSHCure 3.0 (January ’14):

• New frontend, ingress vs. egress attacks

10

11

SSHCure 
Validation approach

• Ground truth: sshd logs from 93 honeypots, servers
and workstations, divided over two datasets:

• Dataset 1 — easy targets

• Dataset 2 — more difficult targets  
 
 

12

Honeypots Servers Workstations Attacks

Dataset 1 13 0 0 636

Dataset 2 0 76 4 10353

SSHCure 
Validation results

• Evaluation metrics:

• TP / FP — correct / false identification of incident

• TN / FN — correct / false identification of non-incident

• Detection accuracy close to 100%

13

TPR TNR FPR FNR Acc

Dataset 1 0,692 0,921 0,079 0,308 0,839

Dataset 2 — 0,997 0,003 — 0,997

SSHCure 
Deployment

• SSHCure is open-source and actively developed

• Download counter SourceForge (Dec. ’14): 3k

• Recently moved to GitHub (summer ’14)

• Tested in several nation-wide backbone networks

• Many successful deployments already:

14

• Web hosting
companies

• Campus networks

• National Research and Education
Networks (NRENs)

• Governmental CSIRTs/CERTs

Lessons learned

15

Lessons learned

16

Lessons learned
• Ease-of-use is key

16

Lessons learned
• Ease-of-use is key

• Many potential SSHCure users (e.g., CSIRTs) are less-
skilled than we are

16

Lessons learned
• Ease-of-use is key

• Many potential SSHCure users (e.g., CSIRTs) are less-
skilled than we are

• Installation scripts are important

16

Lessons learned
• Ease-of-use is key

• Many potential SSHCure users (e.g., CSIRTs) are less-
skilled than we are

• Installation scripts are important

• Use of NfSen:

16

Lessons learned
• Ease-of-use is key

• Many potential SSHCure users (e.g., CSIRTs) are less-
skilled than we are

• Installation scripts are important

• Use of NfSen:

• Widely used in (European) NREN community

16

Lessons learned
• Ease-of-use is key

• Many potential SSHCure users (e.g., CSIRTs) are less-
skilled than we are

• Installation scripts are important

• Use of NfSen:

• Widely used in (European) NREN community

• Experience with SURFmap [1]

16
[1] http://surfmap.sf.net/

http://surfmap.sf.net/

Lessons learned

17

Lessons learned

• Ingress vs. egress attacks

17

Lessons learned

• Ingress vs. egress attacks

• Initial focus mainly on ingress attacks

17

Lessons learned

• Ingress vs. egress attacks

• Initial focus mainly on ingress attacks

• CSIRTs are becoming more responsible towards
the Internet: Keep it clean!

17

Lessons learned

18

Lessons learned

• Integration into workflow is important

18

Lessons learned

• Integration into workflow is important

• Yet another tool is hard to integrate into CSIRT
workflow

18

Lessons learned

• Integration into workflow is important

• Yet another tool is hard to integrate into CSIRT
workflow

• Integration with existing systems is necessary:
IODEF, X-ARF, QuarantaineNet, …

18

Lessons learned

19

Lessons learned
• Advertizing is important

19

Lessons learned
• Advertizing is important

• People don’t spot your cool project by
themselves

19

Lessons learned
• Advertizing is important

• People don’t spot your cool project by
themselves

• Visit meetings & conferences (FloCon,  
TERENA TNC, RIPE, etc.)

19

Lessons learned
• Advertizing is important

• People don’t spot your cool project by
themselves

• Visit meetings & conferences (FloCon,
TERENA TNC, RIPE, etc.)

• GitHub vs. SourceForge

19

Lessons learned

20

Lessons learned

• 1:1 sampling is hardly used by non-academia

20

Lessons learned

• 1:1 sampling is hardly used by non-academia

• Problem for our algorithms

20

Lessons learned

• 1:1 sampling is hardly used by non-academia

• Problem for our algorithms

• Admins are ‘afraid’ of increasing sampling rates

20

Lessons learned

21

Lessons learned
• Input data quality is hard to predict

21

Lessons learned
• Input data quality is hard to predict

• Algorithms should be as resilient to various data
sources as possible

21

Lessons learned
• Input data quality is hard to predict

• Algorithms should be as resilient to various data
sources as possible

• Examples:

21

Lessons learned
• Input data quality is hard to predict

• Algorithms should be as resilient to various data
sources as possible

• Examples:

• Availability of TCP flags

21

Lessons learned
• Input data quality is hard to predict

• Algorithms should be as resilient to various data
sources as possible

• Examples:

• Availability of TCP flags

• Assumptions on flow cache entry expiration

21

Thanks!

22

Questions?

23

https://nl.linkedin.com/in/rhofstede/

www http://rickhofstede.nl

@ r.j.hofstede@utwente.nl,
rick.hofstede@redsocks.nl

http://nl.linkedin.com/in/luukhendriks

www https://luukhendriks.eu

@ luuk.hendriks@utwente.nl

https://github.com/sshcure/sshcure

