
Interference Control by Best-Effort Process Duty-Cycling in Chip Multi-Processor
Systems for Real-Time Medical Image Processing

Mark Westmijze, Marco J. G. Bekooij and Gerard J. M. Smit
University of Twente, Department of EEMCS

Enschede, The Netherlands
{m.westmijze, m.j.g.bekooij, g.j.m.smit}@utwente.nl

Abstract—Systems with chip multi-processors are currently
used for several applications that have real-time requirements.
In chip multi-processor architectures, many hardware resources
such as parts of the cache hierarchy are shared between cores and
by using such resources, applications can significantly interfere
with each other. In previous work, we showed that a single
X-ray imaging streaming applications can be executed with
low jitter on such systems. However, it was assumed that
only one application would be running on the system, which
prevents system integration where multiple real-time and best-
effort applications are executing on a single chip multi-processor.
In this paper, we address the limited bandwidth in the cache
hierarchy, which can cause threads to interfere with each other
significantly. We propose a technique that implements cache
bandwidth reservation in software, by dynamically duty-cycling
best-effort applications, based on their cache bandwidth usages
using processor performance counters in order to control the
influence of best-effort applications on real-time applications.
With this technique we can control the latency increase of real-
time applications that is caused by best-effort application in order
to satisfy real-time requirements with a minimal reduction in
best-effort performance. The results of the experiments with real-
life applications indicate that we can control the increase of the
latency to such an extent that we can almost completely eliminate
the influence of bandwidth sharing in the cache at the cost of
best-effort performance.

Keywords-cache; bandwidth; real-time; control; jitter

I. INTRODUCTION

Commercial-off-the-shelf (COTS) systems with general pur-
pose processors (GPPs) have become so powerful that they
can be used for applications that could previously only be
performed on hardware such as digital signal processors, field-
programmable gate arrays (FPGAs) or by application specific
integrated circuits (ASICs). However, the techniques that are
employed by modern GPPs to reach their performance tend to
neglect the worst case performance in order to improve the
best-case and average-case performance. This seemingly does
not make them a favorable target for real-time applications. A
lot of work in the real-time community has been focused on
the definition of architectures on which real-time applications
can run predictably and modeling techniques that determine the
worst case behavior of real-time applications. Applying these
modeling techniques on high performance GPPs often results
in loose throughput and latency bounds as a result of the GPPs

and chip multi-processor (CMP) architecture. This leads to over-

provisioned systems, which cannot be economically justified
for most soft real-time applications.

We studied a streaming X-ray application on a CMP archi-
tecture in a previous paper [1]. In this paper, we provided
evidence that it is feasible to run streaming applications in
such a way that drastically reduces the occurrences of worst
case behavior. The jitter | variation of latency | of the executed
application is sufficiently small to satisfy the soft real-time
requirements of the X-ray application. However, one important
assumption was that the system was only used for the X-ray
application. A consequence is that a separate system is required
for additional applications while the system that runs the X-ray
application has spare processing power most of the time. We
therefore study whether we can relax that assumption, and run
some best-effort application along with our real-time streaming
application.

The problem that must be addressed is that threads that
execute concurrently on different cores on a CMP architecture
can degrade each others performance significantly. There are
several components in a CMP that allow cores to degrade
each others performance such as the cache hierarchy, memory
controller and central processing unit (CPU) interconnect. In this
paper, we focus on space contention and bandwidth congestion
within the cache hierarchy, study how this enables applications
to degrade each others performance and propose and evaluate
a technique to control the degradation.

The paper is structured as follows. First, we introduce
the case study | an interventional X-ray imaging system |
in Section II and in Section III we briefly give an overview of
the CMP architecture that we use. Related work is described in
Section IV. This allows us to give a detailed explanation of
why we study the space contention and bandwidth congestion
in CMP architectures in Section VI and Section V. Section VII
explains how we implemented a technique that reduces the
bandwidth congestion and thereby controls the interference that
is caused by the best-effort application. The experiments that
we used for the evaluation can be found in Section VIII and the
results of those experiments in Section IX. A few improvements
of the control technique are described in Section X as future
work. We summarize the conclusions in Section XI. Finally,
we give our acknowledgments in Section XII.

II. X-RAY SYSTEM

In the X-ray system there are real-time and best-effort
applications that currently run on multiple COTS systems. The
real-time applications are streaming applications where images
are typically processed at frame rates between 15 and 60 frames
per second. For precise hand-eye coordination and to prevent
fatigue, the processed X-ray images should preferably have a
low latency (e.g., 120 ms) and the jitter on the latency should be
low (e.g., âL’d’ 16 ms). These requirements enable the physician
to smoothly control his equipment. Practical experience has
shown that the occasional deviations from the requirements
are small enough that they do not affect the patient’s safety.
Due to the nature of these requirements we can use modeling
techniques and architectures that work most of time instead
of strictly all the time. Examples of best-effort applications
are the graphical user interface (GUI), the storage of processed
images and the retrieval and analysis of stored images.

Our aim is to run the real-time and best-effort applications on
a single system while controlling the progress of the best-effort
application such that real-time requirements are satisfied and
the performance of the best-effort application is maximized.

III. ARCHITECTURE

As mentioned in Section II, we consider a CMP architecture.
More specifically, we focus on the Intel Nehalem architecture.
In Fig. 1 a schematical overview is given for such a CMP in a
dual socket system. Each chip consists of a number of cores
that all have simultaneous multi-threading (SMT) capability. An
inclusive cache hierarchy with three levels is used where the
first and second level are local for a physical core and the
third level is shared between all cores. Furthermore, a memory
controller and a high speed point-to-point interface (i.e. Quick
Path Interconnect (QPI)) are integrated into the chip, which
improves scalability in a multi-socket system.

In this paper, we only examine the case where threads of
multiple applications are mapped onto a disjoint subsets of
physical cores (e.g., the real-time threads on core 0 and 1 and
a best-effort application on core 2 and 3 with SMT disabled).
The first hardware component for which the threads have to
contend is the bandwidth to and the space in the third level
of the cache. Other components in the system may also be
shared, but in this paper we focus on how the cache influences
the performance of multiple concurrently executing threads.

IV. RELATED WORK

In many papers cache partitioning techniques have been
proposed to improve the performance and predictability of the
cache. Cache partitioning splits the cache in disjoint sets that
do not share cache lines in the cache hierarchy. This prevents
cache thrashing between threads. Stone et al. presented and
used this technique in order to minimize the miss rate of each
application [2]. Chiou et al. presented a technique for cache
partitioning based on columnization [3]. Iyer studied cache

Socket 0 Socket 1

Memory North
bridge

North
bridge Memory

Level 3 cache Level 3 cache

Level 2 Level 2 Level 2 Level 2

Level 1 Level 1 Level 1 Level 1

Core 0 Core n Core 0 Core n

Figure 1. System architecture

partitioning in order to improve the Quality of Service (QoS)
[4]. Kannan et al. studied how dynamic cache partitioning can
be added to an operating system in order to improve the QoS for
one or more applications and propose a methodology that can
dynamically alter the cache partitioning at run-time [5]. Kim et
al. also studied cache partitioning in a CMP in [6] and optimize
the cache partitioning for fairness (i.e. an application with a
small amount of cache accesses is penalized less compared to
an application with a lot of cache accesses).

Cache partitioning is a form of performance isolation
that at system level is also studied. Verghese et al. studied
the performance isolation in CMP and focus on isolation in
components such as the memory controller and disk access [7].
Nesbit et al. introduced Virtual Private Machines (VPMs) in
[8], an abstraction supported by hardware modifications in the
architecture of a CMP to enable applications to reserve a certain
amount of hardware resources. In the cache hierarchy space and
bandwidth can be reserved in order to reduce the interference
between applications. In [9], Hansson et al. introduced an
embedded architecture that also implements performance
isolation (on clock cycle level), hardware arbitration, and
hard real-time scheduling techniques in order to present a
virtual platform that provides complete isolation for different
applications.

However, to the best of our knowledge there is no prior work
that addresses the interference that is caused by bandwidth
sharing in COTS CMP architectures.

V. MOTIVATION

In previous work [1], we have shown that under certain
conditions COTS can be used for real-time image processing
applications. The conditions were:

• Soft real-time Because of the complexity of modern high-
performance CMP architectures (e.g., Intel Nehalem) it
can be hard or even impossible to derive tight worst case

execution times (WCETs). Therefore we do not formally
derive the WCET, but we validate that the soft real-time
constraints are met by measuring the actual jitter of the
system.

• Static streaming The application that we examine exe-
cutes static algorithms. Additionally, the application is
streaming, which means that the same algorithms are
executed repeatedly on new data. This allows us to map
and order the algorithms and allocate the used memory
of the application in such a way that less cache thrashing
occurs, which is one of the main causes of jitter in CMP

architectures.
• Single application On a system with only one application

there is no contention on hardware resources with other
applications.

In this paper, we want to relax the third condition in order
to facilitate the execution of additional best-effort applications
during the execution of the real-time applications. When two
applications share hardware resources | which is the case in
COTS | they can influence the execution time of each other. As
mentioned before we focus on the allocation and bandwidth
sharing in the cache and how that influences the interference
between a real-time streaming application and other best-effort
applications.

VI. CACHE PARTITIONING

In Section IV we have mentioned that many authors have
studied the partitioning of the cache as a means of performance
isolation. With cache partitioning, threads do not longer evict
cache lines from other threads (cache thrashing), ensuring that
data remains in the cache and does not have to be retrieved
from main memory. However, this technique only guarantees
that other threads do not evict cache lines owned by a thread,
not that the latency to retrieve that data is the same, because
bandwidth to the third level of the cache is shared. Hence
cache partitioning can be used to reduce some of the latency
that is introduced by hardware sharing. However, it will not
completely remove it. The contention can only be removed
when the bandwidth to the shared cache is controlled. Which
means there are two orthogonal problems: memory allocation
in the cache (solved by partitioning and not studied in this

paper) and bandwidth sharing to the shared level in the cache
(studied in this paper).

Molka et al. [10] performed detailed benchmarking on the
Nehalem architecture in order to determine the bandwidths
between the core and different levels of the cache hierarchy. We
extended those benchmarks so that we can determine how much
bandwidth a single application can consume on the connection
between the second and the shared third level of the cache.
The most important observation from those experiments was
that a single core is able to consume a significant portion of
the cache bandwidth when it is writing (e.g., 15 GB/s write
bandwidth for a single core that only writes where the maximal
aggregated write bandwidth is 21.9 GB/s when three cores are
writing at 7.3 GB/s). Application that only performs reads will
only claim up to 26% of the available bandwidth on a Quad
core (19.9 GB/s read bandwidth for a single core where the
maximal aggregated read bandwidth is 78.8 GB/s).

With the following experiment we want to demonstrate
that this is not the results of cache thrashing, but due to
the bandwidth congestion. We recreated the experiments that
were performed by Molka et al [10] with different memory
configuration, namely:

A The accessed data does not fit in the cache and
the cache is not partitioned. The main memory will
therefore be accessed and cores will thrash the cache.

B The accessed data does not fit in the cache and
the cache is partitioned. The main memory will be
accessed, but cores will only evict their own cache
lines.

C The accessed data of the combined cores does fit
in the cache and the cache is not partitioned. The
main memory should only be accessed when cache
thrashing occurs.

D The accessed data does fit in the allocated cache
partition. Main memory should not be accessed and
cache thrashing does not occur between the cores.

E Only the accessed data of the measured cores does
fit into its allocated cache partition and the data of
the other cores does not fit into the cache and they
access data in one combined cache partition.

Furthermore, we run these five configuration in three different
scenarios. In the three scenarios we either perform only data

TABLE I
PARTITIONING EFFECTS IN GB/S | A) DOES NOT FIT IN CACHE, NOT PARTITIONED. B) DOES NOT FIT IN CACHE, PARTITIONED. C) FITS IN CACHE, NOT

PARTITIONED. D) FITS IN CACHE, PARTITIONED. E) ONLY MEASURED THREAD FITS IN CACHE, PARTITIONED

Bandwidth (GB/s)

Read Write Mixed read (50%) and write (50%)

Cores A B C D E A B C D E A B C D E

1 11.5 11.5 19.9 19.9 19.8 6.3 6.3 15.0 15.0 15.1 7.1 7.1 18.2 18.2 17.5
2 6.9 7.9 19.8 19.8 16.0 3.1 3.9 10.5 10.6 8.6 4.8 4.9 16.4 16.5 12.8
3 7.0 5.6 19.7 19.8 10.4 2.7 2.5 7.3 7.3 5.1 3.3 3.3 11.5 11.5 7.4
4 4.8 4.4 17.2 19.7 8.0 2.6 1.9 5.4 5.4 4.2 3.7 2.6 8.7 8.8 5.3

read, data writes or a mix of data reads and writes. The results of
this experiment can be found in Table I. From these experiments
we make the following observations:

• When all the data fits in the cache and the cores are
only reading (configuration C and D in the read scenario,
i.e., columns 3 and 4) the read bandwidth per core is
almost constant, regardless of the number of cores that
are running. Only when all the cores are reading and
the cache is unpartitioned we see a slightly lower read
bandwidth (i.e., 17.2 GB/s for four partitioned cores versus
19.8 GB/s on average for the other cases).

• When the data does not fit in the cache (configuration
A and B in all scenarios, i.e., columns 1, 2, 6, 7, 11
and 12) the read and write bandwidths are significantly
degraded when more cores are running. This is caused by
the limited bandwidth to main memory.

• When the data fits in the cache and the cores are writing
(configuration C and D in the write scenario, i.e., columns
8 and 9) the aggregated bandwidth of the system is
maximal 21.9 GB/s (7.3 GB/s per core on 3 cores) while a
single thread can consume 15 GB/s essentially consuming
68% of the available write bandwidth.

Therefore we conclude that most performance degradation
can be caused by the limited bandwidth, and in particular by the
limited write bandwidth. Furthermore, cache partitioning does
not necessarily reduce the interference, it may even degrade
the performance in the situation where the performance of a
memory intensive application is degraded more by the reduced
cache space than by the cache thrashing of other applications.

VII. CACHE BANDWIDTH

In order to reduce the interference of the best-effort appli-
cations on the real-time applications to an acceptable level,
we have to be able to determine when this occurs. We
first determine current bandwidth usage, and thereafter use
this information to reduce the bandwidth of the best-effort
application.

A. Bandwidth usage estimation

The system has to detect when a core uses more bandwidth
than allocated. To measure this we selected two performance
counters in the Nehalem architecture:

• LEVEL_2_TRANSACTIONS.LOAD: Each load transaction
is counted. However, read transaction take less bandwidth
than write bandwidth.

• LEVEL_2_LINES_OUT.ANY: Counts the number of lines
that are written back to the third level of the cache.

The LEVEL_2_TRANSACTIONS.LOAD performance events
could accurately estimate the read bandwidths as found in
Table I. The LEVEL_2_LINES_OUT.ANY performance can be
used to determine the total (read + write) bandwidth. We could
not precisely estimating the write bandwidth in all scenarios
with only one performance counter, but were able to roughly

derive this value based on the total bandwidth and the read
bandwidth. These counters can be used during the execution
of the best-effort application to determine the currently used
bandwidth and during design time to determine the worst case
bandwidth usage of real-time and best-effort applications.

B. Bandwidth arbitration

There is no hardware mechanism that can allocate bandwidth
within the cache hierarchy of the Nehalem architecture to
specific cores. We therefore implemented a mechanism in
software that can be used to achieve the same effect, but on a
coarser time scale. Our mechanism to reduce the bandwidth on
a coarser time scale is to repeatedly suspend the applications
for a certain time on a core that uses more bandwidth than
allocated, which we will now refer to as duty-cycling. This
mechanism results in a much lower (average) bandwidth and
reduced performance for the applications on the core that is
temporarily suspended. With this technique it is not possible to
completely remove the interference because the duty-cycling
of cores manages the bandwidth on a coarse level and only
reacts after a best-effort application has consumed too much
bandwidth.

C. Duty-cycling

When the estimated read or write bandwidth of a core that
is running best-effort applications reaches a certain threshold
we assume that this core is degrading the performance of the
real-time application and that the core that runs that offending
best-effort application must be duty-cycled. We implemented
this by running a thread, with real-time scheduling priorities,
at a higher priority than the best-effort applications in order
to temporarily suspend any best-effort application that might
consume too much bandwidth. A Linux kernel with real-time
patches applied allowed us to precisely sample the performance
counters at regular intervals (e.g., 100 µs) and duty-cycle the
best-effort applications accordingly.

D. Threshold and suspension time

The threshold for the read and write bandwidths depends
on three things: available bandwidth of the specific processor,
consumed bandwidth of the real-time applications and timing
constraints of the real-time application. The available bandwidth
of the processor in combination with the consumed bandwidths
of the real-time applications determine the available bandwidth
for the best-effort applications. The timing constraints (e.g.,
latency) of the real-time application in combination with the un-
obstructed performance of the real-time application determine
how much performance degradation (e.g., latency increase)
the real-time application can handle before a timing constraint
is violated. The timing constraints and the performance of
the real-time application therefore determine how long a best-
effort application should be suspended in relation to the sample
interval between the measurements of the performance counters.

VIII. EXPERIMENTS

In this section we describe the experiments that we performed
to evaluate the proposed technique. First we describe the system
that we used for the experiments and then we introduce the
different experiments.

A. Experimental setup

We used a Linux kernel with real-time patches applied.
For each core that would be monitored and duty-cycled, a
thread with real-time priorities was instantiated and mapped
to that core in order to periodically sample the performance
counters. When a derived bandwidth crossed a certain threshold
the thread would suspend the core for a specified amount of
time. Furthermore, the threads of the real-time and best-effort
applications were allocated to disjoint sets of cores.

In the experiments we could influence the following param-
eters: the type of real-time application, type and number of
applications of which the best-effort performance should be
optimized, sampling interval, bandwidth threshold, suspension
time. The experiments were categorized in three classes.

1) Synthetic Bandwidth Experiments: In our first set of
experiments we ran the same program that we used to determine
the bandwidth between the level 2 and level 3 of the cache.
However, now we applied our duty-cycling technique on cores
2 through 4 and measured the bandwidth on core 1. The
sampling interval was 100 µs and the suspension time 900
µs. The thresholds for duty-cycling were set at 25% of the
maximal bandwidth. The results of this experiments can be
found in Table II and relative to Table I in Table III.

2) Optimized Real-Time Streaming Experiments: In the
second set of experiments we ran a static streaming applications
on the first and second core of the processor and ran a set
of best-effort applications on the third and fourth core. The
X-ray application was generated and compiled with the tooling
as presented in [1] with the techniques that reduces jitter
on CMP when executed as a single application. In this case
the interference memory allocator and the ordering thread
scheduling heuristic were used. With the performance counters
we estimated the read and write bandwidths of the real-
time application to be between 4 and 9 GB/s, which implies
that there is enough read bandwidth left, but that the write
bandwidth is almost saturated. The threshold for duty-cycling
were set at 10%. For the sampling interval and suspension time
two sets of parameters were used: 500 µs and 500 µs; and 100
µs and 900 µs for the sampling interval and suspension time
respectively. During the experiment the latency of real-time
stream processing were measured in order to determine the
interference between the applications.

The applications that were used as best-effort applications:

• X-rayi: The same application that is running as real-time
application, but now as background task. Generated using
the interference (optimized) memory allocator. Without
cache thrashing most memory accesses would hit the cache

and memory bandwidth between the cache and memory
is low in comparison to the bandwidth between level 2
and level 3 of the cache.

• X-rays: The same application that is running as real-time
application, but now as background task. Generated using
the simple memory allocator, which does not optimize
memory accesses and the cache hit ratio is much lower in
comparison with the X-rayi application. The bandwidth
between the cache and main memory is therefore also
much higher.

• Syn ‘C’: An application that reads and writes to the third
level of the cache as fast as possible.

• gcc: The gcc compiler while compiling an application.
• ffmpeg: A video transcoder while transcoding a video.
Table IV summarizes the results from this experiment. In

the table a row is shown for each set of best-effort applications
that were used in the experiment. The first two columns show
which best-effort application are run on cores 3 and 4. Each set
of best-effort application is run in four different configurations,
namely: baseline where only the real-time application is run on
cores 1 and 2; congested where the best-effort applications are
executed without our proposed duty-cycle technique; and the
two duty-cycled configuration where the duty-cycle technique
is applied with two sets of parameters as explained before.

3) Unoptimized Real-Time Streaming Experiments: In this
third set of experiments we reran the same set of applications
as in the second set of experiments but we now ran our
streaming application with another memory allocator that does
not optimize level 3 cache accesses (i.e. the simple memory
heuristic from [1]) and therefore has more accesses to the third
level of the cache and to main memory. The results for this
set of experiments can be found in Table V.

IX. RESULTS

In Table II the results of the first set of experiments are shown.
The results in this table clearly show that the maximal reachable
bandwidths for the real-time thread is much higher with the
duty-cycling technique enabled then without the technique (see
Table I. For example, the bandwidth of configuration E under
the write scenario without duty-cycling (i.e., column 10 in
Table I) drops from 15.1 GB/s when only one core is writing
to 4.2 GB/s when all the cores are writing. When the cores 2
through 4 are duty-cycled and all the cores are writing (i.e.,
the last cell in column 10 in Table II) the bandwidth only
drops to 14.0 GB/s. In this case the degradation reduces 89.9%
from 72.1% to 7.2%. Table III summarizes the performance
degradation reduction between Table I and Table II.

The second set of experiments were used to estimate the
benefits of duty-cycling in a realistic setup. The results for this
set of experiments can be found in Table IV.

Although the X-rays application does not consume the most
bandwidth in the cache hierarchy it degrades (increases) the
latency of the real-time the most (i.e., the latency increases from
5867 µs to 13873 µs). The main reason that this application

TABLE II
PARTITIONING EFFECTS IN GB/S WHILE DUTY-CYCLED | A) DOES NOT FIT IN CACHE, NOT PARTITIONED. B) DOES NOT FIT IN CACHE, PARTITIONED. C)

FITS IN CACHE, NOT PARTITIONED. D) FITS IN CACHE, PARTITIONED. E) ONLY MEASURED THREAD FITS IN CACHE, PARTITIONED

Bandwidth (GB/s)

Read Write Read (50%) / Write (50%)

Cores A B C D E A B C D E A B C D E

1 11.4 11.5 19.9 19.9 19.8 6.3 6.4 15.0 15.0 15.1 7.3 7.3 18.2 18.2 17.6
2 11.1 11.2 19.9 19.9 19.5 6.1 6.1 14.6 15.0 14.5 7.0 7.1 18.0 18.0 17.0
3 11.0 10.8 19.9 19.9 19.1 6.0 6.0 14.2 14.2 14.1 7.0 6.8 17.7 17.6 16.6
4 10.8 10.9 19.9 19.7 18.7 5.7 5.8 14.1 14.0 14.0 6.9 6.7 17.6 17.2 16.1

TABLE III
PERFORMANCE DEGRADATION REDUCTION (%) | A) DOES NOT FIT IN CACHE, NOT PARTITIONED. B) DOES NOT FIT IN CACHE, PARTITIONED. C) FITS IN

CACHE, NOT PARTITIONED. D) FITS IN CACHE, PARTITIONED. E) ONLY MEASURED THREAD FITS IN CACHE, PARTITIONED

Bandwidth (GB/s)

Read Write Read (50%) / Write (50%)

Cores A B C D E A B C D E A B C D E

2 91.3 91.7 100.0 100.0 92.1 93.8 91.7 91.1 100.0 90.8 95.7 100.0 88.9 88.2 89.4
3 88.9 88.1 100.0 100.0 92.6 91.7 92.1 89.6 89.6 90.0 97.4 92.1 92.5 91.0 91.1
4 89.6 91.5 100.0 0.0 90.7 83.8 88.6 90.6 89.6 89.9 94.1 91.1 93.7 89.4 88.5

degrades the latency the most because it is the only tested
application in our benchmark set that also uses a lot of cache
space and therefore introduces more cache thrashing then the
other application. Nevertheless, the duty-cycling technique also
decreases the latency degradation for this application.

The X-rayi and Syn ‘C’ application use a significantly
smaller amount of the cache space and therefore inflict less
cache line evictions to the real-time application, but use much
more bandwidth between the level 2 and level 3 of the cache.
Also for these cases (i.e., row 1 and 3) we see a significant
degradation of the latency (i.e., to 9283 µs and 9219 µs for
the two applications respectively). In both cases the latency
degradation is reduced by the duty-cycling technique.

Gcc and ffmpeg (i.e. row 4 and 5) both exhibit much lower
bandwidth usage to the third level of the cache and therefore
do not degrade the latency to the same extend as the other
cases.

Both sets of parameters (500/500 and 100/900 for the
sampling interval and suspension time) reduced the degradation
of the latency of the real-time application. The 100/900 param-
eters reduced the latency degradation more than the 500/500
parameters, but also results in less best-effort performance.

In the last set of experiments we see that the latency of the
interfered real-time application is higher than in the second set,
this is due to the fact that the unoptimized X-ray application
consumes more bandwidth to the third level of the cache and
to main memory is therefore more susceptible to interference.
However, relative to the baseline latency of the real-time
application the increase is slightly smaller. Furthermore, we
observe that also in this case the latency increase could be
controlled by the duty-cycling technique.

X. FUTURE WORK

The evaluated duty-cycling technique uses periodic sampling
in order to estimate bandwidth usage. Furthermore, it currently
uses a simple control mechanism in order to reduce bandwidth
congestion. Two simple improvements that can decrease
overhead and improve best-effort performance can use so-called
event based bandwidth estimation and proportional suspend
times.

The event based bandwidth estimation can be implemented
by allowing the performance counters to make an interrupt
request when a certain threshold is exceeded. This reduces the
amount of times that the bandwidth is estimated in applications
with low bandwidth usage.

The second improvement could be proportional suspend
times instead of fixed suspend times. The amount of times
the best-effort application has exceeded bandwidth usage and
by how much could be used to determine the suspend time.
This allows the duty-cycling technique finer control over when
the best-effort should be duty-cycled and thereby increasing
best-effort performance without violating real-time constraints.

XI. CONCLUSION

Best-effort applications can cause | due to bandwidth
congestion in the cache hierarchy | an unacceptable amount
of interference, which can results in an unacceptable latency
increase of real-time applications on CMP architectures. This
can make it infeasible to execute best-effort applications
concurrently with real-time applications. We therefore proposed
a duty-cycling technique that can throttle (duty-cycle) best-
effort applications when their bandwidth consumption causes
too much interference with the real-time applications. The duty-
cycling technique is implemented in the Linux operating system

TABLE IV
DUTY-CYCLING RESULTS | LATENCY OF THE REAL-TIME APPLICATION

Baseline Congested Duty-cycled 500/500 Duty-cycled 100/900

Core 3 Core 4 Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs)

X-rayi X-rayi 5867 15.22 6069 9283 19.68 9470 7339 156.93 8849 6136 88.55 7037
X-rays X-rays 5867 15.22 6069 13873 87.85 14185 8305 277.14 9474 6304 66.3 6512
Syn ‘C’ Syn ‘C’ 5867 15.22 6069 9219 48.43 10644 7370 90.93 7912 6037 46.87 7225
Syn ‘C’ gcc 5867 15.22 6069 7691 161.95 9327 6755 95.48 7256 6050 41.68 6978
ffmpeg ffmpeg 5667 15.22 6069 6131 149.37 7855 5977 94.55 7211 5881 22.62 6010

TABLE V
DUTY-CYCLING RESULTS - NOT OPTIMIZED FOR LEVEL 3 ACCESS - LATENCY OF THE REAL-TIME APPLICATION

Baseline Congested Duty-cycled 500/500 Duty-cycled 100/900

Core 3 Core 4 Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs) Avg (µs) Stdev Max (µs)

X-rayi X-rayi 10705 28.56 10918 14458 211.81 16146 13092 248.73 14704 11295 70.89 12551
X-rays X-rays 10705 28.56 10918 21236 62.56 21513 14237 69.32 14506 11315 69.58 11670
Syn ‘C’ Syn ‘C’ 10705 28.56 10918 12742 18.85 12805 12193 39.06 12336 11540 46.48 11754
Syn ‘C’ gcc 10705 28.56 10918 11990 187.30 12773 11800 98.88 12197 11767 144.83 12368
ffmpeg ffmpeg 10705 28.56 10918 11554 259.21 12651 11300 159.26 12260 11059 50.94 11467

and uses performance counters available in the cores of the CMP

to estimate the bandwidth usage of the best-effort applications.
From our experimental results we conclude that the proposed
duty-cycling technique can significantly reduce the interference.
For an industrial X-ray imaging application we show that the
latency increase that is caused by the interference can be
controlled while maintaining some best-effort performance.
For synthetic benchmarks we show that there are scenarios
where we the duty-cycling technique can reduce the latency
degradation by 89%. We therefore conclude that best-effort core
duty-cycling based on bandwidth consumption is an essential
method to control the interference in CMP architectures used for
real-time streaming applications in combination with best-effort
applications, such as the interventional X-ray application.

XII. ACKNOWLEDGMENTS

The authors would like to thank Philips Healthcare, and in
particular Marc Schrijver for their help during this research.
This research is supported by the Dutch Technology Foundation
STW, which is part of the Netherlands Organisation for
Scientific Research (NWO), and which is partly funded by
the Ministry of Economic Affairs.

REFERENCES

[1] M. Westmijze, M. Bekooij, G. Smit, and M. Schrijver, “Evaluation
of scheduling heuristics for jitter reduction of real-time streaming
applications on multi-core general purpose hardware,” pp. 140 –146, Oct.
2011.

[2] H. Stone, J. Turek, and J. Wolf, “Optimal partitioning of cache memory,”
Computers, IEEE Transactions on, vol. 41, no. 9, pp. 1054 –1068, Sept.
1992.

[3] D. Chiou, D. Chiouy, L. Rudolph, L. Rudolphy, S. Devadas, S. De-
vadasy, B. S. Ang, and B. S. Angz, “Dynamic cache partitioning via
columnization,” 2000.

[4] R. Iyer, “CQoS: a framework for enabling qos in shared caches of cmp
platforms,” in Proceedings of the 18th annual international conference
on Supercomputing, ser. ICS ’04. New York, NY, USA: ACM, 2004,
pp. 257–266.

[5] H. Kannan, F. Guo, L. Zhao, R. Illikkal, R. Iyer, D. Newell, Y. Solihin,
and C. Kozyrakis, “From chaos to qos: case studies in cmp resource
management,” SIGARCH Comput. Archit. News, vol. 35, no. 1, pp. 21–30,
Mar. 2007.

[6] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning
in a chip multiprocessor architecture,” in Proceedings of the 13th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 111–122.

[7] B. Verghese, A. Gupta, and M. Rosenblum, “Performance isolation:
sharing and isolation in shared-memory multiprocessors,” in Proceedings
of the eighth international conference on Architectural support for
programming languages and operating systems, ser. ASPLOS-VIII. New
York, NY, USA: ACM, 1998, pp. 181–192.

[8] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith,
“Multicore resource management,” Micro, IEEE, vol. 28, no. 3, pp. 6
–16, May-Jun. 2008.

[9] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “Compsoc: A
template for composable and predictable multi-processor system on chips,”
ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1, pp. 2:1–2:24,
Jan. 2009.

[10] D. Molka, D. Hackenberg, R. Schone, and M. Muller, “Memory perfor-
mance and cache coherency effects on an intel nehalem multiprocessor
system,” in Parallel Architectures and Compilation Techniques, 2009.
PACT ’09. 18th International Conference on, Sept. 2009, pp. 261 –270.

