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Abstract—The main challenge faced by outlier detection tech-
niques designed for wireless sensor networks is achieving high
detection rate and low false alarm rate while maintaining the
resource consumption in the network to a minimum. In this
paper, we propose an online outlier detection technique with
low computational complexity and memory usage based on an
unsupervised centered quarter-sphere support vector machine
for real-time environmental monitoring applications of wireless
sensor networks. The proposed approach is completely local and
thus saves communication overhead and scales well with increase
of nodes deployed. We take advantage of spatial correlations that
exist in sensor data of adjacent nodes to reduce the false alarm
rate in real-time. Experiments with both synthetic and real data
collected from the Intel Berkeley Research Laboratory show that
our technique achieves better mining performance in terms of
parameter selection using different kernel functions compared to
an earlier offline outlier detection technique designed for wireless
sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used
in various applications including those related to personal,
industrial, business and military domains [1]. Many of these
applications utilize real-time sensor data collected by WSNs to
monitor the surrounding environment and detect time-critical
events occurred in the physical world.

Data collected by WSNs are often unreliable and inaccurate
due to the following reasons: (i) the low cost and low quality
sensor nodes have stringent resource constraints such as energy
(battery power), memory, computational capacity, and com-
munication bandwidth; (ii) operation of sensor nodes which
are randomly deployed in a large area (and often with high
density) are frequently susceptible to harsh and unattended
environmental effects; (iii) sensor nodes are vulnerable to
malicious attacks such as denial of service attacks, black
hole attacks and eavesdropping [2, 3]. To keep the data
quality and reliability high and be able to make effective and
correct decisions using data collected by WSNS, it is essential
to identify erroneous data as well as potential events and
malicious attacks occurred in the network. Outliers in WSNs
are those measurements that significantly deviate from the
normal pattern of the sensed data [4].
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The context of sensor networks and nature of sensor data
make design of an appropriate outlier detection technique
challenging. The main challenge faced by outlier detection
techniques designed for WSNs is achieving high detection
rate and low false alarm rate while maintaining the resource
consumption of WSNs to a minimum. In other words, outliers
in WSNs should be detected locally in the network and in
real-time with a low communication overhead, memory and
computation cost.

In this paper, we propose an online and local outlier detec-
tion technique with low resource consumption based on an un-
supervised (one-class) centered quarter-sphere support vector
machine (SVM) for environmental monitoring applications of
WSNs. This approach takes advantage of spatial correlations
that exist in sensor data of adjacent nodes to reduce the false
alarm rate and to distinguish between events and errors in
real-time. Experiments with synthetic and real data of Intel
Berkeley Research Laboratory [10] show that our approach
achieves better mining performance in terms of parameter
selection with different kernel functions compared to an earlier
offline outlier detection technique for WSNs mentioned in [5].

The rest of this paper is organized as follows. Related work
on one-class SVM-based outlier detection techniques is pre-
sented in Section II. The problem statement and fundamentals
of the one-class centered quarter-sphere SVM are described
in Section III. Our proposed online and local outlier detection
technique is explained in Section I'V. Experimental results and
performance evaluation of our approach are reported in Section
V. We conclude the paper in Section VI with plans for future
research.

II. RELATED WORK

Outlier detection has been widely researched in various
disciplines such as statistics, data mining, machine learning,
information theory, and spectral decomposition [4]. Outlier
detection techniques designed for WSNs can be catego-
rized into statistical-based, nearest neighbor-based, clustering-
based, classification-based, and spectral decomposition-based
approaches [6]. Classification-based approaches are important
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systematic approaches in the data mining and machine learning
community. Classification-based techniques learn a classifi-
cation model using a set of data instances in the training
phase and classify an unseen instance into one of the learned
(normal/outlier) class in the testing phase [4]. SVM-based
techniques are from family of classification-based approaches
and have the following three main advantages:

o have a simple geometric interpretation;

¢ provide an optimum solution for classification by maxi-
mizing the margin of the decision boundary;

o avoid the problem of the curse of dimensionality.

The fact that in many WSNs applications, pre-classified
normal/anomalous data is neither always available nor easy to
obtain implies that unsupervised classification techniques suit
the WSNss the best. Therefore, several unsupervised (one-class)
SVM-based outlier detection techniques have been proposed
[7, 8, 9, 5], which model the normal pattern of the unlabelled
data while automatically ignore the anomalies existed in the
training data. The main idea of one-class SVM-based outlier
detection approaches is that data measurements collected from
the original space (input space) are first mapped to a higher
dimensional space (feature space) using a non-linear function
¢(x). Then a decision boundary of normal data is found, which
encompasses the majority of the data measurements in the
feature space. Those falling outside the boundary are classified
as anomalous. Scholkopf et al. [7] have proposed a hyperplane-
based one-class SVM for outlier detection. Tax et al. [8] have
proposed a hypersphere one-class SVM for outlier detection,
which has a more intuitive geometric idea. The idea is that a
hypersphere is fitted with a minimal radius to encompass the
majority of data in the feature space. Those falling outside the
hypersphere indicate anomalous data.

One of the problems of one-class SVM-based outlier detec-
tion techniques using the hyperplane and the hypersphere is
that they involve a quadratic optimization process during learn-
ing the boundary of normal data. This process is extremely
costly and not suitable for limited resources available in
WSNs. Laskov et al. [9] have extended work in [8] by propos-
ing a one-class quarter-sphere SVM, which is formulated as
a linear optimization problem and thus reduces the effort
and computational complexity. Rajasegarar et al. [5] further
exploit potential of the one-class quarter-sphere SVM of [9] for
outlier detection in WSNs. However, their technique detects
outliers only after data measurements are being collected for
a long period of time and thus it is not suitable for real-time
environmental monitoring applications of WSNs. This offline
technique is also costly in terms of memory usage. Moreover,
this approach identifies local outliers only in a node depending
on the SVM classifier learned by itself, which may result in
high false alarm rate due to the lack of sufficient information.

In this paper, we extend the offline approach of [5], and
propose an online and local outlier detection technique with
low resource consumption. By taking advantage of spatial
correlations that exist in sensor data of adjacent nodes we
show that false alarm rate can be reduced and even real-time

distinction between events and errors can be made.

III. FUNDAMENTALS OF ONE-CLASS CENTERED
QUARTER-SPHERE SVM

A. Problem Statement

We consider that sensor nodes are time synchronized and
are densely deployed in a homogeneous WSN, where sensor
data tends to be correlated in both time and space. The network
topology is modelled as an undirected graph G where G = (S,
E). S represents the nodes in the network and E represents
an edge which connects two nodes if they are within radio
transmission range of each other. A subset N (S;) represents a
closed neighborhood of a node Si € S, which contains the node
S; and its k spatially neighboring nodes. The & spatially neigh-
boring nodes are represented by S;; = {S;; : j =1...k}, ie,
N(S;) = {Si; € S|(Sij, Si) € EYU{S;}. An example of N(S,)
is the closed disk centered at S; with the radio transmission
range of S;, as shown in Figure (1).

N(Si)

Fig. 1. Example of a closed neighborhood N(.S;) of the sensor node S;

At every time interval A;, each sensor node in the set
N(S;) measures a data vector. Let x;, 2}, 2%,..., zi denote
the data vector measured at S;, S;1,S;2, . . ., Sik, respectively.
Each data vector is composed of multiple attributes :1:; ;» Where
wh = {ak :j=0...kl=1...d} and 2 e R%. Our aim
is to identify every new data measurement arriving at S; as
normal or anomalous in real-time. This local process can be
applied to each node in the network and thus scales well to
large WSNss.

B. One-Class Centered Quarter-Sphere SVM

By fixing the center of the quarter-sphere at the origin,
Laskov et al. [9] have converted the quadratic optimization
problem of one-class SVM-based to a linear optimization
problem. The geometries of the two approaches are shown
in Figure (2).

The constrained optimization problem of the one-class cen-
tered quarter-sphere SVM is formalized as follows:

: 2 1
pemin, R ;g (1)
subject to: ||g(z;)]|> < R?+&, & >0, i=1,2,...m

where {& : i = 1,2,...m} are the slack variables that
allow some of the data vectors to fall outside the quarter-
sphere. The number of data vectors is denoted by m. The
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(a) One-Class HyperSphere SVM (b) One-Class Centered Quarter-Sphere SVM
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Fig. 2. (a) Geometry of the hypersphere formulation of one-class SVM. (b)
Geometry of the quarter-sphere formulation of one-class SVM for ¢ = 0

parameter v ¢ (0,1) is the regularization parameter that
represents the fraction of anomalous data vectors (outliers).
The Lagrange function for this optimization is:

Za1 _Hd) 1’1 ||2+§z Zﬁzfz"_iz&
(2)
where «; > 0, B; > 0 for all ¢+ = 1,2,...,m are the

Lagrangian multipliers. Taking the derivative of L with respect
to R and &; to zero result to:

oL =
oL 1
2 0 T %TmH @

From (4), we can obtain 0 < o; < —L using a; > 0,
B; > 0. Substituting (3) and (4) into (2) produces:

m

L= Z ai((b(xl)

where the dot product ¢(x;)-¢(x;) is regarded as a measure
of similarity between ¢(x;) and ¢(z;) in the feature space. It
can be replaced by a kernel function k(z;,x;), which is a
method for computing similarity in the feature space using
the original attribute set [13]. Hence, the dual formulation of
(1) will become:

p(xi)) (5)

min
aeR™

—Zaz‘k(l‘i,ﬂiz’) (6)
i=1

m
1
subject to : Zai =1 0<a; < —,
P vm

i=1,2,...m

Converting the dual problem of a quadratic optimization to
a linear optimization problem effectively reduces the compu-
tational complexity. In order to fix the center of the quarter-
sphere at the origin, the mapped data vectors in the feature
space need to be subtracted from the mean. The mean is
represented as:

i.e., o(x))e=o(x;) — %Z‘b(%)

The centered kernel matrix K. can be obtained in terms
of the kernel matrix K = k(z;,x;) = (¢(x;) - ¢(x;)) using
K.=K-1,K-K1,,+1,, Klm,wherelmisanmxm
matrix with all values equal to E

From equation (6), the {c;} value can be easily obtained
using some effective linear optimization techniques [14]. The
data vectors can further be classified depending on the results
of {a;}, as shown in Figure (2b). The data vectors with o = 0,
which fall inside the quarter-sphere and their distances from
the origin are smaller than the radius of the quarter-sphere,
are called non support vectors. The data vectors with o > 0,
which determine the computational complexity and accuracy
of the learned SVM classifier, are called support vectors.
Support vectors with 0 < a < ﬁ, which fall on the quarter-
sphere, are called margin support vectors. Their distances to
the origin indicate the minimal radius of the quarter-sphere.
Support vectors with o = ﬁ, which fall outside the quarter-
sphere and their distances from the origin are larger than the
radius of the quarter-sphere, are called non-margin support
vectors. These are in fact the outliers that we are interested in
identifying them.

IV. AN ONLINE AND LOCAL OUTLIER DETECTION
TECHNIQUE FOR WIRELESS SENSOR NETWORKS

Our online technique enables each sensor node in the
network to identify its new arriving data measurements as
normal or anomalous in real-time. Using the high degree of
spatial correlations that exist among the sensor readings of the
adjacent nodes in a densely deployed WSN, each node has
sufficient information to detect local outliers. This detection
does not only depend on a node’s own decision criterion
but also on the decision criteria learned from its spatially
neighboring nodes. Identification of outlier type, i.e., making
distinction between events and errors, can be made based on
the observation that erroneous measurements are likely to be
spatially unrelated, while event measurements are likely to be
spatially correlated [12].

The pseudocode of our proposed outlier detection technique
is shown in Table (I). Initially, each node learns the local radius
of the quarter-sphere using its m sequential data measurements,
which may include some anomalous data. The one-class
quarter-sphere SVM can efficiently find a minimal radius to
enclose the majority of these mapped data measurements in the
feature space. Each node then locally broadcasts the learned
radius information to its spatially neighboring nodes. In fact
a node S; first collects the radius information from all of
its neighbors and then computes a median radius R;m of its
neighboring nodes as well as a median radius R;,, of its closed
neighborhood N (S;). One should note that to estimate the
“center” of a sample set, the median is more robust than the
mean.
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When a new data measurement x arrives at node .S;, it
computes the distance d(z). between x and the origin of
its centered quarter-sphere in the feature space. According

m

to the mean p = L " ¢(x;) and the kernel matrix K =

=1
k(xi, ;) = (#(x;) - ¢(x;)), the distance of x from the origin
in the feature space is formalized as follows:

m

A(w)e = || 16() = - >~ o)
i=1
1 m ) 2 m
= I9@IR+ = > ol = 23 6(0) - o)
= \[60)0@) + =5 > 0lw) dle) = = Y ke w)
= |k(z,x)+ # Z k(xi,xj) — %k(x,xl) (7
i=1

Based on the fact that sensor data collected in a densely
deployed WSN tends to be correlated in both time and space,
S; first compares d(z). obtained by (7) with its own radius
R;. The data x will be classified as normal if d(z), <= R;,
which means that x falls on or inside the quarter-sphere at .S;.
Otherwise if d(x). > R;, x is a potential (temporal) outlier. In
this case, S; further compares d(x). with the median radius
R, of its spatially neighboring nodes. If d(z), > R, . x
will finally be classified as outlier in the set N(S;). Thus, the
decision function can be formulated as:

f(@) = sgn(R; — d(2).) P sgn(R;,,, — d(z).) (8

where the data measurements with f(x) = —1 are classified
as outlier. R; and R;m are important decision criteria for local
outlier identification.

Identifying what has caused the outlier in sensor data is an
important task. Potential sources of outliers in data collected
by WSNs include noise & errors, actual events, and malicious
attacks. Noisy data as well as erroneous data should be
eliminated or corrected if possible as noise is a random error
without any real significance that dramatically affects the data
quality. Outliers caused by other sources need to be identified
as they may contain important information about events that
are of great interest to the researchers [6].

Our proposed technique provides a preliminary method to
make real-time distinction between events and errors by using
sensor data of neighboring nodes and their spatial similarity.
The main idea is that only when a data measurement is con-
sidered as outlier, .S; collects the distances of its neighboring
nodes’ currently sensing the data from their own origin in the
feature space and computes a median distance d;m. If an event
occurs in the set N(S;), d(z). and dj,, will be temporally

different but a spatial consensus will be observed [12]. This
means that d(x). and d,,,, will exceed their own radius of R;
and R,,,, respectively. In addition, they both will exceed the

median radius R;,, of the set N(S;). If this is not the case,
the detected outlier may indicate an erroneous measurement.

TABLE I
THE PSEUDOCODE OF OUR PROPOSED OUTLIER DETECTION TECHNIQUE.

l An Online and Local Outlier Detection Approach

1 let R; be the radius of the quarter-sphere at the node Sj;;

2 let R; 1, be the median radius of S;’s neighboring nodes’ radii;

3 let Ry, be the median radius of the set N(.S;);

4 let m be the amount of data measurements for learning the SVM;

5 let ; be a new data measurement arriving at Sj;;

6 let x”i R x%, ey as”;g be new data measurements arriving at S;’s
neighboring nodes at the same time interval, respectively;

7 let d; be the distance between x; and the origin at S;;

8 let d;m be the median distance of (ac’i, zé, e ,m};)’s distances
from their own origin;

9 procedure LearningSVM()

10 each node collects m data measurements for learning its own
radius R; and locally broadcasts the radius information to its
spatially neighboring nodes;

each node then computes R;m and Rjm;

initiate IsOutlierProcess(R;, R;m) for each node;

return;

11
12
13

14 procedure IsOutlierProcess(R;, R;m) for S;
15 when z; arrives at S;

16 S; computes d;;

17 if(d; > R; AND d; > R, )

18 x; indicates an outlier;

19 SourceOfOutlierProcess(R;, R;m, Rim, d;);
20 else

21 x; indicates a normal measurement;

22 endif;

23  return;

24 procedure SourceOfOutlierPrqcess(Ri, R
25 S; collects the distance of =}, x5, ..

.. ’
origin and computes d,

m’

im> Fim, dq) for S;
., x}, from their own

26 if (d; > R; AND d;, > R, )

27 if (d; > Rim AND d; > Rim)

28 x; may indicate an event;

29 else

30 x; may indicate an erroneous measurement;
31 endif;

32 else

33 z; may indicate an erroneous measurement;
34  endif;

35 return;

Our technique scales well with increase of number of nodes
deployed in the network. The reason is that the local process
is applied to each node in the network to enable the node
to specify its new arriving data measurements as normal
or anomalous in real-time. The computational complexity of
our scheme is low as it only depends on solving a linear
optimization problem. Once the optimization is solved, each
node only keeps the radius value and the m initial data
measurements in memory. In contrary to the offline technique
of [5], this prevents additional memory usage for saving new
data measurements collected for a long period of time window.
The use of spatial correlations provides each node with more
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sufficient information to correctly identify local outliers and
even to distinguish between events and errors. Our scheme
is suitable for outlier detection in real-time environmental
monitoring applications of WSNs. The scheme also involves
low communication overhead as it performs outlier detection
at the node locally.

V. EXPERIMENTAL RESULTS AND EVALUATION

This section specifies the performance evaluation of our
technique compared to the earlier offline technique of [5]. In
our experiments, we have used synthetic data as well as real
data gathered from a deployment of WSN in the Intel Berkeley
Research Laboratory [10, 11]. We simulate our protocol in
Matlab and consider a closed neighborhood as shown in
Figure (1), which is centered at a node with its 6 spatially
neighboring nodes.

A. Synthetic Dataset

The 2-D synthetic data used for each node is composed
of a mixture of three Gaussian distribution with uniform
outliers; the mean is randomly selected from (0.3, 0.35, 0.45),
and the standard deviation is selected as 0.03. Subsequently,
5% (of the normal data) anomalous data is introduced and
uniformly distributed in the interval [0.5, 1]. The data values
are normalized to fit in the [0, 1]. To have a fair comparison
and due to the fact that the offline technique of [5] evaluates
its performance using the original training data with added
labels rather than new testing data, thus in the experiment we
use the same amount of data measurements in both techniques
for training the quarter-sphere SVM classifier while the same
amount of new testing data is used to evaluate the performance
of our technique. The testing data used for the centered node
comprises of 200 normal and 10 anomalous data, which is
plotted as shown in Figure (4a).

B. Real Dataset

The real data are collected from a closed neighborhood from
a WSN deployed in the Intel Berkeley Research Laboratory
as shown in Figure (3). The closed neighborhood contains the
node 35 and its 6 spatially neighboring nodes, namely nodes 1,
2,33, 34, 36, 37. The network recorded temperature, humidity,
light and voltage measurements at 31 seconds intervals. In our
experiments, we use a 9am-17pm period of data recorded on
5th March 2003 with two attributes: temperature and humidity
for each data measurement. The data values are normalized to
the range [0, 1]. The amount of anomalous data is about 5%-
10% of normal data. The labels of data measurements are
obtained depending on the degree of dissimilarity between
each other.

As shown in Figure (4b), the data vectors are labelled as
anomalous if they are distant from other data vectors. The
same amount of new testing data as the training data is used
to evaluate the performance of our technique.

Fig. 3. Sensor nodes deployed in Intel Berkeley Research Laboratory [10]
; ' 4 e
0.9 08 et
0.8 2
0.6,
07
0.6 0.4
02 = Loty
0.2 0.4 0.6 0.8 1 O0 - 0’2 = 0.4 0.6 0.8 1
(a) (b)
Fig. 4. (a) Plot for synthetic data. (b) Plot for real data.

C. Experimental Results and Evaluation

We have tested the following three kernel functions:

1) Linear kernel function: kpineqr =
{1,225} are the data vectors;

2) Radial basis function (RBF) kernel function: krpr =
exp(—||r1 — z2||?/0?), where o is the width parameter
of the kernel function;

3) Polynomial kernel function: kpoiynomiar = (z1.22+1)7,
where r is the degree of the polynomial.

Kernel matrices generated using the above kernel functions
were centered. We have evaluated two important performance
metrics, the detection rate, which represents the percentage
of anomalous data that are correctly considered as outliers,
and the false alarm rate, also known as false positive rate
(FPR), which represents the percentage of normal data that
are incorrectly considered as outliers.

We have examined the effect of the regularisation parameter
v for the two outlier detection techniques, i.e., our online
proposed technique and offline approach presented in [5],
using the linear, RBF and polynomial kernel functions. v
represents the fraction of outliers and in the experiments we
have varied it in the range from 0.01 to 0.25 in intervals
of 0.01. A receiver operating characteristics (ROC) curves is
usually used to represent the trade-off between the detection
rate and the false alarm rate. However, since the simulation
results show that both techniques achieve 100% detection rate
in most of cases. Therefore, the ROC curve would not be
a useful tool to compare the the performance of the two
techniques. Thus, we show the simulation results with the false
alarm rate in terms of parameter (v) selection using different
kernel functions. As a matter of fact, the main challenge of
unsupervised techniques for outlier detection is how to reduce
the high false alarm rate.

(z1.22), where
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False Alarm Rate Vs Nu (Linear Kernel Function)

0 False Alarm Rate Vs Nu (RBF Kernel Function)

100 OFalse Alarm Rate Vs Nu (Polynomial Kernel Function)
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Fig. 5. Synthetic data: false alarm rate for linear (left), RBF(middle) and polynomial (right) kernel functions in terms of parameter (v) selection.
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Fig. 6.

Figure (5) shows the false alarm rate obtained for the
two techniques using the linear, RBF and polynomial kernel
functions for the synthetic data. Figure (6) shows the false
alarm rate obtained for the two techniques using the linear and
polynomial kernel functions for the real data. The simulation
results show that our technique achieves lower false alarm rate
in terms of parameter selection using different kernel functions
compared to the offline outlier detection technique of [5].

VI. CONCLUSIONS

In this paper, we have proposed an online and local outlier
detection technique with low resource consumption based on
an unsupervised centered quarter-sphere SVM. We compare
the performance of our approach with an offline scheme using
synthetic and real data of the Intel Berkeley Research Labo-
ratory. Experimental results show that our approach achieves
better mining performance in terms of parameter selection with
different kernel functions. We have also presented preliminary
work on distinction mechanisms between events and errors.
Our future research includes online updating the boundary
of normal data with arrival of new data measurements, and
evaluating outlier detection performance while distinguishing
between events and errors. In addition, we further work on us-
ing cross-layer information provided by the underlying MAC
layer to increase the robustness of the protocol in presence of
network topology changes.
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