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Abstract—The usage of non-scripted lecture videos as a
part of learning material is becoming an everyday activity
in most of higher education institutions due to the growing
interest in flexible and blended education. Generally these
videos are delivered as part of Learning Objects (LO)
through various Learning Management Systems (LMS). Cur-
rently creating these video learning objects (VLO) is a cum-
bersome process. Because it requires thorough analyses of the
lecture content for meta-data extraction and the extraction
of the structural information for indexing and retrieval
purposes. Current e-learning systems and libraries (such
as libSCORM) lack the functionally for exploiting semantic
content for automatic segmentation. Without the additional
meta-data and structural information lecture videos thus do
not provide the required level of interactivity required for
flexible education. As a result, they fail to captivate students’
attention for long time and thus their effective use remains
a challenge.

Exploiting visual actions present in non-scripted lecture
videos can be useful for automatically segmenting and
extracting the structure of these videos. Such visual cues
help identify possible key frames, index points, key events
and relevant meta-data useful for e-learning systems, video
surrogates and video skims. We therefore, propose a multi-
model action classification system for four predefined actions
performed by instructor in lecture videos. These actions
are writing, erasing, speaking and being idle. The proposed
approach is based on human shape and motion analysis
using motion history images (MHI) at different temporal
resolutions allowing robust action classification. Additionally,
it augments the visual features classification based on audio
analysis which is shown to improve the overall action
classification performance. The initial experimental results
using recorded lecture videos gave an overall classification
accuracy of 89.06%. We evaluated the performance of
our approch to template matching using correlation and
similitude and found nearly 30% improvement over it.
These are very encouraging results that prove the validity
of the approach and its potential in extracting structural
information from instructional videos.

Keywords-visual actions, action classification, recognition,
multi-modal analysis, lecture videos.

I. INTRODUCTION

The use of lecture videos is becoming popular as a mean

of teaching for flexible education. Most of these videos

cover the whole duration of a lecture with considerable

pauses and inactive moments. To avoid wasting students’

time watching non instructional content and storage space

on servers, one needs a mechanism to automatically seg-

ment and abstract the lecture videos into small segments

based on the activity it represents. Segmenting the lecture

videos into small chunks makes sense if we consider the

average lecture to be of 45 minutes, with lots of inactive

scenes i.e. where there is nothing significant happening

in the video. Finding such index points will help create

efficient VLOs [1] by removing portions of inactive scenes

from a video with no pedagogical value. However, creating

an index for a lecture video is a challenging task [2]. One

has to know what kind of indexes are good to navigate

through a video. Also, finding from where to extract

index points can be challenging. Instructional videos are

more challenging than films or TV programs due to their

non-scripted and unedited nature. The strong similarity

between all frames of lecture videos and the static nature

of the scenes make finding the most important sections a

difficult task. One way of finding key events in such videos

is to exploit the visual cues present in the instructor-led

lecture videos by recognizing the lecturers’ action. For

example, in non-scripted videos, the actions can be useful

cues to automatically segment and extract the structure of

the videos. This could in turn be the first step towards a

system that could be used in many different applications

such as: Multimedia Learning Objects (MLOs) creation

[3], video indexing, summarization or the design of smart

environments [4]. In this paper, we therefore, address

the classification of human action with respect to lecture

videos.

Exploiting visual cues through action recognition is a

challenging problem. The task is very challenging due to

the vast number of actions that a lecturer can execute in

different environments, conditions, etc. Classification of

human motion itself has been a topic of profound interest

to researchers in many different fields of computer science.

This general interest in human motion stems from the

fact that its potential applications are very diverse, ranging

from surveillance [5] to human activity recognition [6], [7]

to human computer interaction [8]. The study of human

motion is not a trivial task as it is dependent on many

factors, among which we can list the action that is being

performed and the style (i.e. motion signature) specific to

each individual [9], movement speed, posture and relative

ordering of the actions being performed [10] etc. Since

actions can vary greatly, it is evident that some actions may

need more detailed information than others to be classified

accurately. Analyzing actions using different time scales

which inherently have different levels of detail would

prove beneficial.
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Figure 1. Overview of the proposed system.

The rest of the paper is organized as follows: in the

following section we present a review of the literature

related to human motion and activity recognition. Sec-

tion III describes the processing steps of our proposed

approach. In section IV, we present the results. In section

V, we compare our approach to template-based approach.

Finally, section VI concludes our paper.

II. RELATED WORK

Babu and Ramakrishnan propose recognizing human

actions based on motion information in compressed videos

[11]. They do so by constructing motion history images

out of motion compensation vectors present in compressed

videos. Robertson and Reid present a general human ac-

tivity recognition method using both position and motion

information [12]. They use Hidden Markov Models to

classify actions using training actions previously stored

in a database. Qian et al. propose a framework for human

activity recognition that uses multi-class SVM classifiers

[13]. Where they use motion energy images contour

coding to represent human motion. Perera et al. present

a method to extract key poses from dance sequences

using motion energy flow in [14]. They also propose a

method for the reconstruction of low dimensional motion

from high dimensional motion based on their extracted

key poses. Rivera-Bautista et al. [15] show how motion

information can be used as a measure of an individual’s

intention or attitude and programmed an autonomous robot

that can decide whether to initiate interaction with indi-

vidual. Ji and Liu put together a survey on view invariant

human motion analysis in [16]. They state the importance

of human motion research due to the many promising

applications and provide a coherent overview of state

of the art techniques in human detection, representation,

estimation and behavior understanding.

Niebles et al. present a framework for studying motion

by using the temporal structure of human actions [17].

They represent activities as groups of motion segments,

where the appearance of each segment is modeled. They

consider the global temporal level by modeling distinc-

tive statistics, and the shorter temporal ranges where the

patterns of the motion segments are modeled. Du et al.

propose an activity recognition system using multi-scale

motion detail analysis in [18]. In their approach, they

refer to motion details as different components to analyze;

namely motion details of trajectories, motion details of

silhouettes and motion details of body parts. They analyze

different scales of details or levels of abstraction, but

always in the same temporal scale. Davis uses hierarchi-

cal Motion History Images (MHIs) [19] for recognizing

human motion [20]. He builds MHIs for different spatial

resolutions of images by using image pyramids. His pro-

posal shares some common ground to our approach in the

sense that he also analyzes motion at different resolutions,

but only spatial and not temporal ones.

III. PROPOSED SYSTEM

In our proposed approach, we first analyze the human

motion by building MHIs of the teacher silhouette. We

calculate global orientation and speed from these MHIs to

identify writing and erasing activities. Next, we calculate

the similitude value by analyzing the shape of the silhou-
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ette to identify idle state from writing and erasing. We

used random forest classifier to classify these states. We

then apply recursive median on the classification results

to rectify any classification errors. The voice activity de-

tection (VAD) module of our system first separates audio

from the video and then analyses the audio for speech

detection. It identifies speaking and idle state. At the end,

we get each one second sequence of a video labeled as

either writing, erasing, speaking or idle. As one can speak

while writing or erasing so we use two additional labels

as writing + speaking, and erasing + speaking. The system

consists of 2 main modules with 5 components. Figure 1

shows the overview of the proposed system model. The

system components are described below.

A. Voice Activity Detection

The purpose of VAD is to recognize the presence or

absence of voice in a video. As a pre-processing step

to VAD, we split audio from the video using FFmpeg

[21]. The audio is then processed for voice detection.

The VAD algorithm used in our application is based on a

statistical model-based voice activity detection [22], with

additional feedback process to improve estimation done at

the starting stage. This improves the accuracy significantly

in environment with non-stationary noise. The algorithm

returns audio frames labeled as either 0 or 1, where 1

represents presence of voice and 0 an idle state.

B. Foreground Extraction

The goal of foreground extraction is to extract mov-

ing persons from the background for motion analysis.

In the first step of foreground extraction, a foreground

model is created to discriminate between the foreground

and background pixels. We have used the foreground

object detection model proposed by Liyuan et al [23].

It detects and segments foreground objects from a video

which contains both stationary and moving background

objects. The stationary object is described by the color

feature and the moving object is represented by the color

co-occurence feature [23]. For our application we treat

blackboard text and illumination changes as part of the

moving background. Foreground object is extracted by

fusing the classification results from the stationary and

moving pixels. This model is based on Bayes theorem to

classify foreground objects from background objects. Any

pixel that does not fit this model is then deemed to be

background.

By using the Bayes theorem, a posterior probability of

vt (i.e. feature vector extracted from an image sequence

Is(x, y) at time t), can be expressed as:

P (C|vt, Is) =
P (vt|C, Is)P (C|Is)

P (vt|Is)
, C = b or f (1)

Therefore, by using Bayes decision rule, a pixel can be

classified as foreground or background if:

P (vt|Is) = P (vt|f, Is).Pf + P (vt|b, Is).Pb, (2)

Figure 2. (a) Original video frame (b) Segmented foreground object
(c) Frame after morphological operations and smoothing.

where Pf = P (f |Is), and Pb = P (b|Is).
Thus by learning a prior probability Pf , the probability

Pb and conditional probability P (vt|f, Is) in advance, we

can classify a feature vector vt as either associated with

background or foreground.

Quite often the extracted foreground frame contains

some text noise. This is due to the non-static nature of

the text during writing phase. As a result, the foreground

frame contains some portions of the background text. To

overcome this problem, we apply morphological opening

operation on the foreground object F with structuring

element S as:

F ◦ S = (FθS)⊕ S, (3)

where S is a disk shaped structuring element of radius

3. We then apply Gaussian smoothing filter to smooth out

the ragged edges. The results are shown in Figure 2.

C. Motion Feature Extraction

The main idea behind the use of motion is that, even

though writing and erasing are different actions, the poses

to execute them are the same or very similar. Knowing

this, training to differentiate between them using their

postures would not work. Nonetheless, when analyzing

the movement of these two actions, we see that there is an

obvious difference: erasing is a back and forth continuous

movement; on the other hand, writing is composed of

linear movements in a certain direction. Therefore, by

representing this difference of movement we can build ef-

fective motion feature vectors to characterize the different

actions.

At first, we split the video into 1 second sequences that

are further divided into sub-sequence of 1/2 and 1/4 of the

duration as shown in Figure 3. As we build the MHI for a

given sub-sequence, we also calculate the direction of the

movement in the MHI. To do this, we first calculate the

motion gradient at each 3x3 neighborhood of the MHI.

We use the partial derivatives in the x-axis (dMHI/dx)
and y-axis (dMHI/dy) as follows:

Orientation(x, y) = arctan

(
dMHI

dy

dMHI
dx

)
. (4)

To calculate the orientation accurately, we need to

define two thresholds: T1 and T2 where T1 > T2. These

thresholds control the time range (i.e. frame number) in

which movement in a given area is taken into account to

calculate the orientation (e.g. old movement should not be

taken into account). For a given neighborhood, if M(x, y)
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Figure 3. Level two sub-sequence applied on a MHI.

and m(x, y) are the maximum and minimum MHI values

respectively (timestamps), at position (x, y) the motion

orientation value is only valid if,

T1 ≤ M(x, y)−m(x, y) ≤ T2. (5)

Using Equation 4 and 5, we calculate the average mo-

tion direction in a selected region by building a weighted

orientation histogram where recent movement has a higher

weight than motion that occurred in the past. We then cal-

culate the global orientation of the whole body movement

by taking the median of the angles instead of averaging,

to reduce the effect of outliers. The global orientation is

calculated at each frame at the same time as we update

the MHI. Since the global orientation can take any value

between 0− 360 degrees, we decided to classify them as

one of 4 general directions as shown in Figure 4, since

we are interested in coarse movements for our particular

classification task.

We built a 4 bin orientation histogram and filled it

with the new converted values of the global orientation.

Lastly, the values were normalized by dividing them by the

number of total samples used in the histogram. The result

is an array of size 4 which stores the normalized global

orientation values. For our particular application, we only

needed the horizontal direction bins since for either writing

or erasing we only consider horizontal movement. The

feature vector is then composed of these 2 values for all

the sub-sequences created during time scaling. Thus, for

level 1 sub-sequences our feature vector is composed of 4

features, and for level 2 sub-sequences it is composed of

8 features.

We calculate also relative value of the speed of object

movement in each sequence by analyzing each of the

frames sequentially. If N is the number of frames present

in a given sequence S with height H and width W and In

Figure 4. Mapping of global orientation values into 4 coarse movement
directions.

is the image of S at frame n, the formula for the movement

in S is:

Movement(S) =
∑N

n=2 PD(In, In−1)
H ∗W ∗ (N − 1)

, (6)

where PD is the sum of pixel values in In. This gives us

a normalized value in [0, 1], where 0 means that there has

been no change in the sequence, and 1 means all the pixels

have changed between a frame and the next. This value

is used as a threshold in the classification step to decide

whether there has been enough movement to try to classify

the sub-sequence as one of the defined actions. If the speed

is below the defined threshold (11% of the total number

of pixels in the sub-sequence) then no classification is

done on this sequence and it is labeled as an ‘Idle’ sub-

sequence.

D. Shape Feature Extraction

The posture or shape of the silhouette has to be taken

into account to distinguish writing and erasing from any

other action that the teacher might be performing while

giving a lecture. As the action of writing or erasing

generally has a very big spatial activity area, we therefore

separate the posture into three classes: high, mid and low

writing/erasing action. By doing so, we can accurately

differentiate idle state from writing and erasing. We then

use the Hu Moments Shape Descriptor to evaluate the

similitude between the shape of the silhouette and our

writing / erasing silhouettes. For each frame of the se-

quence, we obtain the Hu Moment of the silhouette and

store its similitude to the training set. Once the sequence

has been processed, the similarity value is used as a

threshold to verify if a particular sequence should be

classified or not in the classification component. Posture

discrimination between the three classes and the general

idle states can be seen in Table I.

Table I
MAHALANOBIS DISTANCES FOR THE SHAPE ANALYSIS.

Writing/Erasing Pose Low Mid Up
Low 2 13 41.5
Mid 10 1.5 10.5
Up 381.5 139.25 4.75
Idle 353 285.167 700.5

It is clear that for our three classes, we can define a

valid threshold to differentiate them from the idle states

by always selecting the smallest distance to one of the

three classes in a given frame.
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Figure 5. Recursive median on classification results.

E. Classification Based on Extracted Features

This component classifies a sub-sequence as either

writing or erasing action based on extracted features. The

initial feature vector consists of 8 orientation features

and 4 speed of object movement features extracted from

object motion at level-2 sub-sequence, along with a shape

and audio feature. Later, we discard the speed and shape

feature due to their low discriminative power and use

them as thresholds to verify if a particular sub-sequence

meets the requirement to be classified. Otherwise, the sub-

sequence is classified as idle. The classifier that is used in

the classification process is the Random Forest Classifier

[24] as it is one of the most accurate learning algorithms

available. For many data sets, it produces a highly accurate

classifier [25].

To further improve the accuracy of the classification, we

take advantage of temporal redundancy in videos. We ap-

ply recursive median algorithm to correct the classification

errors. The correction is applied using a 3-block spanning

window that will move over the whole classification results

vector. The algorithm uses the first and last classification

results within the spanning window to establish whether

the current result is correct or not. If both the previous

and next element is of the same label, then the current

element is corrected and converted to this label. If the

surrounding elements are not of the same label, then there

is no correction performed and the current element stays

as is. Figure 5 shows an example of recursive median

technique used in our approach.

IV. EXPERIMENTAL RESULTS

The output of the integrated system is a video where

every second has been classified into one of the predefined

actions. Since the actions of talking / silence might occur

simultaneously with the writing / erasing ones, we decided

that talking would have precedence over the latter. The

idle state is selected only when there is no recognized

movement from the teacher and there is no voice detected.

The training dataset was built manually by selecting

1 second action sequences from recorded lecture videos.

We collected 72 writing and 47 erasing sequences to train

our random forest classifier. To test the discrimination

power of our motion feature vectors (MFVs), we used

five short action videos which ranged from 45 to 60

seconds. As stated before, the background segmented

videos were separated into 1 second sub-sequences and

processed sequentially. Three of these videos were solely

writing actions and the other two were only erasing. We

split the sequence up to level-2 and fuse the feature vectors

obtained at level-1 (i.e. 1/2 of a sequence) and at level-

2 (i.e. 1/4 of a sequence). Then we applied temporal

redundancy correction (TRC) on the motion feature vector

to correct isolated classification errors.

Table II
CLASSIFICATION ACCURACY USING TRC ON THE MFVS.

No correction Running Recursive
Median Median

Erasing 1 60% 67% 77%
Erasing 2 69% 78% 88%
Writing 1 65% 68% 73%
Writing 2 63% 74% 79%
Writing 3 59% 69% 55%

The results can be seen in Table II. We then tested

our VAD algorithm by using 15 audio sequences ranging

from 5 - 15 sec for silence, speech, and conversation

audio files. We obtained 100% accuracy for silence, 97.7%

accuracy for speech and 93.6% accuracy for conversation.

The overall accuracy of the algorithm was 97.1%.

To test the overall classification performance, we

recorded 5 videos with 3 different teachers with no im-

posed limitations. The videos varied from 30 seconds to

two minutes in length. To find out the ground truth, each

one second sequence of every video was manually labeled.

After this batch of videos had been classified, some

system limitations were identified. Problems were seen

when the subject arm movement was undermined by body

movement. Most of the time, the subjects moved their

body significantly while their arm movement was small

and concise. This deceived the motion analysis component

due to the greater area of the body in the silhouettes.

Taking this into account, 5 more videos were recorded

with 3 users where only one of them also took part in

the first batch of recorded videos. In this new batch, big

body movements were omitted while performing writing

or erasing action. The obtained results for batch 1 and

batch 2 videos can be seen in Table III.

Table III
CLASSIFICATION RESULTS ON TEST VIDEOS.

Test Videos Batch-1 video Batch-2 video
Video 1 85.00% 93.48%
Video 2 40.63% 89.36%
Video 3 60.00% 82.83%
Video 4 50.00% 87.18%
Video 5 70.67% 92.47%
Overall 61.26% 89.06%

It can be seen that the difference when taking into

consideration body movement is significant. The overall

classification accuracy of the second batch of videos was

89.06%, a 27.81% improvement in comparison to the
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Figure 6. (a) (b) MHI of writing posture (c) (d) MHI of erasing posture
(e) (f) writing templates (g) (h) erasing templates.

previous batch. This is the result of limiting big body

movements while already performing a recognizeable ac-

tion. To avoid imposing any limitations on subjects, we

further processed the Batch-1 videos by segmenting the

body into different parts and achieved 90% classification

accuracy. However, these additional segmentation steps

were computationally expensive.

V. PERFORMANCE EVALUATION

It was difficult to compare our approach to state of

the art technique since our proposed approach uses multi-

modal features. Nevertheless, we compared our approach

to commonly used template matching techniques. For this,

we created 2 types of templates as shown in Figure 6.

The templates were created by centering the MHIs of

writing and erasing postures. Figure 5(a) and 5(b) are the

MHIs of writing posture while Figure 5(c) and 5(d) are

MHIs of erasing posture. Figure 5(e) and 5(f) are the

templates created from the MHIs of writing sequence and

Figure 5(g) and 5(h) are from MHIs of erasing sequence.

These templates were then matched with the Batch-2

video frames to compute the classification accuracy using

correlation. Let Fp and Tp denote foreground pixel and

template pixel respectively. The correlation can then be

defined as:

Cj =
1
N

N∑
i=1

Fpi.Tjpi, N = W ∗H, (7)

where j is the total number of templates. W and H is

the width and height of the video frame.

A frame is classified as either writing or erasing if the

correlation is greater than certain threshold. If a threshold

is below a certain level (70 for the given example) then

the frame is labeled as an idle frame, according to given

equation:

Lf =
{

writing/erasing

idle
,

Cj < T

otherwise

}
, (8)

where Lf is the labeled frame and T is the threshold.

We also computed the similitude value to compare

the templates with the extracted video frame. This gives

us slightly better results than correlation based matching

criteria. Furthermore, we trained the classifier on our

extracted feature using support vector machine (SVM)

and tested them on Batch-2 test videos. The obtained

results are very similar to random forest classifier as shown

in Table IV, which proves the validity of our proposed

approach.

VI. CONCLUSION

In this paper, we proposed a multi-modal action classifi-

cation system for lecture videos. We classified four actions

as writing, erasing, speaking and idle. We used these

actions in media analysis and processing unit (MAPU) to

identify key events for developing effective video learning

objects (VLO). The MAPU is a part of our Multimedia

Learning Objects (MLO) framework for E-Learning [4].

We used a multi-modal approach which is not commonly

pursued in the action recognition domain. We included

a VAD component to make use of audio cues that were

proven to provide good classification performance im-

provement. We used Hu Moments as shape descriptors

and the Mahalanobis distance to measure the distance to a

predefined set of poses dataset. We independently analyze

shape, motion and audio of the video and use the three

components to obtain a more robust classification. With

the presented approach, we were able to classify actions

into four predefined action classes with an overall classifi-

cation accuracy of 89.06%. A 25%-30% improvement over

classical template matching. The proposed solution will be

tested in near future with different action categories and

other multi-modal single step classifier for identification

of possible key events.
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